THE PEA GENE Crt CONTROLING THE MORPHOGENETIC RESPONSE OF THE ROOT IS INVOLVED IN REGULATION OF ACC-OXIDASE ACTIVITY



Cite item

Full Text

Abstract

 The ethylene status of the pea mutant SGEcrt with altered morphology of the root system, whose development is dramatically dependent on the mechanical conditions of the environment, was studied. The role of ethylene in phenotypic manifestation of mutant root system was confirmed. It was shown that the mutant is characterized by increased production of and increased sensitivity to ethylene and by changes in regulation of ethylene biosynthesis leading to increased activity of the ethylene-producing enzyme ACC-oxidase.

About the authors

Alexander I Zhernakov

All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, RF

Email: azhernakov@gmail.com

Viktor E Tsyganov

All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, RF

Email: viktor_tsyganov@arriam.spb.ru

Aleksey U Borisov

All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, RF

Email: ayborisov@yandex.ru

Igor A Tikhonovich

All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, RF

Email: arriam@arriam.spb.ru. contact@arriam.spb.ru Podbelskiy Ch., 3, Saint-Petersburg, Pushkin-8

References

  1. Нелюбов Д. Н., 1914. Качественные изменения геотропизма. Часть II. Влияние лабораторного воздуха и этилена на геотропизм стеблей//Записки Императорской академии наук. Серия VIII, по физико-химическому отделению. Том XXXII. №3.
  2. Aiken R. M., Smucker A. J. M., 1996. Root system regulation of whole plant growth//Annu. Rev. Phytopathol. Vol. 34. P. 325-346.
  3. Alonso J. M., Hirayama T., Roman G. et al., 1999. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis//Science. Vol. 284. N 5423. P. 2148-2152.
  4. Bouquin T., Lasserre E., Pradier J. et al., 1997. Wound and ethylene induction of the ACC oxidase melon gene CM-ACO1 occurs via two direct and independent transduction pathways//Plant Mol. Biol. Vol. 35. N 6. P. 1029-1035.
  5. Buschmann H., Lloyd C. W., 2008. Arabidopsis mutants and the network of microtubule-associated functions//Mol. Plant. Vol. 1. N 6. P. 888-898.
  6. Calvo A. P., Nicolás C., Nicolás G., et al., 2004. Evidence of a cross-talk regulation of a GA 20-oxidase (FsGA20ox1) by gibberellins and ethylene during the breaking of dormancy in Fagus sylvatica seeds//Physiol. Plant. Vol. 120. N 4. P. 623-630.
  7. Cara B., Giovannoni J. J., 2008. Molecular biology of ethylene during tomato fruit development and maturation//Plant Sci. Vol. 175. N 1-2. P. 106-113.
  8. Chae H.S., Faure F., Kieber J. J., 2003. The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein//Plant Cell. Vol. 15. N 2. P. 545-559.
  9. Chen S., Ehrhardt D. W., Somerville C. R., 2010. Mutations of cellulose synthase (CESA1) phosphorylation sites modulate anisotropic cell expansion and bidirectional mobility of cellulose synthase//PNAS. Vol. 107. N 40. P. 17188-17193.
  10. Chen Y. F., Shakeel S. N., Bowers J., et al., 2007. Ligand-induced degradation of the ethylene receptor ETR2 through a proteasome-dependent pathway in Arabidopsis//J. Biol. Chem. Vol. 282. N 34. P. 24752-24758.
  11. Cho Y.-H., Yoo S.-D., 2009. Emerging complexity of ethylene signal transduction//J. Plant Biol. Vol. 52. N 4. P. 283-288.
  12. Choia D., Leea Y., Cho H.-T. et al., 2003. Regulation of expansin gene expression affects growth and development in transgenic rice plants//Plant Cell. Vol. 15. N 6. P. 1386-1398.
  13. Christians M. J., Gingerich D. J., Hansen M. et al., 2008. The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels//Plant J. Vol. 57. N 2. P. 332-345.
  14. Clark K. L., Larsen P. B., Wang X., et al., 1998. Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors//PNAS. Vol. 95. N 9. P. 5401-5406.
  15. Crossett R. N., Campbell D. J. 1975. The effects of ethylene in the root environment upon the development of barley//Plant Soil. Vol. 42. N 2. P. 453-464.
  16. Dal Cin V., Kevany B., Fei Z., Klee1 H. J. 2009. Identification of Solanum habrochaites QTL that affect ethylene emissions in tomato fruit//The 8th International Symposium on the Plant Hormone Ethylene, Book of abstracts, Ithaca, New York, USA, P. 23.
  17. Di Laurenzio L., Wysocka-Diller J. Malamy J. E. et al., 1996. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root//Cell. Vol. 86. N 3. P. 423-433.
  18. Ephritikhine G., Fellner M., Vannini C. et al., 1999. The sax1 dwarf mutant of Arabidopsis thaliana shows altered sensitivity of growth responses to abscisic acid, auxin, gibberellins and ethylene and is partially rescued by exogenous brassinosteroid//Plant J. Vol. 18. N 3. P. 303-314.
  19. Estelle M. A., Somerville C. 2001. Auxin-resistant mutants of Arabidopsis thaliana with an altered morphology//Mol. Gen. Genet. Vol. 206. N 2. P. 200-206.
  20. Evans M. L., Cleland R. E., 1985. The action of auxin on plant cell elongation//Crit. Rev. Plant Sci. Vol. 2. N 4. P. 317-365.
  21. Finaev D., 2007. Some aspects of cellulose biosynthesis//Biol. Plantarum. Vol. 51. N 3. P. 407-413.
  22. Gasparíková O., Ciamporová M., Mistrík I., Baluska F. 1998. Recent Advances of Plant Root Structure and Function. Proceedings of the 5th International Symposium on Structure and Function of Roots. Slovakia Stara Lensna.
  23. Gazzarrini S., McCourt P., 2003. Cross-talk in plant hormone signalling: what Arabidopsis mutants are telling us//Ann Bot. Vol. 91. N 6. P. 605-612.
  24. Geisler-Lee J., Caldwell C., Gallie D. R., 2010. Expression of the ethylene biosynthetic machinery in maize roots is regulated in response to hypoxia//J. Exp. Bot. Vol. 61. N 3. P. 857-871.
  25. He Cj., Finlayson S. A., Drew M. C. et al., 1996. Ethylene biosynthesis during aerenchyma formation in roots of maize subjected to mechanical impedance and hypoxia//Plant Physiol. Vol. 112. N 4. P. 1679-1685.
  26. Helariutta Y., Fukaki H., Wysocka-Diller J. et al., 2000. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling//Cell. Vol. 101. N 5. P. 555-567.
  27. Hofmeister W., 1867. Die Lehre von der Pflanzenzelle. Engelman W., Leipzig.
  28. Hua J., Chang C., Sun Q. et al., 1995. Ethylene insensitivity conferred by Arabidopsis ERS gene//Science. Vol. 269. N 5231. P. 1712-1714.
  29. Johnson K. A., Sistrunk M. L., Polisensky D. H., et al., 1998. Arabidopsis thaliana responses to mechanical stimulation do not require ETR1 or EIN2//Plant Physiol. Vol. 116. N 2. P. 643-649.
  30. Jovanovic M., Lefebvre V., Laporte P. et al., 2008. How the environment regulates root architecture in dicots//Adv. Bot. Res. Vol. 46. P. 35-74.
  31. Jung T., Lee J. H., Cho M. H. et al., 2000. Induction of 1-aminocyclopropane-1-carboxylate oxidase mRNA by ethylene in mung bean roots: possible involvement of Ca2+ and phosphoinositides in ethylene signalling//Plant Cell Environ. Vol. 23. N 1. P. 205-213.
  32. Kays S. J., Nicklow C. W., Simons D. H., 1974. Ethylene in relation to the response of roots to physical impedance//Plant Soil. Vol. 40. N 3. P. 565-571.
  33. Kende H., 1993. Ethylene biosynthesis//Annu. Rev. Plant Physiol. Plant Mol. Biol. Vol. 44. P. 283-307.
  34. Kende H., Knaap E. van der, Cho H.-T., 1998. Deepwater rice: A model plant to study stem elongation//Plant Physiol. Vol. 118. N 4. P. 1105-1110.
  35. Kieber J. J., Rothenberg M., Roman G. et al., 1993. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases//Cell. Vol. 72. N 3. P. 427-441.
  36. Kim J.-H., Kim W.-T., Kang B. G., 2001. IAA and N6-benzyladenine inhibit ethylene-regulated expression of ACC oxidase and ACC synthase genes in mungbean hypocotyls//Plant Cell Physiol. Vol. 42. N 10. P. 1056-1061.
  37. Kosterin O. E., Rozov S. M., 1993. Mapping of the new mutation blb and the problem of integrity of linkage group I//Pisum Genet. Vol. 25. P. 27-31.
  38. Larsen P. B., Cancel J. D., 2003. Enhanced ethylene responsiveness in the Arabidopsis eer1 mutant results from a loss-of-function mutation in the protein phosphatase 2AA regulatory subunit, RCN1//Plant J. Vol. 34. N 5. P. 709-718.
  39. Lin Z., Zhong S., Grierson D., 2009. Recent advances in ethylene research//J. Exp. Bot. Vol. 60. N 12. P. 3311-3336.
  40. Mao C., Wang S., Jia Q. et al., 2006. OsEIL1, a rice homolog of the Arabidopsis EIN3 regulates the ethylene response as a positive component//Plant Mol. Biol. Vol. 61. N 1-2. P. 141-152.
  41. Moss G. I., Hall K. C., Jackson M. B., 1988. Ethylene and the response of root of maize (Zea mays L.) to physical impedance//New Phytol. Vol. 109. N 3. P. 303-311.
  42. O'Donnell P. J., Calvert C., Atzorn R., et al., 1996. Ethylene as a signal mediating the wound response of tomato plants//Science. Vol. 274. N 5294. P. 1914-1917.
  43. Okamoto T., Tsurumi S., Shibasaki K., 2008. Genetic dissection of hormonal responses in the roots of Arabidopsis grown under continuous mechanical impedance//Plant Physiol. Vol. 146. N 4. P. 1651-1662.
  44. O'Malley R. C., Rodriguez F. I., Esch J. J. et al., 2005. Ethylene-binding activity, gene expression levels, and receptor system output for ethylene receptor family members from Arabidopsis and tomato//Plant J. Vol. 41. N 5. P. 651-659.
  45. Peck S. C., Kende H., 1998. Differential regulation of genes encoding 1-aminocyclopropane-1-carboxylate (ACC) synthase in etiolated pea seedlings: effects of indole-3-acetic acid, wounding, and ethylene//Plant Mol. Biol. Vol. 38. N 6. P. 977-982.
  46. Petruzzelli L., Coraggio I., Leubner-Metzger G., 2000. Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclo-propane-1-carboxylic acid oxidase//Planta. Vol. 211. N 1. P. 144-149.
  47. Pierik R., Visser E. J. W., Kroon H. de, et al., 2003. Ethylene is required in tobacco to successfully compete with proximate neighbours//Plant Cell Environ. Vol. 26. N 8. P. 1229-1234.
  48. Qiao H., Chang K. N., Yazaki J., et al., 2009. Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis//Genes Dev. Vol. 23. N 4. P. 512-521.
  49. Riov J., Yang S. F., 1998. Ethylene and auxin-ethylene interaction in adventitious root formation in mung bean (Vigna radiata) cuttings//J. Plant Growth Regul. Vol. 8. N 2. P. 131-141.
  50. Sachs J., 1882. Vorlesungen uber Pflanzen//Physiologie: XXXIII Vorlesung. Engelman W., Leipzig.
  51. Sakai H., Hua J., Chen Q. G. et al., 1998. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis//PNAS. Vol. 95. N 10. P. 5812-5817.
  52. Sanders I. O., Smith A. R., Hall M. A., 1989. Ethylene metabolism in Pisum sativum L.//Planta. Vol. 179. N 1. P. 104-114.
  53. Schaller G.E., Kieber, J.J., 2002. Ethylene//The Arabidopsis Book/Eds. Somerville C. R., Meyerowitz E. M., Rockville, American Society of Plant Physiologists.
  54. Smalle J., Haegman M., Kurepa J. et al., 1997. Ethylene can stimulate Arabidopsis hypocotyl elongation in the light//PNAS. Vol. 94. N 6. P. 2756-2761.
  55. Solano R., Stepanova A., Chao Q. et al., 1998. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1//Genes Dev. Vol. 12. N 23. P. 3703-3714.
  56. Suge H., Nishazawa T., Takahashi H. et al., 1997. Phenotypic plasticity of internode elongation stimulated by deep-seeding and ethylene in wheat seedlings//Plant Cell Environ. Vol. 20. N 7. P. 961-964.
  57. Tsuchisaka A., Theologis A., 2004. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members//Plant Physiol. Vol. 136. N 2. P. 2982-3000.
  58. Tsyganov V. E., Pavlova Z. B., Kravchenko L. V., et al., 2000. New gene crt (curly roots) controlling pea (Pisum sativum L.) root development//Ann Bot. Vol. 86. N 5. P. 975-981.
  59. Tsyganov V. E., Zhernakov A. I., Khodorenko A. V. et al., 2005. Genetic approach to study pea (Pisum sativum L.) adaptations to mechanical and cadmium stresses during development its symbioses with Rhizobium and arbuscular mycorrhizal fungi//The First Symposium on Plant Neurobiology, Book of Abstracts Florence, Italia. P. 80.
  60. Yoo S.-D., Cho Y., Sheen J., 2009. Emerging connections in the ethylene signaling network//Trends Plant Sci. Vol. 14. N 5. P. 270-279.
  61. Zacarias L., Reid M. S., 1992. Inhibition of ethylene action prevents root penetration through compressed media in tomato (Lycopersicon esculentum) seedlings//Physiol Plant. Vol. 86. N 2. P. 301-307.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2012 Zhernakov A.I., Tsyganov V.E., Borisov A.U., Tikhonovich I.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies