Individual peculiarities in pharmacokinetics of antiblastomic drugs in healthy volunteers

Cover Page

Abstract


The data of inter-individual variations in pharmacokinetics of antiblastomic drugs from the group of tyrosine proteinkinase inhibitors (imatinib, gefitinib and nilotinib) and antiblastomic immune modulator lenalidomide in healthy volunteers by meams of HPLC-MS/MS were represented in the article. The concentrations of the drugs studied were measured in the volunteer blood serum. The indeces Cmax (maximal concentration and time reaching), Tmax (time covering maximal concentration measure), AUC0-t (squire under pharmaceutical curve) were processed by trapetias method, Cmax/AUC0-t as well as Kel (elimination constant) and T1/2 (period of semielimination) according to individual signs. The significant individual variability revealed for imatinib, gefitinib and nilotinib in healthy volunteers indicates on necessity of therapeutic drug monitoring in patients treated with them to aim optimal dosing.

Введение Обеспечение эффективности и безопасности использования противоопухолевых препаратов в клинической практике является весьма актуальной задачей, обусловленной рядом причин: это серьезные побочные эффекты, тяжелое состояние пациентов, широкий спектр сопутствующей терапии, отсутствие адекватных временных ресурсов для подбора оптимальных дозировок. В качестве примера противоопухолевых средств были выбраны наиболее часто применяемые препараты ингибитора тирозинкиназ (иматиниб, гефитиниб, нилотиниб), предназначенные для лечения хронического миелолейкоза и метастатического немелкоклеточного рака легких, а также противоопухолевый иммуномодулятор леналидомид, предназначенный для повышения противоопухолевой активности химиотерапевтических препаратов, лучевой и гормональной терапии. Кроме этого, широкое использование препаратов данной группы в ряде случаев не приводит к ожидаемому эффекту терапии, что может быть связано с индивидуальными особенностями фармакокинетики препаратов у пациентов. В связи с вышеизложенным цель проведенного исследования - установить межиндивидуальные особенности фармакокинетики противоопухолевых препаратов при их однократном приеме у здоровых добровольцев в отсутствие сопутствующей терапии и патологии. Материалы и методы В качестве противоопухолевых препаратов были выбраны препараты иматиниба: генфатиниб (таблетки, покрытые пленочной оболочкой, 100 мг, «Лаборатория Варифарма С.А.», Аргентина), гефитиниб (Иресса®, таблетки, покрытые пленочной оболочкой, 250 мг, «АстраЗенека ЮК Лтд», Великобритания»), нилотиниб («Тасигна®», капсулы, 200 мг, «Новартис Фарма АГ», Швейцария) и леналидомид («Ревлимид», капсулы, 25 мг, «Селджен Интернешнл С.а.р.Л.», Швейцария). Для изучения фармакокинетики противоопухолевых препаратов были отобраны здоровые добровольцы мужского пола в возрасте от 18 до 45 лет, соответствующие критериям включения согласно методическим указания МЗ РФ «Оценка биоэквивалентности лекарственных средств» [1]. После однократного приема препарата в пробирки с К2ЭДТА производился забор крови из кубитальной вены согласно графику, составленному исходя из литературных данных о предполагаемом времени достижения максимальной концентрации и периоде полувыведения (табл. 1). После центрифугирования образцы плазмы помещали в маркированные криопробирки и хранили при температуре не выше -20 °C до анализа. Количественное определение фармакологических препаратов в плазме крови в каждой временной точке выполнено методом ВЭЖХ-МС/МС на высокоэффективном жидкостном хроматографе Agilent 1200, масс-спектрометром с тройным квадруполем Agilent 6460 (Agilent Technologies, США) с помощью методик, разработанных и валидированных в НИЛ токсикологии и лекарственного мониторинга нашей клиники. Использование высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием в настоящее время является наиболее оптимальным в связи с высокой чувствительностью, селективностью и воспроизводимостью метода [3-6, 8]. Произведен расчет следующих фармакокинетических параметров: максимальная концентрация Cmax - максимальное значение из измеренных; время ее достижения Tmax - время, при котором измерялась максимальная концентрация; площадь под фармакокинетической кривой в пределах длительности наблюдений (AUC0-t) рассчитывали методом трапеций; отношение Cmax/AUC0-t - по индивидуальным значениям; Kel - константа элиминации; T1/2 - период полувыведения. Для обработки данных использовалось программное обеспечение фирмы Agilent Technologies Mass Hunter B06.00, Excel и Statistica 6.0. Результаты и их обсуждение Результаты количественного анализа концентрации иматиниба, гефитиниба, нилотиниба и леналидомида в плазме крови добровольцев представлены на рис. 1. Фармакокинетические параметры исследуемых препаратов приведены в табл. 2. В соответствии с представленными данными межиндивидуальная вариабельность Cmax практически совпадает для иматиниба, гефитиниба и нилотиниба и составляет 47, 48 и 46 % соответственно. При этом для некоторых добровольцев данный параметр может отличаться в 8 раз (иматиниб), 6 раз (нилотиниб) и 5 раз (гефитиниб). Для леналидомида коэффициент вариации Cmax составил 22 %. Высоковариабельным параметром является и площадь под фармакокинетической кривой. Коэффициент вариации для AUC0-t составил 58, 50 и 39 % для гефитиниба, нилотиниба и иматиниба соответственно. Для отдельных пациентов этот показатель различался в 7 раз для иматиниба и 9 раз для гефитиниба и нилотиниба. Для гефитиниба и нилотиниба также существенно варьировался период полувыведения - 57 и 58 % соответственно. Более выраженная вариабельность фармакокинетических параметров ингибиторов тирозинкиназ связана, по-видимому, с тем, что в метаболизме данных препаратов участвует изофермент CYP3A4 системы цитохрома Р450 [2, 7]. В то же время метаболизм леналидомида не связан с цитохромом Р450, для данного препарата коэффициент вариации площади под фармакокинетической кривой составил 17 %, а отличия данного показателя для отдельных добровольцев не превосходили 2 раз [9]. Выявленные различия в метаболизме исследуемых лекарственных препаратов требуют индивидуального подхода при их назначении пациентам. Заключение Выявленная высокая межиндивидуальная вариабельность для иматиниба, гефитиниба, нилотиниба у здоровых добровольцев свидетельствует о насущной необходимости терапевтического лекарственного мониторинга пациентов, получающих данные препараты, для оптимального подбора их дозировки. Это позволит избежать или снизить побочные действия противоопухолевых препаратов, а также существенно увеличить эффективность лечения пациентов. Оптимальным методом для осуществления терапевтического лекарственного мониторинга является ВЭЖХ-МС/МС в силу его высокой чувствительности, специфичности, возможности определять широкий спектр препаратов в одном образце и адаптировать перечень определяемых препаратов для конкретной клинической базы.

Rodion A Oseshnyk

rao81@mail.ru
Institute of Experimental Medicine Saint Petersburg, Russia

post-graduate student

Inna E Ushal

rao81@mail.ru
SM Nikiforov Russian Center of Emergency and Radiation Medicine Saint Petersburg, Russia

PhD, senior researcher of the laboratory of toxicology

Ekaterina V Svetkina

rao81@mail.ru
SM Nikiforov Russian Center of Emergency and Radiation Medicine Saint Petersburg, Russia

researcher of the laboratory of toxicology

Ekaterina A Kolobova

rao81@mail.ru
SM Nikiforov Russian Center of Emergency and Radiation Medicine Saint Petersburg, Russia

researcher of the laboratory of toxicology

Yury V Strukov

rao81@mail.ru
SM Nikiforov Russian Center of Emergency and Radiation Medicine Saint Petersburg, Russia

researcher of the laboratory of toxicology

Gennady G Rodionov

rao81@mail.ru
SM Nikiforov Russian Center of Emergency and Radiation Medicine Saint Petersburg, Russia

PhD, Dr Med Sci, Head of the Laboratory of Toxicology

Petr D Shabanov

pdshabanov@mail.ru
Institute of Experimental Medicine Saint Petersburg, Russia

Dr. Med. Sci. (Pharmacology), Professor and Head, Dept. of Pharmacology

  • Оценка биоэквивалентности лекарственных средств: Методические указания. - М.: Федеральное государственное учреждение «Научный центр экспертизы средств медицинского применения» Минздрава России, 2008. - 32 с. [Essessment of bioavailability of drugs: Practical Guide. Moscow: Sci Center Expert Med Things; 2008. 32 p. (In Russ.)]
  • Руководство по проведению клинических исследований лекарственных средств / Под ред. Р.У. Хабриева. - М.: ФГУ НЦ ЭСМП, 2005. ГОСТ России 52379-2005 «Надлежащая клиническая практика». - М., 2005. [Guid to clinical study of drugs. Ed by RU Khabriev. Moscow: Sci Center Expert Med Things; 2005. Russian GOST 52379-2005 Good Clinical Practice. Moscow; 2005 (In Russ.)]
  • Лапач С.Н., Чубенко А.В., Бабич П.Н. Основные принципы применения статистических методов в клинических испытаниях. - Киев: Морион, 2002. - 160 с. [Lapach SN, Chubenko AV, Babich PN. Main principles of using statictical methods in clinical trials. Kiev: Morion; 2002. 160 p. (In Russ.)]
  • Сергиенко В.И., Бондарева И.Б. Математическая статистика в клинических исследованиях. - М.: ГЭОТАР-Медиа, 2006. [Sergienko VI, Bondareva IB. Mathematical statistics in clinical studies. Moscow: Geotar Media; 2006 (In Russ.)]
  • Кубарь О.И. Информированное согласие добровольцев в клинических испытаниях и медицинской практике // Клин. медицина. - 1999. - № 9. - С. 58-60. [Kubar’ OI. Information agreement of volonteers in clinical studies and medical practice. Klinicheskaya meditsina. 1999;(9):58-60. (In Russ.)]
  • Camgoz A, et al. Mechanisms responsible for nilotinib resistance in human chronic myeloid leukemia cells and reversal of resistance. Leuk Lymphoma. 2013;54:1279-1287. doi: 10.3109/10428194.2012.737919.
  • Davies A, et al. Simultaneous determination of nilotinib, imatinib and its main metabolite (CGP-74588) in human plasma by ultra-violet high performance liquid chro-matography. Leuk Res. 2010;34:702-7. doi: 10.1016/j.leukres.2009.11.009.
  • Iqbal M, et al. Development and validation of ultra-performance liquid chromatographic method with tandem mass spectrometry for determination of lenalidomide in rabbit and human plasma. Chem Centr J. 2013;7:7. doi: 10.1186/1752-153X-7-7.
  • Kastritis E, Dimopoulos MA. The evolving role of lenalidomide in the treatment of hematologic malignancies. Expert Opin Pharmacother. 2007;8:497-509. doi: 10.1517/14656566.8.4.497.
  • Ling-Zhi Wanga, et al. Rapid determination of gefitinib and its main metabolite, O-desmethyl gefitinib in human plasma using liquid chromatography - tandem mass spectrometry. J Chromatography B. 2011;879:2155-2161. doi: 10.1016/j.jchromb.2011.05.056.
  • Pirro E, et al. A New HPLC-UV Validated Method for Therapeutic Drug Monitoring of Tyrosine Kinase Inhibitors in Leukemic Patients. J Chromatographic Sci. 2011;49: November/December. doi: 10.1093/chrsci/49.10.753.
  • Veeraraghavana S, et al. Simultaneous quantification of ruxolitinib and nilotinib in rat plasma by LC-MS/MS: Application to a pharmacokinetic study. J Pharm Biomed Analysis. 2014;94:125-131. doi: 10.1016/j.jpba.2014.01.040.
  • Verhelle D, et al. Lenalidomide and CC-4047 inhibit the proliferation of malignant B cells while expanding normal CD34+ progenitor cells. Cancer Res. 2007;67:746-755. doi: 10.1158/0008-5472.CAN-06-2317.

Views

Abstract - 7

PDF (Russian) - 9


Copyright (c) 2017 ECO-vector LLC

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.