Neurobiological mechanisms of the rewars and punishment systems in the brain afteractivation of nucleus accumbens



Cite item

Full Text

Abstract

The review devoted to neurobiological mechanisms of both positive and negative reinforcement is represented. The key role in these processes plays the nucleus accumbens as a part of the extended amygdala system. The afferent and efferent connections of the n.accumbens, starting mechanisms of the n.accumbens involvement in emotional reactions, interactions between n.accumbens and other structures of the extended amygdala system, and neurochemical organization of the n.accumbens and all system of reinforcement are discussed in the article. The special attention is taken to the n.accumbens participation in addictive behavior.

About the authors

Mariya Vladimirovna Sheveleva

Institute of Experimental Medicine, NWB RAMS

Email: shevelevamary@yandex.ru
Fellow (Pharmacology), Anichkov Dept. of Neuropharmacology

Andrey Andreyevich Lebedev

Institute of Experimental Medicine, NWB RAMS

Email: aalebedev@yandex.ru
Dr. Biol. Sci. (Physiology), Professor, Senior Researcher, Anichkov Dept. of Neuropharmacology

Roman Olegovich Roik

Institute of Experimental Medicine, NWB RAMS

PhD (Pharmacology), Senior Researcher, Anichkov Dept. of Neuropharmacology

Petr Dmitriyevich Shabanov

Institute of Experimental Medicine, NWB RAMS

Email: pdshabanov@mail.ru
Dr. Med. Sci. (Pharmacology), Professor and Head, Anichkov Dept. of Neuropharmacology

References

  1. Вальдман А. В., Бабаян Э. А., Звартау Э. Э. Психо-фармакологические и медико-правовые аспекты токсикоманий. М.: Медицина, 1988. — 320 с.
  2. Вартанян Г. А., Петров Е. С. Эмоции и поведение. Л.: Наука, 1989. — 150 с.
  3. Воеводин Е. Е. Кортиколибериновые механизмы подкрепления и их модуляция нейропептидами и наркогенами: Автореф. дис… канд. мед. наук. СПб.: ВМедА, 2007. — 24 с.
  4. Дробленков А. В. Краткий микроскопический атлас ядерных и корковых центров мезокортиколимбической и некоторых других дофаминергических систем головного мозга крысы / Под ред. Н. Р. Карелиной. СПб.: СПбГПМА, 2006. — 33 с.
  5. Елисеева А. П. Значение серотонинергической системы для формирования подкрепляющих механизмов мозга в онтогенезе у крыс: Автореф. дисс… канд. мед. наук. СПб.: ВМедА, 2005. — 24 с.
  6. Звартау Э. Э. Методология изучения наркотоксикомании // Итоги науки и техники. Сер. Наркология. М.: ВИНИТИ. — 1988. — Т. 1. — С. 1–166.
  7. Лебедев А. А., Шабанов П. Д. Сопоставление реакции самостимуляции и условного предпочтения места при введении фенамина у крыс // Журн. высш. нервн. деят. — 1992. — Т. 42, № 4. — С. 692–698.
  8. Любимов А. В. Участие структур расширенной миндалины в подкрепляющем действии наркогенов: Автореф. дис… канд. мед. наук. СПб.: ВМедА, 2012. — 22 с.
  9. Машковский М. Д. Лекарственные средства: Пособие для врачей. 15-е изд. М.: Новая волна, 2008. — С. 526–528.
  10. Менделевич В. Д. Наркомания и наркология в России в зеркале общественного мнения и профессионального анализа. Казань: Медицина, 2006. — 262 с.
  11. Менделевич В. Д., Зобин М. Л. Аддиктивное влечение. М.: МЕДпресс-информ, 2012. — 264 с.
  12. Мещеров Ш. К. Значение формирования дофаминергических систем мозга в онтогенезе для реализации эффектов психостимуляторов: Автореф. дисс… канд. мед. наук. СПб., 2001. — 24 с.
  13. Мещеров Ш. К. Фармакологическая коррекция последствий социальной изоляции: Автореф. дис… д-ра мед. наук. СПб., 2004. — 48 с.
  14. Михеев В. В., Шабанов П. Д. Фармакологическая асимметрия мозга. СПб.: Элби-СПб, 2006. — 368 с.
  15. Отеллин В. А. Медиаторные системы головного мозга: субстрат межнейронных связей, мишени фармакологических воздействий и объемы трансплантации // Актуальные вопросы биологии и медицины. Фундаментальные и прикладные проблемы / Под ред. Н. П. Бехтеревой. Л.: АМН СССР. — 1990. — № 2. — С. 74–85.
  16. Симонов П. В. Мотивированный мозг. М.: Наука, 1987. — 240 с.
  17. Симонов П. В. Эмоции, потребности, поведение. Избранные труды. М: Наука, 2004. — Т. 1.
  18. Стрельцов В. Ф. Значение гормональных механизмов в действии психостимуляторов на подкрепляющие системы мозга: Автореф. дис… канд. мед. наук. СПб.: ВМедА, 2003. — 23 с.
  19. Стрельцов В. Ф. Фармакология кортиколибериновых механизмов подкрепления и зависимости: Автореф. дис… д-ра мед. наук. Смоленск: СГМА, 2009. — 46 с.
  20. Шабанов П. Д. Психофармакология. СПб.: Н-Л, 2008. — 384 с.
  21. Шабанов П. Д. Наркология. 2-е изд., перераб. и доп. М.: Гэотар-медиа, 2012. — 834 с.
  22. Шабанов П. Д., Лебедев А. А. Структурно-функциональная организация системы расширенной миндалины и ее роль в подкреплении // Обзоры по клин. фармакол. и лек. терапии. — 2007. — Т. 5, № 1. — С. 2–16.
  23. Шабанов П. Д., Лебедев А. А. Угнетение самостимуляции латерального гипоталамуса опиатами и опиоидами, вводимыми в центральное ядро миндалины у крыс // Рос. физиол. журн. им. И. М. Сеченова. — 2011. — Т. 97, № 2. — С. 180–188.
  24. Шабанов П. Д., Лебедев А. А. Участие ГАМК- и дофаминергических механизмов ядра ложа конечной полоски в подкрепляющих эффектах психотропных средств, реализуемых через латеральный гипоталамус // Рос. физиол. журн. им. И. М. Сеченова. — 2011. — Т. 97, № 8. — С. 804–813.
  25. Шабанов П. Д., Лебедев А. А., Мещеров Ш. К. Дофамин и подкрепляющие системы мозга. СПб.: Лань, 2002. — 208 с.
  26. Шабанов П. Д., Лебедев А. А., Стрельцов В. Ф. Гормональные механизмы подкрепления. СПб.: Н-Л, 2008. — 208 с.
  27. Шабанов П. Д., Сапронов Н. С. Психонейроэндокринология. СПб.: Информ-Навигатор, 2010. — 984 с.
  28. Albin R. L., Young A. B., Penney J. B. The functional anatomy of basal ganglia disorders // Trends Neurosci. — 1989. — Vol. 12. — P. 366–375.
  29. Alheid G. F., Heimer L. Theories of basal forebrain organization and the “emotional motor system” // Progr. Brain Res. — 1996. — Vol. 107. — P. 461–484.
  30. Bals-Kubik R., Ableitner A., Herz A., Shippenberg T. S. Neuroanatomical sites mediating the motivational effects of opioids as mapped by the conditioned place preference paradigm in rats // J. Pharmacol. Exp. Ther. — 1993. — Vol. 264. — P. 489–495.
  31. Benavides D. R., Quinn J. J., Zhong P. et al. Cdk5 modulates cocaine reward, motivation, and striatal neuron excitability // Journal Neurosci. — 2007. — Vol. 27. — P. 12 967–12 976.
  32. Bodnar R. J., Glass M. J., Ragnauth A., Cooper M. L. General, mu and kappa opioid antagonists in the nucleus accumbens alter food intake under deprivation, glucoprivic and palatable conditions // Brain Res. — 1995. — Vol. 700. — P. 205–212.
  33. Bozarth M. A., Wise R. Intracranial self-administration of morphine into the ventral tegmental area in rats // Life Sci. — 1981. — Vol. 28. — P. 551–555.
  34. Bozarth M. A., Wise R. A. Neural substrates of opiate reinforcement // Prog. Neuropsychopharmacol. Biol. Psychiatry. — 1983. — Vol. 7. — P. 569–575.
  35. Caine S. B., Negus S. S., Mello N. K. Effects of dopamine D (1-like) and D (2-like) agonists on cocaine self-administration in rhesus monkeys: rapid assessment of cocaine dose-effect functions // Psychopharmacol. — 2000. Vol. — 148. — P. 41–51.
  36. Caine S. B., Negus S. S., Mello N. K., Bergman J. Effects of dopamine D (1-like) and D (2-like) agonists in rats that self-administer cocaine // J. Pharmacol. Exp. Ther. — 1999. — Vol. 291. — P. 353–360.
  37. Carelli R. M., Ijames S. G., Crumling A. J. Evidence that separate neural circuits in the nucleus accumbens encode cocaine versus “natural” (water and food) reward // J. Neurosci. — 2000. — Vol. 20. — P. 4255–4266.
  38. Carlezon W. A., Beguin C., DiNieri J. A. et al. Depressive-like effects of the kappa-opioid receptor agonist salvinorin A on behavior and neurochemistry in rats // J. Pharmacol. Exp. Ther. — 2006. — Vol. 316. — P. 440–447.
  39. Carlezon W. A., Boundy V. A., Haile C. N. et al. Sensitization to morphine induced by viral-mediated gene transfer // Science. — 997. — Vol. 277. — P. 812–814.
  40. Carlezon W. A., Devine D. P., Wise R. A. Habit-forming actions of nomifensine in nucleus accumbens // Psychopharmacol. — 1995. — Vol. 122. — P. 194–197.
  41. Carlezon W. A., Duman R. S., Nestler E. J. The many faces of CREB // Trends Neurosci. — 2005. — Vol. 28. — P. 436–445.
  42. Carlezon W. A., Nestler E. J. Elevated levels of GluR1 in the midbrain: a trigger for sensitization to drugs of abuse? // Trends Neurosci. — 2002. — Vol. 25. — P. 610–615.
  43. Carlezon W. A., Thome J., Olson V. G. et al. Regulation of cocaine reward by CREB // Science. — 1998. — Vol. 282. — P. 2272–2275.
  44. Carlezon W. A., Thomas M. J. Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis // Neuropharmacology. — 2009. — Vol. 56, Suppl. 1. — P. 122–132.
  45. Carlezon W. A., Wise R. A. Rewarding actions of phencyclidine and related drugs in nucleus accumbens shell and frontal cortex // J. Neurosci. — 1996. — Vol. 16. — P. 3112–3122.
  46. Chang J. Y., Zhang L., Janak P. H., Woodward D. J. Neuronal responses in prefrontal cortex and nucleus accumbens during heroin self-administration in freely moving rats // Brain Res. — 1997. — Vol. 754. — P. 12–20.
  47. Chao S. Z., Ariano M. A., Peterson D. A., Wolf M. E. Dl dopamine receptor stimulation increases GluR1 surface expression in nucleus accumbens neurons // J. Neurochem. — 2002. — Vol. 83. — P. 704–712.
  48. Chartoff E. H., Mague S. D., Barhight M. F. et al. Behavioral and molecular effects of dopamine Dl receptor stimulation during naloxone-precipitated morphine withdrawal // J. Neurosci. — 2006. — Vol. 26. — P. 6450–6457.
  49. Chartoff E. H., Pliakas A. M., Carlezon W. A. Microinjection of the L-type calcium channel antagonist diltiazem into the ventral nucleus accumbens shell facilitates cocaine-induced conditioned place preferences // Biol. Psychiatry. — 2006. — Vol. 59. — P. 1236–1239.
  50. Chen M. C., Parsegian A., Carlezon W. A. Effect of mesocorticolimbic microinjections of the kappa-opioid agonist U50,488 on intracranial self-stimulation in rats // Soc. Neurosci. Abstr. — 2008. — P. 34.
  51. Childress A. R. What can human brain imaging tell us about the vulnerability to addiction and to relapse? // Rethinking Substance Abuse: What the science shows and what we should do about it / Ed. by W. R. Miller, K. M. Carroll. New York: Guilford, 2006. — P. 46–60.
  52. Churchill L., Swanson C. J., Urbina M., Kalivas P. W. Repeated cocaine alters glutamate receptor subunit levels in the nucleus accumbens and ventral tegmental area of rats that develop behavioral sensitization // J. Neurochem. — 1999. — Vol. 72. — P. 2397–2403.
  53. Cooper D. C., White F. J. L-type calcium channels modulate glutamate-driven bursting activity in the nucleus accumbens in vivo // Brain Res. — 2000. — Vol. 880. — P. 212–218.
  54. De Rover M., Lodder J. C., Kits K. S. et al. Cholinergic modulation of nucleus accumbens medium spiny neurons // Eur. J. Neurosci. — 2002. — Vol. 16. — P. 2279–2290.
  55. Di Chiara G., Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats // Proc. Natl. Acad. Sci. USA. — 1988. — Vol. 85. — P. 5274–5278.
  56. DiNieri J. A., Carle T., Nestler E. J., Carlezon W. A. Inducible disruption of CREB activity within nucleus accumbens alters sensitivity to rewarding and prodepressive drugs // Soc. Neurosci. Abstr. — 2006. — P. 32.
  57. Dong Y., Saal D., Thomas M. et al. Cocaine-induced potentiation of synaptic strength in dopamine neurons: behavioral correlates in GluRA (-/-) mice // Proc. Natl. Acad. Sci. USA. — 2004. — Vol. 101. — P. 14282–14287.
  58. Dong Y., Green T., Saal D. et al. CREB modulates excitability of nucleus accumbens neurons // Nat. Neurosci. — 2006. — Vol. 9. — P. 475–477.
  59. Donzanti B. A., Althaus J. S., Payson M. M., Von Voigtlander P. F. Kappa agonist-induced reduction in dopamine release: site of action and tolerance // Res. Commun. Chem. Pathol. Pharmacol. — 1992. — Vol. 78. — P. 193–210.
  60. Dunn A. J. Stress-related activation of cerebral dopaminergic systems // Ann. NY Acad. Sci. — 1988. — Vol. 537. — P. 188–205.
  61. Elmer G. I., Pieper J. O., Levy J. et al. Brain stimulation and morphine reward deficits in dopamine D2 receptor-deficient mice // Psychopharmacol. — 2005. — Vol. 182. — P. 33–44.
  62. Fibiger H. C., Nomikos G. G., Pfaus J. G., Damsma G. Sexual behavior, eating and mesolimbic dopamine // Clin. Neuropharmacol. — 1992. — Vol. 1, Suppl. 15. — P. 566A-567A.
  63. Finlay J. M., Damsma G., Fibiger H. C. Benzodiazepine-induced decreases in extracellular concentrations of dopamine in the nucleus accumbens after acute and repeated administration // Psychopharmacol. — 1992. — Vol. 106. — P. 202–208.
  64. Franklin T. R., Wang Z., Wang J. et al. Limbic activation to cigarette smoking cues independent of nicotine withdrawal: a perfusion fMRI study // Neuropsychopharmacol. — 2007. — Vol. 32. — P. 2301–2309.
  65. Gerfen C. R., Engber T. M., Mahan L. C. et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons // Science. — 1990. — Vol. 250. — P. 1429–1432.
  66. Goeders N. E., Smith J. E. Cortical dopaminergic involvement in cocaine reinforcement // Science. — 1983. — Vol. 221. — P. 773–775.
  67. Gong S., Zheng C., Doughty M. L. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes // Nature. — 2003. — Vol. 425. — P. 917–925.
  68. Grace A. A., Floresco S. B., Goto Y., Lodge D. J. Regulation of firing of dopaminergic neurons and control of goal-directed behaviors // Trends Neurosci. — 2007. — Vol. 30. — P. 220–227.
  69. Gracy K. N., Dankiewicz L. A., Koob G. F. Opiate withdrawal-induced fos immunoreactivity in the rat extended amygdala parallels the development of conditioned place aversion // Neuropsychopharmacol. — 2001. — Vol. 24. — P. 152–160.
  70. Griffiths R. R., Ator N. A. Benzodiazepine self-administration in animals and humans: a comprehensive literature review // NIDA Res. Monogr. — 980. — Vol. 33. — P. 22–36.
  71. Guix T., Hurd Y. L., Ungerstedt U. Amphetamine enhances extracellular concentrations of dopamine and acetylcholine in dorsolateral striatum and nucleus accumbens of freely moving rats // Neurosci. Lett. — 1992. — Vol. 138. — P. 137–140.
  72. Hakan R. L., Henriksen S. J. Opiate influences on nucleus accumbens neuronal electrophysiology: dopamine and non-dopamine mechanisms // J. Neurosci. — 1989. — Vol. 9. — P. 3538–3546.
  73. Hallett P. J., Spoelgen R., Hyman В. Т. et al. Dopamine Dl activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking // J. Neurosci. — 2006. — Vol. 26. — P. 4690–4700.
  74. Harris G. C., Aston-Jones G. Involvement of D2 dopamine receptors in the nucleus accumbens in the opiate withdrawal syndrome // Nature. — 1994. — Vol. 371. — P. 155–157.
  75. Herman J. P., Rivet J. M., Abrous N., Le Moal M. Intracerebral dopaminergic transplants are not activated by electrical footshock stress activating in situ mesocorticolimbic neurons // Neurosci. Lett. — 1988. — Vol. 90. — P. 83–88.
  76. Hoebel B. G., Monaco A. P., Hernandez L. et al. Self-injection of amphetamine directly into the brain // Psychopharmacol. — 1983. — Vol. 81. — P. 158–163.
  77. Hollmann M., Hartley M., Heinemann S. Ca2+ permeability of KA-AMPA — gated glutamate receptor channels depends on subunit composition // Science. — 1991. — Vol. 252. — P. 851–853.
  78. Hormes I. M., Rosin P. Does craving carvenature at the joints? Absence of the synonym for craving in many languages // Addict. Behav. — 2010. — Vol. 33, N 5. — P. 459–463.
  79. Hu X. T., Basu S., White F. J. Repeated cocaine administration suppresses HVA-Ca2+ potentials and enhances activity of K+ channels in rat nucleus accumbens neurons // J. Neurophysiol. — 2004. — Vol. 92. — P. 1597–1607.
  80. Ikemoto I. Involvement of the olfactory tubercle in cocaine reward: intracranial self-administration studies // J. Neurosci. — 2003. — Vol. 23. — P. 9305–9311.
  81. Ikemoto S., Glazier B. S., Murphy J. M., McBride W. J. Role of dopamine D1 and D2 receptors in the nucleus accumbens in mediating reward // J. Neurosci. — 1997. — Vol. 17. — P. 8580–8587.
  82. Imperato A., Obinu M. C., Demontis M. V., Gessa G. L. Cocaine releases limbic acetylcholine through endogenous dopamine action on D1 receptors // Eur. J. Pharmacol. — 1992. — Vol. 229. — P. 265–267.
  83. Janak P. H., Chang J. Y., Woodward D. J. Neuronal spike activity in the nucleus accumbens of behaving rats during ethanol self-administration // Brain Res. — 1999. — Vol. 817. — P. 172–184.
  84. Johnson S. W., North R. A. Opioids excite dopamine neurons by hyperpolarization of local interneurons // J. Neurosci. — 1992. — Vol. 12. — P. 483–488.
  85. Kalivas P. W., Duffy P. Similar effects of daily cocaine and stress on mesocorticolimbic dopamine neurotransmission in the rat // Biol. Psychiatry. — 1989. — Vol. 25. — P. 913–928.
  86. Kelley A. E., Bless E. P., Swanson С. J. Investigation of the effects of opiate antagonists infused into the nucleus accumbens on feeding and sucrose drinking in rats // Journal Pharmacol. Exp. Ther. — 1996. — Vol. 278. — P. 1499–1507.
  87. Kelley A. E. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning // Neurosci. Biobehav. Rev. — 2004. — Vol. 27. — P. 765–776.
  88. Kelsey J. E., Carlezon W. A., Falls W. A. Lesions of the nucleus accumbens in rats reduce opiate reward but do not alter context-specific opiate tolerance // Behav. Neurosci. — 1989. — Vol. 103. — P. 1327–1334.
  89. Kelz M. B., Chen J., Carlezon W. A. et al. Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine // Nature. — 1999. — Vol. 401. — P. 272–276.
  90. Kessler R. C., Zhao S., Blazer D. G., Swartz M. Prevalence, correlates, and course of minor depression and major depression in the National Comorbidity Survey // J. Affect. Disord. — 1997. — Vol. 45. — P. 19–30.
  91. Kozlowski I., Mann R. E., Wilkinson D. A., Paulos C. X. Cravings are ambiguous: ask about urges or desires // Addict. Behav. — 1989. — Vol. 14, N 4. — P. 443–445.
  92. Koob G. F., Le Moal M. Dynamics of neuronal circuits in addiction: reward, antireward, and emotional memory // Pharmacopsychiatry. — 2008. — Vol. 42, Suppl. 1. — P. S32–S41.
  93. Kourrich S., Rothwell P. E., Klug J. R., Thomas M. J. Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens // J. Neurosci. — 2007. — Vol. 27. — P. 7921–7928.
  94. Leone P., Pocock D., Wise R. A. Morphine-dopamine interaction: ventral tegmental morphine increases nucleus accumbens dopamine release // Pharmacol. Biochem. Behav. — 1991. — Vol. 39. — P. 469–472.
  95. Liu Z. H., Shin R., Ikemoto S. Dual Role of Medial A10 Dopamine Neurons in Affective Encoding // Neuropsychopharmacol. — 2008, Preprint.
  96. Lobo M. K., Karsten S. L., Gray M. et al. FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains // Nat. Neurosci. — 2006. — Vol. 9. — P. 443–452.
  97. Mague S. D., Pliakas A. M., Todtenkopf M. S. et al. Antidepressant-like effects of kappa-opioid receptor antagonists in the forced swim test in rats // J. Pharmacol. Exp. Ther. — 2003. — Vol. 305. — P. 323–330.
  98. Maldonado R., Saiardi A., Valverde O. et al. Absence of opiate rewarding effects in mice lacking dopamine D2 receptors // Nature. — 1997. — Vol. 388. — P. 586–589.
  99. Malinow R., Malenka R. C. AMPA receptor trafficking and synaptic plasticity // Annu. Rev. Neurosci. — 2002. — Vol. 25. — P. 103–126.
  100. Mangiavacchi S., Wolf M. E. Dl dopamine receptor stimulation increases the rate of AMPA receptor insertion onto the surface of cultured nucleus accumbens neurons through a pathway dependent on protein kinase A // J. Neurochem. — 2004. — Vol. 88. — P. 1261–1271.
  101. Mansour A., Watson S. J., Akil H. Opioid receptors: past, present and future // Trends Neurosci. — 1995. — Vol. 18. — P. 69–70.
  102. Mark G. P., Rada P., Pothos E., Hoebel B. G. Effects of feeding and drinking on acetylcholine release in the nucleus accumbens, striatum, and hippocampus of freely behaving rats // J. Neurochem. — 1992. — Vol. 58. — P. 2269–2274.
  103. Marlatt G. Craving Notes // Br. J. Addict. — 1987. — Vol. 82. — P. 42–43.
  104. Mead A. N., Brown G., Le Merrer J., Stephens D. N. Effects of deletion of grial or gria2 genes encoding glutamatergic AMPA-receptor subunits on place preference conditioning in mice // Psychopharmacology (Berl.). — 2005. — Vol. 179. — P. 164–171.
  105. Mead A. N., Zamanillo D., Becker N., Stephens D. N. AMPA-receptor GluR1 subunits are involved in the control over behavior by cocaine-paired cues // Neuropsychopharmacology. — 2007. — Vol. 32. — P. 343–353.
  106. McCarthy P. S., Walker R. J., Woodruff G. N. Depressant actions of enkephalins on neurones in the nucleus accumbens [proceedings] // J. Physiol. — 1977. — Vol. 267. — P. 40P-41P.
  107. McFarland K., Davidge S. B., Lapish C. C., Kalivas P. W. Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior // J. Neurosci. — 2004. — Vol. 24. — P. 1551–1560.
  108. Meredith G. E. The synaptic framework for chemical signaling in nucleus accumbens // Ann. NY Acad. Sci. — 1999. — Vol. 877. — P. 140–156.
  109. Mzrahi R., Rusjan P., Agid O. et al. Adverse subjective experience with antipsychotics and its relationship to striatal and extrastriatal D2 receptors: a PET study in schizophrenia // Amer. J. Psychiatry. — 2007. — Vol. 164. — P. 630–637.
  110. Murai T., Koshikawa N., Kanayama T. et al. Opposite effects of midazolam and beta-carboline-3-carboxylate ethyl ester on the release of dopamine from rat nucleus accumbens measured by in vivo microdialysis // Eur. J. Pharmacol. — 1994. — Vol. 261. — P. 65–71.
  111. Nestler E. J., Carlezon W. A. The mesolimbic dopamine reward circuit in depression // Biol. Psychiatry. — 2006. — Vol. 59. — P. 1151–1159.
  112. Newton S. S., Thome J., Wallace T. L. et al. Inhibition of cAMP response element-binding protein or динорфин in the nucleus accumbens produces an antidepressant-like effect // J. Neurosci. — 2002. — Vol. 22. — P. 10883–10890.
  113. Nicola S. M., Yun I. A., Wakabayashi K. T., Fields H. L. Firing of nucleus accumbens neurons during the consummatory phase of a discriminative stimulus task depends on previous reward predictive cues // J. Neurophysiol. — 2004. — Vol. 91. — P. 1866–1882.
  114. O'Donnell P., Grace A. A. Dopaminergic reduction of excitability in nucleus accumbens neurons recorded in vitro // Neuropsychopharmacol. — 1996. — Vol. 15. — P. 87–97.
  115. O'Donnell P., Grace A. A. Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input // J. Neurosci. — 1995. — Vol. 15. — P. 3622–3639.
  116. Olds M. E. Reinforcing effects of morphine in the nucleus accumbens // Brain Res. — 1982. — Vol. 237. — P. 429–440.
  117. Parsegian A., Todtenkopf M. S., Neve R. L., Carlezon W. A. Viral vector-induced elevations of CREB expression in the nucleus accumbens produces anhedonia in the rat intracranial self-stimulation (ICSS) test // Soc. Neurosci. Abstr. — 2006. — Vol. 33.
  118. Pennartz C. M., Boeijinga P. H., Lopes da Silva F. H. Locally evoked potentials in slices of the rat nucleus accumbens: NMDA and non-NMDA receptor mediated components and modulation by GABA // Brain Res. — 1990. — Vol. 529. — P. 30–41.
  119. Peoples L. L., West M. O. Phasic firing of single neurons in the rat nucleus accumbens correlated with the timing of intravenous cocaine self-administration // J. Neurosci. — 1996. — Vol. 16. — P. 3459–3473.
  120. Peoples L. L., Kravitz A. V., Guillem K. The role of accumbal hypoactivity in cocaine addiction // Sci. World J. — 2007. — Vol. 7. — P. 22–45.
  121. Pfaus J. G. Neurobiology of sexual behavior // Curr. Opin. Neurobiol. — 1999. — Vol. 9. — P. 751–758.
  122. Pfeiffer A., Brantl V., Herz A., Emrich H. M. Psychotomimesis mediated by kappa opiate receptors // Science. — 1986. — Vol. 233. — P. 774–776.
  123. Phillips A. G., LePiane G. Disruption of conditioned taste aversion in the rat by stimulation of amygdale: a conditioning effect, not amnesia // J. Comp. Physiol. Psychol. — 1980. — Vol. 94. — P. 664–674.
  124. Pickens R., Johanson C. Craving: Consensus of status and agenda for future research. // Drug Alcohol Depend. — 1992. — Vol. 30. — P. 127–131.
  125. Pliakas A. M., Carlson R. R., Neve R. L. et al. Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens // J. Neurosci. — 2001. — Vol. 21. — P. 7397–7403.
  126. Rajadhyaksha A., Barczak A., Macias W. et al. L-Type Ca(2+) channels are essential for glutamate-mediated CREB phosphorylation and c-fos gene expression in striatal neurons // J. Neurosci. — 1999. — Vol. 19. — P. 6348–6359.
  127. Roberts D. C., Koob G. F., Klonoff P., Fibiger H. C. Extinction and recovery of cocaine self-administration following 6-hydroxy dopamine lesions of the nucleus accumbens // Pharmacol. Biochem. Behav. — 1980. — Vol. 12. — P. 781–787.
  128. Robinson T., Berridge K. The neural basis craving: an incentive-sensitization theory of addiction // Brain Res. Rev. — 1993. — Vol. 18, N 3. — P.247–291.
  129. Roitman M. F., Wheeler R. A., Carelli R. M. Nucleus accumbens neurons are innately tuned for rewarding and aversive taste stimuli, encode their predictors, and are linked to motor output // Neuron. — 2005. — Vol. 45. — P. 587–597.
  130. Shabanov P. D. The extended amygdala CRF receptors regulate the reinforcing effect of self-stimulation // Int. J. Addiction Res. — 2008. — Vol. 1, N 1. — P. 200–204.
  131. Smith K. S., Berridge К. С. Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum // J. Neurosci. — 2007. — Vol. 27. — P. 1594–1605.
  132. Snyder G. L., Allen P. B., Fienberg A. A. et al. Regulation of phosphorylation of the GluR1 AMPA receptor in the neostriatum by dopamine and psychostimulants in vivo // J. Neurosci. — 2000. — Vol. 20. — P. 4480–4488.
  133. Spanagel R., Herz A., Shippenberg T. S. Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway // Proc. Natl. Acad. Sci. USA. — 1992. — Vol. 89. — P. 2046–2050.
  134. Stinus L., Le Moal M., Koob G. F. Nucleus accumbens and amygdala are possible substrates for the aversive stimulus effects of opiate withdrawal // Neuroscience. — 1990. — Vol. 37. — P. 767–773.
  135. Sun X., Milovanovic M., Zhao Y., Wolf M. E. Acute and chronic dopamine receptor stimulation modulates AMPA receptor trafficking in nucleus accumbens neurons cocultured with prefrontal cortex neurons // J. Neurosci. — 2008. — Vol. 28. — P. 4216–4230.
  136. Surmeier D. J., Ding J., Day M. et al. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons // Trends Neurosci. — 2007. — Vol. 30. — P. 228–235.
  137. Svingos A. L., Colago Е. Е., Pickel V. M. Cellular sites for динорфин activation of kappa-opioid receptors in the rat nucleus accumbens shell // J. Neurosci. — 1999. — Vol. 19. — P. 1804–1813.
  138. Swanson G. T., Kamboj S. K., Cull-Candy S. G. Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition // Journal Neurosci. — 1997. — Vol. 17. — P. 58–69.
  139. Taha S. A., Fields H. L. Encoding of palatability and appetitive behaviors by distinct neuronal populations in the nucleus accumbens // J. Neurosci. — 2005. — Vol. 25. — P. 1193–1202.
  140. Tindell A. J., Berridge К. С., Aldridge J. W. Ventral pallidal representation of pavlovian cues and reward: population and rate codes // J. Neurosci. — 2004. — Vol. 24. — P. 1058–1069.
  141. Tindell A. J., Smith K. S., Pecina S. et al. Ventral pallidum firing codes hedonic reward: when a bad taste turns good // J. Neurophysiol. — 2006. — Vol. 96. — P. 2399–2409.
  142. Todtenkopf M. S., Marcus J. F., Portoghese P. S., Carlezon W. A. Effects of kappa-opioid receptor ligands on intracranial self-stimulation in rats // Psychopharmacol. — 2004. — Vol. 172. — P. 463–470.
  143. Todtenkopf M. S., Parsegian A., Naydenov A. et al. Brain reward regulated by AMPA receptor subunits in nucleus accumbens shell // J. Neurosci. — 2006. — Vol. 26. — P. 11 665–11 669.
  144. Todtenkopf M. S., Stellar J. R. Assessment of tyrosine hydroxylase immunoreactive innervation in five subregions of the nucleus accumbens shell in rats treated with repeated cocaine // Synapse. — 2000. — Vol. 38. — P. 261–270.
  145. Trujillo K. A., Belluzzi J. D., Stein L. Opiate antagonists and self-stimulation: extinction-like response patterns suggest selective reward deficit // Brain Res. — 1989. — Vol. 492. — P. 15–28.
  146. Turgeon S. M., Pollack A. E., Fink J. S. Enhanced CREB phosphorylation and changes in c-Fos and FRA expression in striatum accompany amphetamine sensitization // Brain Res. — 1997. — Vol. 749. — P. 120–126.
  147. Uchimura N., Higashi H., Nishi S. Membrane properties and synaptic responses of the guinea pig nucleus accumbens neurons in vitro // J. Neurophysiol. — 1989. — Vol. 61. — P. 769–779.
  148. Vekovischeva O. Y., Zamanillo D., Echenko O. et al. Morphine-induced dependence and sensitization are altered in mice deficient in AMPA-type glutamate receptor-A submits // J. Neurosci. — 2001. — Vol. 21. — P. 4451–4459.
  149. Volkow N. D., Fowler J. S., Wang G. J. et al. Dopamine in drug abuse and addiction: results of imaging studies and treatment implications // Arch. Neurol. — 2007. — Vol. 64. — P. 1575–1579.
  150. Wadenberg M. L. A review of the properties of spiradoline: a potent and selective kappa-opioid receptor agonist // CNS Drug Rev. — 2003. — Vol. 9. — P. 187–198.
  151. Weiss R. D. Adherence to pharmacotherapy in patients with alcohol and opioid dependence // Addiction. — 2004. — Vol. 99. — P. 1382–1392.
  152. Welter M., Vallone D., Samad Т. А. et al. Absence of dopamine D2 receptors unmasks an inhibitory control over the brain circuitries activated by cocaine // Proc. Natl. Acad. Sci. USA. — 2007. — Vol. 104. — P. 6840–6845.
  153. West Т. Е., Wise R. A. Effects of naltrexone on nucleus accumbens, lateral hypothalamic and ventral tegmental self-stimulation rate-frequency functions // Brain Res. — 1988. — Vol. 462. — P. 126–133.
  154. Wheeler R. A., Twining R. C., Jones J. L. et al. Behavioral and electrophysiological indices of negative affect predict cocaine self-administration // Neuron. — 2008. — Vol. 57. — P. 774–785.
  155. Wise R. A. Addictive drugs and brain stimulation reward // Annu. Rev. Neurosci. — 1996. — Vol. 19. — P. 319–340.
  156. Wise R. A. Neuroleptics and operant behavior: the anhedonia hypothesis // Behav. Brain Sci. — 1982. — Vol. 5. — P. 39–87.
  157. Wise R. A., Bozarth M. A. A psychomotor stimulant theory of addiction // Psychol. Rev. — 1987. — Vol. 94. — P. 469–492.
  158. Wise R. A., Rompre P. P. Brain dopamine and reward // Annu. Rev. Psychol. — 1989. — Vol. 40. — P. 191–225.
  159. Wood P. L. Actions of GABAergic agents on dopamine metabolism in the nigrostriatal pathway of the rat // J. Pharmacol. Exp. Ther. — 1982. — Vol. 222. — P. 674–679.
  160. Yun I. A., Wakabayashi K. T., Fields H. L., Nicola S. M. The ventral tegmental area is required for the behavioral and nucleus accumbens neuronal firing responses to incentive cues // J. Neurosci. — 2004. — Vol. 24. — P. 2923–2933.
  161. Yun I. A., Nicola S. M., Fields H. L. Contrasting effects of dopamine and glutamate receptor antagonist injection in the nucleus accumbens suggest a neural mechanism underlying cue-evoked goal-directed behavior // Eur. J. Neurosci. — 2004. — Vol. 20. — P. 249–263.
  162. Zahm D. S. Functional-anatomical implications of the nucleus accumbens core and shell subterritories // Ann. NY Acad. Sci. — 1999. — Vol. 877. — P. 113–128.
  163. Zhang X. F., Hu X. T., White F. J. Whole-cell plasticity in cocaine withdrawal: reduced sodium currents in nucleus accumbens neurons // J. Neurosci. — 1998. — Vol. 18. — P. 488–498.

Copyright (c) 2013 Sheveleva M.V., Lebedev A.A., Roik R.O., Shabanov P.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies