The influence of D. melanogaster mutations of the kynurenine pathway of tryptophan metabolism on locomotor behavior and expression of genes belonging to glutamatergic and cholinergic systems



Cite item

Full Text

Abstract

Disbalance of kynurenines produced by Drosophila mutations of the kynurenine pathway of tryptophan metabolism influences the locomotor behavior in larvae. The most pronounced is the effect of accumulation of kynurenic acid in the mutant cinnabar manifested as sharp reduction of general level of locomotor activity. The mutations seem to act through modulatory influences of kynurenines on signal cascades governed by ionotropic glutamatergic and cholinergic receptors. Expression of receptor genes in the mutants shows age-related changes pointing to gradual evolvement of consequences of kynurenines disbalance.

About the authors

Gennady A Zakharov

I.P. Pavlov Institute of Physiology, RAS, Saint-Petersburg, RF

Email: Gennadiy.Zakharov@gmail.com Saint-Petersburg, 199034 Makarova emb., 6, Russia

Alexander V Zhuravlev

I.P. Pavlov Institute of Physiology, RAS, Saint-Petersburg, RF

Email: beneor@mail.ru

Tatyana L Payalina

I.P. Pavlov Institute of Physiology, RAS, Saint-Petersburg, RF

Email: payalina@mail.ru Saint-Petersburg, 199034 Makarova emb., 6, Russia

Nikolay G Kamyshev

I.P. Pavlov Institute of Physiology, RAS, Saint-Petersburg, RF

Email: nkam@pavlov.infran.ru; nkamster@gmail.com

Elena V Savvateeva-Popova

I.P. Pavlov Institute of Physiology, RAS, Saint-Petersburg, RF

Email: esavvateeva@mail.ru Saint-Petersburg, 199034 Makarova emb., 6, Russia

References

  1. Beninger R. J., Jhamandas K., Boegman R. J. et al., 1986. Kynurenic acid-induced protection of neurochemical and behavioural deficits produced by quinolinic acid injections into the nucleus basalis of rats//Neurosci. Lett. Vol. 68. N 3. P. 317-321.
  2. Blight A. R., Cohen T. I., Saito K. et al., 1995. Quinolinic acid accumulation and functional deficits following experimental spinal cord injury//Brain. Vol. 118. P. 735-752.
  3. Blight A. R., Saito K., Heyes M. P., 1993. Increased levels of the excitotoxin quinolinic acid in spinal cord following contusion injury//Brain Res. Vol. 632. N 1-2. P. 314-316.
  4. Braungart E., Gerlach M., Riederer P. et al., 2004. Caenorhabditis elegans MPP+ model of Parkinson's disease for high-throughput drug screenings//Neuro-degenerative Diseases. Vol. 1. N 4. P. 175-183.
  5. Cull-Candy S., Brickley S., Farrant M., 2001. NMDA receptor subunits: diversity, development and disease//Curr. Opin. Neurobiol. Vol. 11. N 3. P. 327-335.
  6. Danysz W., Parsons C. G., 1998. Glycine and N-methyl-D-aspartate receptors: physiological significance and possible therapeutic applications//Pharmacol. Rev. Vol. 50. N 4. P. 597-664.
  7. Ferri J., 1983. Accumulation of kynurenic acid in the cinnabar mutant of D. melanogaster as revealed by thin-layer chromatography//Insect Biochemistry. Vol. 13. P. 289-294.
  8. Foster A. C., Vezzani A., French E. D. et al., 1984. Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid//Neurosci. Lett. Vol. 48. N 3. P. 273-278.
  9. French E. D., Foster A. C., Vezzani A. et al., 1984. Quinolinate and kynurenate, two endogenous tryptophan metabolites with potential links to epileptic disorders//Clin Neuropharmacology. Vol. 7. P. 456-457.
  10. Gál E. M., Sherman A. D., 1978. Synthesis and metabolism of L-kynurenine in rat brain//J. Neurochem. Vol. 30. N 3. P. 607-613.
  11. Gál E. M., Sherman A. D., 1980. L-kynurenine: its synthesis and possible regulatory function in brain//Neurochem. Res. Vol. 5. N 3. P. 223-239.
  12. Ghosh D., Forrest H. S., 1967. Enzymatic studies on the hydroxylation of kynurenine in Drosophila melanogaster//Genetics. Vol. 55. N 3. P. 423-431.
  13. Grauso M., Reenan R. A., Culetto E. et al., 2002. Novel putative nicotinic acetylcholine receptor subunit genes, Dalpha5, Dalpha6 and Dalpha7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing//Genetics. Vol. 160. N 4. P. 1519-1533.
  14. Heyes M. P., Saito K., Markey S. P., 1992. Human macrophages convert L-tryptophan into the neurotoxin quinolinic acid//Biochem. J. Vol. 283. P. 633-635.
  15. Hilmas C., Pereira E. F., Alkondon M. et al., 2001. The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications//J. Neurosci. Vol. 21. N 19. P. 7463-7473.
  16. Howells A. J., Summers K. M., Ryall R. L., 1977. Developmental patterns of 3-hydroxykynurenine accumulation in white and various other eye color mutants of Drosophila melanogaster//Biochem. Genet. Vol. 15. N 11/12. P. 1049-1059.
  17. Inoue T., Takeshita K., Fukushima K., 2001. Effects of KE-758, an active metabolite of the new anti-rheumatic drug KE-298, D-penicillamine, bucillamine and auranofin on the proliferation of murine lymphocytes, and the production of nitric oxide by murine macrophages//Int. Immunopharmacol. Vol. 1. N 5. P. 833-842.
  18. Kessler M., Terramani T., Lynch G. et al., 1989. A glycine site associated with N-methyl-D-aspartic acid receptors: characterization and identification of a new class of antagonists//J. Neurochem. Vol. 52. N 4. P. 1319-1328.
  19. Krashes M. J., Waddell S., 2008. Rapid consolidation to a radish and protein synthesis-dependent long-term memory after single-session appetitive olfactory conditioning in Drosophila//J. Neurosci. Vol. 28. N 12. P. 3103-3113.
  20. Krashes M. J., Keene A. C., Leung B. et al., 2007. Sequential use of mushroom body neuron subsets during Drosophila odor memory processing//Neuron. Vol. 53. N 1. P. 103-115.
  21. Lin W., 2005. NMDA receptors are required in memory formation in Drosophila mushroom body//Biochem. Biophys. Res. Commun. Vol. 334. N 3. P. 779-786.
  22. Linzen B., 1974. Tryptophan -ommochrome pathway in insects//Advances in Insect Physiology. Vol. 10. P. 117-246.
  23. Mizunami M., 1994. Information processing in the insect ocellar system: comparative approaches to the evolution of visual processing and neural circuits//Advances in Insect Physiology. Vol. 25. P. 151-265.
  24. Mok M. H. S., Fricker A., Weil A. et al., 2009. Electrophysiological characterization of the actions of kynurenic acid at ligand-gated ion channels//Neuropharmacology. Vol. 57. N 3. P. 242-249.
  25. Okuda S., Nishiyama N., Saito H. et al., 1998. 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity//J. Neurochem. Vol. 70. N 1. P. 299-307.
  26. Ryall R. L., Howells A. J., 1974. Ommochrome biosynthetic pathway of Drosophila melanogaster: Variations in the levels of enzyme activities and intermediates during adult development//Insect Biochem. Vol. 6. P. 135-142.
  27. Savvateeva E., 1991. Kynurenines in the regulation of behavior in insects//Adv. Exp. Med. Biol. Vol. 294. P. 319-328.
  28. Savvateeva E. V., Popov A. V., Kamyshev N. G. et al., 2000. Age-dependent memory loss, synaptic pathology and altered brain plasticity in the Drosophila mutant cardinal accumulating 3-hydroxykynurenine//Journal of Neural Transmission. Vol. 107. N 5. P. 581-601.
  29. Savvateeva-Popova E. V., Popov A. V., Heinemann T. et al., 2003. Drosophila mutants of the kynurenine pathway as a model for ageing studies//Adv. ExP. Med. Biol. Vol. 527. P. 713-722.
  30. Schulz R., Sawruk E., Mülhardt C. et al., 1998. D alpha3, a new functional alpha subunit of nicotinic acetylcholine receptors from Drosophila//J. Neurochem. Vol. 71. N 2. P. 853-862.
  31. Sokal R. R., Rohlf F. J., 1995. Biometry, 3rd ed. -NewYork: H. Freeman & Co.
  32. Stone T. W., 1991. Kynurenine and glycine enhance neuronal sensitivity to N-methyl-D-aspartate//Life Sci. Vol. 48. N 8. P. 765-772.
  33. Su H., O'Dowd D. K., 2003. Fast synaptic currents in Drosophila mushroom body Kenyon cells are mediated by alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors and picrotoxin-sensitive GABA receptors//J. Neurosci. Vol. 23. N 27. P. 9246-9253.
  34. Summers K. M., Howells A. J., Pyliotis N. A., 1982. Biology of eye pigmentation in insects//Advances in Insect Physiology. Vol. 16. P. 119-167.
  35. Ultsch A., Schuster C. M., Laube B. et al., 1993. Glutamate receptors of Drosophila melanogaster. Primary structure of a putative NMDA receptor protein expressed in the head of the adult fly//FEBS Lett. Vol. 324. N 2. P. 171-177.
  36. Warren W. D., Palmer S., Howells A. J., 1996. Molecular characterization of the cinnabar region of D. melanogaster: identification of the cinnabar transcription unit//Genetica. Vol. 98. P. 249-262.
  37. Wu H., Guidetti P., Goodman J. et al., 2000. Kynurenergic manipulations influence excitatory synaptic function and excitotoxic vulnerability in the rat hippocampus in vivo//Neuroscience. Vol. 97. N 2. P. 243-251.
  38. Wu C., Xia S., Fu T. et al., 2007. Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body//Nat. Neurosci. Vol. 10. N 12. P. 1578-1586.
  39. Yang E. J., Yoon J., Min D. S. et al., 2004. LIM kinase 1 activates cAMP-responsive element-binding protein during the neuronal differentiation of immortalized hippocampal progenitor cells//J. Biol. Chem. Vol. 279. N 10. P. 8903-8910.
  40. Беспалов А. Ю., Звартау Э. Э., 2000. Нейропси-хофармакология антагонистов NMDA-рецепторов. СПб.: Невский диалект, 297 c.
  41. Захаров Г. А., Щеголев Б. Ф., 2004. Агонисты и антагонисты NMDA-рецептора. Неэмпирические кван-товохимичсекие расчеты//Материалы семинаров политехнического симпозиума «Молодые ученые промышленности северо-западного региона». С. 84.
  42. Лапин И. П., 2004. Стресc. Тревога. Депрессия. Алкоголизм. Эпилепсия (Нейрокинурениновые механизмы и новые подходы к лечению). М.: ДЕАН, 220 С.
  43. Лопатина Н. Г., Рыжова И. В., Чеснокова Е. Г. и др., 1997. Рецепторы L-глутамата в центральной нервной системе медоносной пчелы Apis mellifera иих роль в процессе формирования условного рефлек-са и следов памяти//Ж. эвол. биох. и физиол. Т. 33.№ 4/5. С. 506-514.
  44. Лопатина Н. Г., Чеснокова Е. Г., Смирнов В. Б. и др., 2004. Кинурениновый путь обмена триптофана и его значение в нейрофизиологии насекомых//Энтомологическое обозрение. Т. 83. № 1. С. 499-518.
  45. Лопатина Н. Г., Зачепило Т. Г., Чеснокова Е. Г. и др., 2007. Мутации структурных генов ферментов метаболизма триптофана по кинурениновому пути в модуляции звеньев сигнального каскада -рецепторы глутамата -актин цитоскелета//Генетика. Т. 43. № 10. С. 1396-1401.
  46. Медведева А. В., Молотков Д. А., Никитина Е. А. и др., 2008. Системная регуляция генетических и цитогенетических процессов сигнальным каскадом ре-моделирования актина: локус agnostic дрозофилы//Генетика. Т. 44. С. 669-681.
  47. Савватеева-Попова Е., Переслени А. И., Шараги-на Л. М. и др., 2002. Комплексное изучение мутантов Drosophila melanogaster по локусу agnostic: модель для сопряжения нарушений архитектуры генома и когнитивных функций//Журн. эвол. биохим. физи-ол. Т. 38. № 6. С. 557-577.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2011 Zakharov G.A., Zhuravlev A.V., Payalina T.L., Kamyshev N.G., Savvateeva-Popova E.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies