Neurobehavioral effects of choninergic drugs in prenatal period

Cover Page

Abstract


Environmental toxicants, chemicals exhibiting with cholinotropics properties, and drugs – agonists and antagonists of M- and N-cholinergic receptors by acting on the developing brain of the fetus in the embryonic period of ontogenesis, cause a change the activity of the cholinergic mechanisms of the brain during critical periods of prenatal development with the subsequent disruption of the formation of different brain systems, primarily the ontogeny of nerve cells and brain neurotransmitter systems. These changes in the long term is correlated with neurobehavioral deficits from adult individuals, dysfunction of the reproductive system of adult offspring. The relevance of the study of prenatal effects of cholinergic factors on the central mechanisms of reproductive function, memory processes and learning during ontogenetic development of the organism due to the need of prevention and treatment of subsequent mental, behavioral, and sexual dysfunctions, and abnormal sexual behavior, infertility.


Elena V. Stashina

Author for correspondence.
lena-stashina@mail.ru
Institute of Experimental Medicine
Russian Federation, 12, Academic Pavlov street, Saint-Petersburg, 197376

Postgraduate Student, S.V. Anichkov Department of Neuropharmacology

Nikolay A. Gavrilov

gavriloff71@mail.ru
Institute of Experimental Medicine
Russian Federation, 12, Academic Pavlov street, Saint-Petersburg, 197376

Postgraduate Student, S.V. Anichkov Department of Neuropharmacology

Petr D. Shabanov

pdshabanov@mail.ru
Institute of Experimental Medicine; Almazov North-West Federal Medical Research Center
Russian Federation, 12, Academic Pavlov street, Saint-Petersburg, 197376; 2, Akkuratova str., Saint- Petersburg, 197341

Dr Med Sci, Professor, Head S.V. Anichkov Dept. of Neuropharmacology. Institute of Experimental Medicine; Leading Researcher Almazov North-West Federal Medical Research Center.

  • Байрамов А.А., Прошин С.Н., Полетаева А.О., и др. Половая функция взрослых самцов крыс после пренатальной модуляции холинергической системы // Рос. физиол. журн. им. И.М. Сеченова. – 2008. – Т. 94. – № 5. – С. 581–591. [Bairamov AA, Proshin SN, Poletaeva AO, et al. The reproductive function of adult male rats after prenatal modulation of cholinergic system. Russian journal of physiology. 2008;94(5):581-591. (In Russ.)]
  • Байрамов А.А. Развитие половой функции у самцов крыс, подвергнутых пренатальному воздействию М- и Н-холинолитиков // Психофармакология и биологическая наркология. – 2009. – Т. 9. – № 1–2. – С. 2530–2539. [Bairamov AA. The development of the sexual function in male rats subjected to prenatal influence M- and N-cholinergic antagonists. Psychopharmacology and biological narcology. 2009;9(1-2):2530-2539. (In Russ.)]
  • Байрамов А.А., Сапронов Н.С. Влияние М- и Н-холинолитиков на пренатальное развитие моноаминергической системы головного мозга // Медицинский академический журнал. – 2007. – Т. 7. – № 4. – С. 52–58. [Bairamov AA, Sapronov NS. The effect of M- and N-holinolitics in the prenatal development of brain monoaminergic system. Medical academic journal. 2007;7(4):52-58. (In Russ.)]
  • Байрамов А.А. Центральные холинергические механизмы регуляции половой функции: Автореф. дис. … д-ра мед. наук. – СПб., 2008. – 41 с. [Bairamov AA. Central cholinergic mechanisms of regulation of sexual function. [dissertation] Saint Petersburg; 2008. 41 p. (In Russ.)]
  • Байрамов А.А., Мещеров Ш.К. Нейрохимические последствия пренатального воздействия селективных М- и Н-холинолитиков // Психофарм. и биол. наркология. – 2008. – Т. 8. – № 1–2. – С. 2367–2373. [Bairamov AA, Mesherov SK. Neurochemical effects of prenatal exposure to selective M- and N-cholinergic antagonists. Psychopharmacology and biological narcology. 2008;8(1-2):2367-2373. (In Russ.)]
  • Байрамов А.А., Полетаева А.О., Юкина Г.Ю., Богданова Л.А. Отдаленные нейрохимические эффекты пренатального воздействия селективных М- и Н-холинолитиков // Российский биомед. журнал-medline.ru. – 2008. – № 9. – С. 90–100. [Bairamov AA, Poletaeva OA, et al. A long-term neurochemical effects of prenatal exposure to selective M- and N-cholinergic antagonists. Russian Biomed. Journal-medline.ru. 2008;9:90-100. (In Russ.)]
  • Байрамов А.А., Прошин С.Н., Гаврилов Н.А., и др. Нейрохимические эффекты пренатального введения холинергических средств на постнатальное развитие моноаминергической системы головного мозга // Медицинский академический журнал. —2010. – Т. 10. – № 1. – С. 31–40. [Bairamov AA, Proshin SN, Gavrilov N, et al. Neurochemical effects of prenatal introduction of cholinergic agents on postnatal development of monoaminergic system in the brain. Medical academic journal. 2010;10(1):31-40. (In Russ.)]
  • Байрамов А.А. Холинергические механизмы в нервной и эндокринной регуляции половой функции // Психонейроэндокринология / Под ред. П.Д. Шабанова, Н.С. Сапронова. – СПб., 2010. – С. 305–360. [Bairamov AA. Cholinergic mechanisms in the nervous and endocrine regulation of sexual function. In: Psychoneuroendocrinology. Ed by P.D. Shabanov, N.S. Sapronov. Saint Petersburg; 2010. P. 305-360. (In Russ.)]
  • Байрамов А.А., Юкина Г.Ю., Сташина Е.В., Шабанов П.Д. Пренатальное воздействие селективных М- и Н-холиноблокаторов нарушает обмен нейромедиаторов в головном мозге и половую дифференцировку у крыс // Обз. по клин. фармакол. и лек. терапии. – 2010. – Т. 8. – № 1. – С. 31. [Bairamov AA, Yukina GYu, Stashina EV, Shabanov PD. Prenatal exposure of selective M- and N-holinoblocers violates the exchange of neurotransmitters in the brain and sexual differentiation in rats. Reviews on Clinical Pharmacology and Drug Therapy. 2010;8(1):31. (In Russ.)]
  • Батуев А.С., Соколова Л.В. Учение о доминанте как теоретическая основа формирования системы мать – дитя // Вестник СПбГУ. – 1994. – Т. 2. – № 10. – С. 85–102. [Batuev AS, Sokolova LV. The doctrine of the dominant theoretical basis for formation of system mother-child. Vestnik of St Petersburg University. 1994;2(10):85-102. (In Russ.)]
  • Безрукова О.Н. Родительский статус будущей матери и факторы, влияющие на позицию в воспитании ребенка. Психофизиологические основы социальной адаптации ребенка. – СПб., 1999. – С. 28–36. [Bezrukova ON. Parental status of the mother and factors that affect the position in the child’s upbringing. Psychophysiological bases of social adaptation of the child. Saint Petersburg; 1999. P. 28-36. (In Russ.)]
  • Бузников Г.А. Низкомолекулярные регуляторы зародышевого развития. – М.: Наука, 1967. – 265 с. [Buznikov GA. Low-molecular regulators of embryonic development. Moscow: Nauka; 1967. 265 p. (In Russ.)]
  • Кирющенков А.П., Тараховский М.Л. Влияние лекарственных средств на плод. – М.: Медицина, 1990. – 272 с. [Kiryushenkov AP, Tarachovskaya ML. Influence of drugs on the fetus. Moscow: Medicine; 1990. 272 p. (In Russ.)]
  • Науменко Е.В., Дыгало Н.Н., Маслова Л.Н. Длительная модификация стрессорной реактивности воздействиями в пренатальном онтогенезе. Онтогенетические и генетико-эволюционные аспекты нейроэндокринной регуляции стресса. – Новосибирск: Наука, 1990. – С. 28–40. [Naumenko EV, Dygalo NN, Maslova LN. Long-term modification of stress reactivity is the work process in the prenatal ontogenesis. Ontogenetic and genetico-evolutionary aspects neiroendokrinnoi the regulation of stress. Novosibirsk: Nauka; 1990. P. 28-40. (In Russ.)]
  • Полетаева А.О., Жарова Л.Т., Байрамов А.А. Изменение врожденного поведения в «открытом поле» у самцов крыс с пренатально модифицированной активностью холинергической системы // Психофармакология и биологическая наркология. – 2008. – Т. 8. – № 1–2–2. – С. 2373–2374. [Poletaeva OA, Zharova LT, Bairamov AA. Change an innate behavior in “open field” in male rats with prenatal modified activity of the cholinergic system. Psychopharmacology and biological narcology. 2008;8(1-2-2):2373-2374. (In Russ.)]
  • Резников А.Г. Репродуктивные мишени эндокринных дизрапторов // Репродуктивная эндокринология. – 2014. – Т. 17. – № 3. – С. 14–21. [Reznikov AG. Reproductive targets of endocrine disruptors. Reproductive endocrinology. 2014;17(3):14-21. (In Russ.)]
  • Сапронов Н.С., Байрамов А.А. Холинергические механизмы регуляции мужской половой функции. – СПб.: Арт-Экспресс, 2013. – 272 с. [Sapronov NS, Bairamov AA. Cholinergic mechanisms of regulation of male sexual function. Saint Petersburg: Art Express; 2013. 272 p. (In Russ.)]
  • Сташина Е.В., Полетаева А.О., Гаврилов Н.А., и др. Отдаленные эффекты пренатального воздействия центральных М- и Н-холиноблокаторов на процессы обучения и памяти у крыс // Психическое здоровье. – 2016. – Т. 127. – № 12. – С. 25–29. [Stashina EV, Poletaeva OA, Gavrilov NA, et al. Delayed effects of prenatal exposure to the сentral M- and N-choline blockers on learning and memory in rats. Mental health. 2016;127(12):25-29. (In Russ.)]
  • Тараховский М. Л. Фармакологическая характеристика ганглиолитиков — производных моно- и бис-четвертичных аммониевых оснований: Автореф. дис. … д-ра мед. наук. – Л.: 1967. – 33 с. [Tarachovskiy ML. Pharmacological characteristics of gangliocytoma — derived mono- and bis-Quaternary ammonium bases. [dissertation] Leningrad; 1967. 33 р. (In Russ.)]
  • Торкунова О.В., Байрамов А.А., Шабанов П.Д. Холинергическая модуляция и нейрохимические аспекты врожденного поведения крыс при действии низкочастотных акустических колебаний // Обзоры по клинической фармакологии и лекарственной терапии. – 2015. – Т. 13. – № 1. – С. 32–40. [Torkunova OV, Bairamov AA, Shabanov PD. Cholinergic modulation and neurochemical aspects of innate behavior of rats under the action of low frequency acoustic oscillations. Reviews on Clinical Pharmacology and Drug Therapy. 2015;13(1):32-40. (In Russ.)]
  • Abou-Donia MB, Khan WA, Dechkovskaia AM, et al. In utero exposure to nicotine and chlorpyrifos alone, and in combination produces persistent sensorimotor deficits and Purkinje neuron loss in the cerebellum of adult offspring rats. Arch Toxicol. 2006;80(9):620-631. doi: 10.1007/s00204-006-0077-1.
  • Abreu S, Shaikh SA. Effect of Enolosulfan, achlorinated hydrocarbon on the reproductive organs of the rabbit. Proc Pak Congr Zool. 2005;25:1-18.
  • Aitken RJ. Falling sperm counts twenty years on: where are we now? Asian J Androl. 2013;15:204-207. doi: 10.1038/aja.2012.167.
  • Ajarem JS, Ahmad M. Prenatal nicotine exposure modifies behavior of mice through early development. Pharmacol Biochem Behav. 1998;59:313-318.
  • Alaa-Eldin EA, El-Shafei DA, Abouhashem NS. Individual and combined effect of chlorpyrifos and cypermethrin on reproductive system of adult male albino rats. Environ Sci Pollut Res Int. 2017;24(2):1532-1543. doi: 10.1007/s11356-016-7912-6.
  • Aldridge JE, Levin ED, Seidler FJ, Slotkin TA. Developmental exposure of rats to chlorpyrifos leads to behavioral alterations in adulthood, involving serotonergic mechanisms and resembling animal models of depression. Environ Health Perspect. 2005a;113:527-531. doi: 10.1289/ehp.7867.
  • Aldridge JE, Meyer A, Seidler FJ, Slotkin TA. Developmental exposure to terbutaline and chlorpyrifos: pharmacotherapy of preterm labor and an environmental neurotoxicant converge on serotonergic systems in neonatal rat brain regions. Toxicol Appl Pharmacol. 2005b;203:132-144. doi: 10.1016/j.taap.2004.08.002.
  • Aldridge JE, Seidler FJ, Meyer A, et al. Serotonergic systems targeted by developmental exposure to chlorpyrifos: effects during different critical periods. Environ Health Perspect. 2003;111:1736-1743. doi: 10.1289/ehp.6489.
  • Aldridge JE, Seidler FJ, Slotkin TA. Developmental exposure to chlorpyrifos elicits sex-selective alterations of serotonergic synaptic function in adulthood: critical periods and regional selectivity for effects on the serotonin transporter, receptor subtypes, and cell signaling. Environ Health Perspect. 2004;112:148-155. doi: 10.1289/ehp.6713. http://www.pubmedcentral.nih.gov/redirect3.cgi?&&reftype=pubmed&artid=1280344&iid=123957&jid=253&FROM=Article|CitationRef&TO=Entrez|PubMed|Record&article-id=1280344&journal-id=253&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=14754568.
  • Allen AM, Lunos S, Heishman SJ, et al. Subjective Response to Nicotine by Menstrual Phase. Addict Behav. 2015;43:50-53. doi: 10.1016/j.addbeh.2014.12.008.
  • Arevalo R, Castro R, Palarea MD, Rodriguez M. Tyrosine administration to pregnant rats induces persistent behavioral modifications in the male offspring. Physiol Behav. 1987;39:477-481.
  • Arroyo-Cabrales LM, Garza-Morales S, Hernández-Peláez G. Use of prenatal phenobarbital in the prevention of subependymal/intraventricular hemorrhage in premature infants. Arch Med Res. 1998;29(3):247-51.
  • Ashford KB, Hahn E, Hall L, et al. The effects of prenatal secondhand smoke exposure on preterm birth and neonatal outcomes. J Obstet Gynecol Neonatal Nurs. 2010;39(5):525-535. doi: 10.1111/j.1552-6909.2010.01169.x.
  • Atterberry TT, Burnett WT, Chambers JE. Age-related differences in parathion and chlorpyrifos toxicity in male rats: target and nontarget esterase sensitivity and cytochrome P450-mediated metabolism. Toxicol Appl Pharmacol. 1997;147:411-418. doi: 10.1006/taap.1997.8303.
  • Bairamov AA, Poletaeva AO, Proshin SN, et al. Sexual Function in Adult Male Rats after Prenatal Modulation of the Cholinergic System. Neuroscience and Behavioral Physiology. 2009;39(5):463-470. doi: 10.1007/s11055-009-9156-0.
  • Bairamov AA, Poletaeva AO, Yukina GY, et al. Neurochemical effects of prenatal exposure of selective M- and N-cholinoblockers in early ontogeny. European Neuropsychopharmacology. 2009;19(S2):138-139. doi: 10.1016/S0924-977X(09)70147-6.
  • Bairamov AA, Poletaeva AO, Yukina GY, Shabanov PD. Sexual dimorphism in emotional reactions and brain neurochemistry in rats after prenatal exposure to cholinoreceptor antagonist(s). European Neuropsychopharma-cology. 2012;22(S2):S188. doi: 10.1016/S0924-977X(12)70270-5.
  • Bairamov AA, Yukina GYu, Shabanov PD, et al. Development of Male Sexual Function after Prenatal Modulation of Cholinergic System. In book: Sexual Dysfunctions – Special Issues. EU, Croatia: InTech; 2011. 250 p. P. 93-117. ISBN: 978-953-307-859-5.
  • Bairamov AA, Yukrna GYU, Mamina NS, Shabanov PD. Prenatal exposure of selective cholinoblockers disturbs brain neurotransmitter systems and sexual function in rats. European Neuropsychopharmacology. 2009;19(S3):286-287. doi: 10.1016/S0924-977X(09)70422-5.
  • Balabanic D, Rupnik M, Klemencic AK. Negative impact of endocrine-disrupting compounds on human reproductive health. Reprod Fertil Devel. 2011;23:403-416. doi: 10.1071/RD09300.
  • Banderali G, Martelli A, Landi M, et al. Short and long term health effects of parental tobacco smoking during pregnancy and lactation: a descriptive review. J Transl Med. 2015;15(13):327. doi: 10.1186/s12967-015-0690-y.
  • Barone S, Das KP, Lassiter TL, White LD. Vulnerable processes of nervous system development: a review of markers and methods. Neurotoxicology. 2000;21:15-36. http://www.pubmedcentral.nih.gov/redirect3.cgi?&&reftype=pubmed&artid=1280344&iid=123957&jid=253&FROM=Article|CitationRef&TO=Entrez|PubMed|Record&article-id=1280344&journal-id=253&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=10794382
  • Beer A, Slotkin TA, Seidler FJ, et al. Nicotine therapy in adulthood reverses the synaptic and behavioral deficits elicited by prenatal exposure to phenobarbital. Neuropsychopharmacology. 2005;30(1):156-65. doi: 10.1038/sj.npp.1300582.
  • Belluardo N, Mudo G, Blum M, Fuxe K. Central nicotinic receptors, neurotrophic factors and neuroprotection. Behav Brain Res. 2000;113:21-34. doi: 10.1016/S0166-4328(00)00197-2.
  • Benwell MM, Balfour DJ. Comparison of the effects of constant nicotine infusion on nucleus accumbens and stratal dopamine responses to acute nicotine, in the effects of nicotine on biological systems II. P.B.S. Clarke, M. Quik, K. Thurau, F. Aldkofer, editors. Basel: Birkauser Verlag; 1994.
  • Berger-Sweeney J, Hohmann CF. Behavioral consequences of abnormal cortical development: insights into developmental disabilities. Behav Brain Res. 1997;86(2):121-142. doi: 10.1016/S0166-4328(96)02251-6.
  • Bitran D, Hull E. Pharmacological analysis of male rat sexual behavior. Neurosci Biobehav Rev. 1987;11:365-389. doi: 10.1016/S0149-7634(87)80008-8.
  • Bloomquist JR, Barlow RL, Gillette JS, et al. Selective effects of insecticides on nigrostriatal dopaminergic nerve pathways. Neurotoxicology. 2002;23:537-544. doi: 10.1016/S0161-813X(02)00031-1.
  • Brandt C, Burnett D, Arcinas L, et al. Effects of chlorpyrifos on in vitro sex steroid production and thyroid follicular development in adult and larval Lake Sturgeon, Acipenser fulvescens. Chemosphere. 2015;132:179-87. doi: 10.1016/j.chemosphere.2015.03.031.
  • Carr LA, Walters DE, Meyer DC. Postnatal development in the rat following pre- or postnatal exposure to nicotine. Res Commun Subst Abuse. 1985;6:151-164.
  • Carr RL, Chambers HW, Guarisco JA, et al. Effects of repeated oral postnatal exposure to chlorpyrifos on open-field behavior in juvenile rats. Toxicol Sci. 2001;59:260-267. doi: 10.1093/toxsci/59.2.260.http://www.pubmedcentral.nih.gov/redirect3.cgi?&&reftype=pubmed&artid=1280344&iid=123957&jid=253&FROM=Article|CitationRef&TO=Entrez|PubMed|Record&article-id=1280344&journal-id=253&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=11158719.
  • Chanda SM, Pope CN. Neurochemical and neurobehavioral effects of repeated gestational exposure to chlorpyrifos in maternal and developing rats. Pharmacol Biochem Behav. 1996;53(4):771-776. doi: 10.1016/0091-3057(95)02105-1.
  • Chen K, Nakauchi S, Su H, et al. Early postnatal nicotine exposure disrupts the α2* nicotinic acetylcholine receptor-mediated control of oriens-lacunosum moleculare cells during adolescence in rats. Neuropharmacology. 2016;101:57-67. doi: 10.1016/j.neuropharm.2015.09.022.
  • Chudal R, Brown A, Gissler M, et al. Is maternal smoking during pregnancy associated with bipolar disorder in offspring? J Affect Disord. 2015;15(171):132-6. doi: 10.1016/j.jad.2014.09.030.
  • Clarke PB, Reuben M. Release of (3H)-noradrenaline from rat hippocampal synaptosomes by nicotine: mediation by different nicotinic receptor subtypes from striatal (3H)-dopamine release. Br J Pharmacol. 1996;117:595-606. doi: 10.1111/j.1476-5381.1996.tb15232.x.
  • Corrigall WA, Coen KM. Selective dopamine antagonists reduce nicotine self-administration. Psychopharmacol. 1991;104:171-176. doi: 10.1007/BF02244174.
  • Corrigall WA, Franklin KB, Coen KM, Clarke PB. The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology. 1992;107: 285-289. doi: 10.1007/BF02245149.
  • Costa LG, Schwab BW, Murphy SD. Tolerance to anticholinesterase compounds in mammals. Toxicology. 1982;25:79-97. doi: 10.1016/0300-483X(82)90021-X.
  • Coyle JT, Yamamura HI. Neurochemical aspects of the ontogenesis of cholinergic neurons in the rat. Brain Res. 1976;118:429-440. doi: 10.1016/0006-8993(76)90310-3.
  • Cruz ME, Flores A, Domínguez R. The cholinergic system of the preoptic-anterior hypothalamic areas regulates the ovarian follicular population in an asymmetric way. Endocrine. 2014;47(3):913-922. doi: 10.1007/s12020-014-0266-2.
  • Dahlstrom A, Lundell B. Nicotine and cotinine concentrations in the nursing mother and her infant. Acta Paediatrica Scandinavica. 1990;79:142-147. doi: 10.1111/j.1651-2227.1990.tb11430.x.
  • Dam K, Garcia SJ, Seidler FJ, Slotkin TA. Neonatal chlorpyrifos exposure alters synaptic development and neuronal activity in cholinergic and catecholaminergic pathways. Dev Brain Res. 1999;116:9-20. doi: 10.1016/S0165-3806(99)00067-X.
  • Dam K, Seidler FJ, Slotkin TA. Chlorpyrifos exposure during a critical neonatal period elicits gender-selective deficits in the development of coordination skills and locomotor activity. Dev Brain Res. 2000;121:179-187. doi: 10.1016/S0165-3806(00)00044-4. http://www.pubmedcentral.nih.gov/redirect3.cgi?&&reftype=pubmed&artid=1280344&iid=123957&jid=253&FROM=Article|CitationRef&TO=Entrez|PubMed|Record&article-id=1280344&journal-id=253&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=10876030.
  • Damsma G, Day J, Fibiger HC. Lack of tolerance to nicotine-induced dopamine release in the nucleus accumbens. Eur J Pharmacol. 1989;186:363-368. doi: 10.1016/0014-2999(89)90798-X.
  • Dorner G. Hormones, brain development and fundamental processes of life. In: Hormones and brain development. Amsterdam: Elsevier; 1978. P. 13-25.
  • Dorner G. Hormone-dependent brain development and neuroendocrine prophylaxis. Exp Clin Endocrinol. 1989;94(1/2):4-22. doi: 10.1055/s-0029-1210876.
  • Dragomir A, Akay YM, Zhang D, Akay M. Ventral Tegmental Area Dopamine Neurons Firing Model Reveals Prenatal Nicotine Induced Alterations. IEEE Trans Neural Syst Rehabil Eng. 2016. doi: 10.1109/TNSRE.2016.2636133.
  • Egan TM, North RA. Actions of acetylcholine and nicotine on rat locus coeruleus neurons in vitro. Neuroscience. 1986;19(2):565-71. doi: 10.1016/0306-4522(86)90281-2.
  • Ekblad M, Korkeila J, Lehtonen L. Smoking during pregnancy affects foetal brain development. Acta Paediatr. 2015;104(1):12-18. doi: 10.1111/apa.12791.
  • Fernandes M, Yang X, Li J, et al. Smoking during pregnancy and vision difficulties in children: a systematic review. Acta Ophthalmol. 2015;93(3):213-23. doi: 10.1111/aos.12627.
  • Frankel S, Medvedeva N, Gutherz S, et al. Comparison of the long-term behavioral effects of neonatal exposure to retigabine or phenobarbital in rats. Epilepsy Behav. 2016;57(Pt A):34-40. doi: 10.1016/j.yebeh.2016.01.018.
  • Fung YK. Postnatal behavioural effects of maternal nicotine exposure in rats. J Pharm Pharmacol. 1988;40:870-2. doi: 10.1111/j.2042-7158.1988.tb06290.x.
  • Fung YK, Lau YS. Effects of prenatal nicotine exposure on rat striatal dopaminergic and nicotinic systems. Pharmacol Biochem Behav. 1989;33:1-6. doi: 10.1016/0091-3057(89)90419-X.
  • Garcia SJ, Seidler FJ, Slotkin TA. Developmental neurotoxicity elicited by prenatal or postnatal chlorpyrifos exposure: effects on neurospecific proteins indicate changing vulnerabilities. Environ Health Perspect. 2003;111:297-303. doi: 10.1289/ehp.5791. http://www.pubmedcentral.nih.gov/redirect3.cgi?&&reftype=pubmed&artid=1280344&iid=123957&jid=253&FROM=Article|CitationRef&TO=Entrez|PubMed|Record&article-id=1280344&journal-id=253&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=12611658.
  • Garcia-Munoz M, Patino P, Young SJ, Groves PM. Effects of nicotine on dopaminergic nigrostriatal axons requires stimulation of presynaptic glutamatergic receptors. J Pharmacol Exp Ther. 1996;277:1685-1693.
  • Gilmor ML, Nash NR, Roghani A, et al. Expression of the putative vesicular acetylcholine transporter in rat brain and localization in cholinergic synaptic vesicles. J Neurosci. 1996;16:2179-2190.
  • Giorguieff-Chesselet MR, Kennel ML, Wandscheer D, Glowinski J. Regulation of dopamine release by presynaptic nicotinic receptors in rat. Striatal slices: effect of nicotine in a low concentration. Life Sci. 1979;25:1257-1262.
  • Goldberg SR, Henningfield JE. Reinforcing effects of nicotine in humans and experimental animals responding under intermittent schedules of i. v. drug injection. Pharmacol Biochem Behav. 1988;30:227-234. doi: 10.1016/0091-3057(88)90450-9.
  • Gómez-Giménez B, Llansola M, Hernández-Rabaza V, et al. Sex-dependent effects of developmental exposure to different pesticides on spatial learning. The role of induced neuroinflammation in the hippocampus. Food Chem Toxicol. 2016;29(99):135-148. doi: 10.1016/j.fct.2016.11.028.
  • Grady SR, Meinerz NM, Cao J, et al. Nicotinic agonists stimulate acetylcholine release from mouse interpeduncular nucleus: a function mediated by a different nAChR than dopamine release from striatum. J Neurochem. 2001;76:258-268. doi: 10.1046/j.1471-4159.2001.00019.x.
  • Gupta RC. Brain regional heterogeneity and toxicological mechanisms of organophosphates and carbamates. Toxicol Mech Meth. 2004;4:103-143. doi: 10.1080/15376520490429175.
  • Hall BJ, Cauley M, Burke DA, et al. Cognitive and Behavioral Impairments Evoked by Low-Level Exposure to Tobacco Smoke Components: Comparison with Nicotine Alone. Toxicol Sci. 2016;151(2):236-244. doi: 10.1093/toxsci/kfw042.
  • Harris WH, Yamashiro S, Stopps TP. The effects of cesarean section anesthesia on heat loss and heat production in the newborn rabbit. Can J Comp Med. 1983;47(1):79-83.
  • Henningfield JE, Miyasato K, Jasinski DR. Cigarette smokers self-administer intravenous nicotine. Pharmacol Biochem Behav. 1983;19:887-890. doi: 10.1016/0091-3057(83)90099-0.
  • Hosseini E. The effect of nicotine on the serum level of insulin in adult male Wistar rats. J Cell Anim Bio. 2011;5(10):215-218.
  • Hull EM. Dopaminergic influences on male rat sexual behavior. In: Micevych PE, Hammer RPJ, editors. Neurobiological effects of sex steroid hormones. Cambridge (UK) 7: Cambridge University Press; 1995. P. 234-53. doi: 10.1017/CBO9780511529832.012.
  • Hull EM, Eaton RC, Markowski VP, et al. Opposite influence of medial preoptic D1 and D2 receptors on genital reflexes: implications for copulation. Life Sci. 1992;51:1705-1713. doi: 10.1016/0024-3205(92)90299-5.
  • Hyland A, Piazza KM, Hovey KM, et al. Associations of lifetime active and passive smoking with spontaneous abortion, stillbirth and tubal ectopic pregnancy: a cross-sectional analysis of historical data from the Women’s Health Initiative. Tob Control. 2015;24(4):328-35. doi: 10.1136/tobaccocontrol-2013-051458.
  • Imperato A, Mulas A, Di Chiara G. Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. Eur J Pharmacol. 1986;132:337-338. doi: 10.1016/0014-2999(86)90629-1.
  • Jackson DM, Anden NE, Dahlstrom A. A functional effect of dopamine in the nucleus accumbens and in some other dopamine-rich parts of the rat brain. Psychopharmacologia. 1975;45:139-149. doi: 10.1007/BF00429052.
  • Janssen BG, Gyselaers W, Byun HM, et al. Placental mitochondrial DNA and CYP1A1 gene methylation as molecular signatures for tobacco smoke exposure in pregnant women and the relevance for birth weight. J Transl Med. 2017;5(1):5. doi: 10.1186/s12967-016-1113-4.
  • Jenssen H. Fetal systolic time intervals in late pregnancy. Effect of atropine. Acta Obstet Gynecol Scand. 1979;58(6):519-526. doi: 10.3109/00016347909154611.
  • Johnston MW, Silverstein FS. Development of neurotransmitters. In: Polin RA, Fox WW, editors. Fetal and neonatal physiology. Toronto: W.B. Saunders; 1998. P. 2110-2117.
  • Karen DJ, Li W, Harp PR, et al. Striatal dopaminergic pathways as a target for the insecticides permethrin and chlorpyrifos. Neurotoxicology. 2001;22:811-817. doi: 10.1016/S0161-813X(01)00063-8. http://www.pubmedcentral.nih.gov/redirect3.cgi?&&reftype=pubmed&artid=1280344&iid=123957&jid=253&FROM=Article|CitationRef&TO=Entrez|PubMed|Record&article-id=1280344&journal-id=253&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=11829414.
  • Kivalo I, Saarikoski S. Quantitative measurements of placental transfer and distribution of radioactive atropine in fetus. Ann Chir Gynaecol Fenn. 1970;59(2):80-84.
  • Kohlmeier KA. Nicotine during pregnancy: changes induced in neurotransmission, which could heighten proclivity to addict and induce maladaptive control of attention. J Dev Orig Health Dis. 2015;6(3):169-81. doi: 10.1017/S2040174414000531.
  • Kuriyama SN, Talsness CE, Grote K, Chahoud I. Developmental exposure to low-dose PBDE-99: Effects on male fertility and neurobehavior in rat offspring. Environ Health Perspect. 2005;113:149-54. doi: 10.1289/ehp.7421.
  • Kus L, Borys E, Ping Chu Y, et al. Distribution of high-affinity choline transporter immunoreactivity in the primate central nervous system. J Comp Neurol. 2003;463:341-357. doi: 10.1002/cne.10759.
  • Lacy RT, Brown RW, Morgan AJ, et al. Intravenous prenatal nicotine exposure alters METH-induced hyperactivity, conditioned hyperactivity, and BDNF in adult rat off spring. Dev Neurosci. 2016;38(3):171-185. doi: 10.1002/cne.10759.
  • Lassiter T, White L, Padilla S, Barone S. Gestational exposure to chlorpyrifos: qualitative and quantitative neuropathological changes in the fetal neocortex. Toxicologist. 2002;66:632.
  • Lassiter TL, Barone S, Moser VC, Padilla S. Gestational exposure to chlorpyrifos: Dose-response profiles for cholinesterase and carboxylesterase activity. Toxicol Sci. 1999;52:92-100. doi: 10.1093/toxsci/52.1.92.
  • Lassiter TL, Padilla S, Mortensen SR, et al. Gestational exposure to chlorpyrifos: apparent protection of the fetus? Toxicol Appl Pharmacol. 1998;52(1):56-65. doi: 10.1006/taap.1998.8514.
  • Lauder JM, Schambra UB. Morphogenetic roles of acetylcholine. Environ Health Perspect. 1999;107(1):65-69. doi: 10.1289/ehp.99107s165.
  • Leite M, Albieri V, Kjaer SK, Jensen A. Maternal smoking in pregnancy and risk for congenital malformations: results of a Danish register-based cohort study. Acta Obstet Gynecol Scand. 2014;93(8):825-834. doi: 10.1111/aogs.12433.
  • Leslie FM. Neurotransmitters as Neurotrophic Factors. In: Neurotrophic Factors. Fallon J.H. & Loughlin S.E., San Diego: Academic Press; 1993. P. 565-598. doi: 10.1016/B978-0-08-057132-4.50024-1.
  • Levin ED, Addy N, Baruah A, et al. Prenatal chlorpyrifos exposure in rats causes persistent behavioral alterations. Neurotoxicol Teratol. 2002;24:733-741. doi: 10.1016/S0892-0362(02)00272-6. http://www.pubmedcentral.nih.gov/redirect3.cgi?&&reftype=pubmed&artid=1280344&iid=123957&jid=253&FROM=Article|CitationRef&TO=Entrez|PubMed|Record&article-id=1280344&journal-id=253&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=12460655.
  • Levin ED, Addy N, Christopher NC, et al. Persistent behavioral consequences of neonatal chlorpyrifos exposure in rats. Dev Brain Res. 2001;130:83-89. doi: 10.1016/S0892-0362(02)00272-6. http://www.pubmedcentral.nih.gov/redirect3.cgi?&&reftype=pubmed&artid=1280344&iid=123957&jid=253&FROM=Article|CitationRef&TO=Entrez|PubMed|Record&article-id=1280344&journal-id=253&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=11557096.
  • Levin ED, Simon BB. Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology. 1998;138:217-230. doi: 10.1007/s002130050667.
  • Levin ED, Wilkerson A, Jones JP, et al. Prenatal nicotine effects on memory in rats: pharmacological and behavioral challenges. Brain Res Dev Brain Res. 1996;97:207-215. doi: 10.1016/S0165-3806(96)00144-7.
  • Lichtensteiger W, Ribary U, Schlumpf M, et al. Prenatal adverse effects of nicotine on the developing brain. Prog Brain Res. 1988;73:137-157. doi: 10.1016/S0079-6123(08)60502-6.
  • Liu J, Parsons L, Pope C. Comparative effects of parathion and chlorpyrifos on endocannabinoid and endocannabinoid-like lipid metabolites in rat striatum. Neurotoxicology. 2015;50:20-27. doi: 10.1016/j.neuro.2015.07.006.
  • Liu RH, Mizuta M, Matsukura S. Long-term oral nicotine administration reduces insulin resistance in obese rats. Eur J Pharmacol. 2003;458:227-234. doi: 10.1016/S0014-2999(02)02726-7. doi: 10.1016/S0014-2999(02)02726-7.
  • Luck W, Nau H, Hansen R, Steldinger R. Extent of nicotine and cotinine transfer to the human fetus, placenta and amniotic fluid of smoking mothers. Dev Pharmacol Ther. 1985;8:384-395. doi: 10.1159/000457063.
  • Mack A, Robitzki A. The key role of butyrylcholinesterase during neurogenesis and neural disorders: an antisense-5’butyrylcholinesterase-DNA study. Prog Neurobiol. 2000;60(6):607-628. doi: 10.1016/S0301-0082(99)00047-7.
  • MacLusky NJ, Naftolin F. Sexual differentiation of the central nervous system. Science. 1981;211:1294-1302. doi: 10.1126/science.6163211. http://www.pubmedcentral.nih.gov/redirect3.cgi?&&reftype=pubmed&artid=1280344&iid=123957&jid=253&FROM=Article|CitationRef&TO=Entrez|PubMed|Record&article-id=1280344&journal-id=253&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=6163211.
  • MacLusky NJ, Walters MJ, Clark AS, Toran-Allerand CD. Aromatase in the cerebral cortex, hippocampus, and mid-brain: ontogeny and developmental implications. Mol Cell Neurosci. 1994;5:691-698. doi: 10.1006/mcne.1994.1083.
  • Mao C, Yuan X, Zhang H, et al. The effect of prenatal nicotine on mRNA of central cholinergic markers and hematological parameters in rat fetuses. Int J Dev Neurosci. 2008;26(5):467-475. doi: 10.1016/j.ijdevneu.2008.02.007.
  • Marshall DL, Redfern PH, Wonnacott S. Presynaptic nicotinic modulation of dopamine release in the three ascending pathways studied by in vivo microdialysis: comparison of naive and chronic nicotine-treated rats. J Neurochem. 1997;68:1511-1519. doi: 10.1046/j.1471-4159.1997.68041511.x.
  • Mattsson JL, Maurissen JP, Nolan RJ, Brzak KA. Lack of differential sensitivity to cholinesterase inhibition in fetuses and neonates compared to dams treated perinatally with chlorpyrifos. Toxicol Sci. 2000;53:438-446. doi: 10.1093/toxsci/53.2.438.
  • Maurissen JP, Hoberman AM, Garman RH, Hanley TR. Lack of selective developmental neurotoxicity in rat pups from dams treated by gavage with chlorpyrifos. Toxicol Sci. 2000;57:250-263. doi: 10.1093/toxsci/57.2.250.
  • McCarthy MM. Molecular aspects of sexual differentiation of the rodent brain. Psychoneuroendocrinology. 1994;19: 415-27. doi: 10.1016/0306-4530(94)90029-9. http://www.pubmedcentral.nih.gov/redirect3.cgi?&&reftype=pubmed&artid=1280344&iid=123957&jid=253&FROM=Article|CitationRef&TO=Entrez|PubMed|Record&article-id=1280344&journal-id=253&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=7938343.
  • McGehee DS, Heath MJ, Gelber S, et al. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science. 1995;269(5231):1692-6. doi: 10.1126/science.7569895.
  • Melchior M, Hersi R, van der Waerden J, et al. Maternal tobacco smoking in pregnancy and children’s socio-emotional development at age 5: The EDEN mother-child birth cohort study. Eur Psychiatry. 2015;30(5):562-8. doi: 10.1016/j.eurpsy.2015.03.005.
  • Mitchell SN. Role of the locus coeruleus in the noradrenergic response to a systemic administration of nicotine. Neuropharmacology. 1993a;32:937-949. doi: 10.1016/0028-3908(93)90058-B.
  • Mitchell SN, Smith KM, Joseph MH, Gray JA. Increases in tyrosine hydroxylase messenger RNA in the locus coeruleus after a single dose of nicotine are followed by time-dependent increases in enzyme activity and noradrenaline release. Neuroscience. 1993b;56:989-997.doi: 10.1016/0306-4522(93)90145-6.
  • Monnet-Tschudi F, Zurich MG, Schilter B, et al. Maturation-dependent effects of chlorpyrifos and parathion and their oxygen analogs on acetylcholinesterase and neuronal and glial markers in aggregating brain cell cultures. Toxicol Appl Pharmacol. 2000;165:175-183. doi: 10.1006/taap.2000.8934.
  • Mulle C, Vidal C, Benoit P, Changeux JP. Existence of different subtypes of nicotinic acetylcholine receptors in the rat habenulo-interpeduncular system. J Neurosci. 1991;11:2588-2597.
  • Muneoka K, Ogawa T, Kamei K, et al. Prenatal nicotine exposure affects the development of the central serotonergic system as well as the dopaminergic system in rat offspring: involvement of route of drug administrations. Brain Res Dev Brain Res. 1997;102:117-126. doi: 10.1016/S0165-3806(97)00092-8.
  • Murad SH, Conklin KA, Tabsh KM, et al. Atropine and glycopyrrolate: hemodynamic effects and placental transfer in the pregnant ewe. Anesth Analg. 1981;60(10):710-714. doi: 10.1213/00000539-198110000-00002.
  • Museo E, Wise RA. Locomotion induced by ventral tegmental microinjections of a nicotinic agonist. Pharmacol Biochem Behav. 1990;35:735-737. doi: 10.1016/0091-3057(90)90316-A.
  • Naeff B, Schlumpf M, Lichtensteiger W. Pre- and postnatal development of high-affinity (3H)nicotine binding sites in rat brain regions: an autoradiographic study. Brain Res Dev Brain Res. 1992;68:163-174. doi: 10.1016/0165-3806(92)90058-5.
  • Navarro HA, Seidler FJ, Whitmore WL, Slotkin TA. Prenatal exposure to nicotine via maternal infusions: effects on development of catecholamine systems. J Pharmacol Exp Ther. 1988;244:940-944.
  • Newhouse PA, Sunderland T, Tariot PN, et al. Intravenous nicotine in Alzheimer’s disease: a pilot study. Psychopharmacology (Berl). 1988;95:171-175. doi: 10.1007/BF00174504.
  • Nulman I, Laslo D, Koren G. Treatment of epilepsy in pregnancy. Drugs. 1999;57(4):535-44. doi: 10.2165/00003495-199957040-00006.
  • Omotoso GO, Ibitolu JO, Femi-Akinlosotu OM, et al. Morphological and neurohistological changes in adolescent rats administered with nicotine during intrauterine life. Niger J Physiol Sci. 2013;28(2):147-151.
  • Pope CN. Organophosphorus pesticides: Do they all have the same mechanism of toxicity? J Toxicol Environ Health B Critical Rev. 1999;2:161-81. doi: 10.1080/109374099281205.
  • Qiao D, Seidler FJ, Abreu-Villaсa Y, et al. Chlorpyrifos exposure during neurulation: cholinergic synaptic dysfunction and cellular alterations in brain regions at adolescence and adulthood. Dev Brain Res. 2004;148:43-52. doi: 10.1016/j.devbrainres.2003.10.004. http://www.pubmedcentral.nih.gov/redirect3.cgi?&&reftype=pubmed&artid=1280344&iid=123957&jid=253&FROM=Article|CitationRef&TO=Entrez|PubMed|Record&article-id=1280344&journal-id=253&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=14757517.
  • Qiao D, Seidler FJ, Padilla S, Slotkin TA. Developmental neurotoxicity of chlorpyrifos: what is the vulnerable period? Environ Health Perspect. 2002;110:1097-1103. http://www.pubmedcentral.nih.gov/redirect3.cgi?&&reftype=pubmed&artid=1280344&iid=123957&jid=253&FROM=Article|CitationRef&TO=Entrez|PubMed|Record&article-id=1280344&journal-id=253&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=12417480.
  • Qiao D, Seidler FJ, Slotkin TA. Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos. Toxicol Appl Pharmacol. 2005;206:17-26. doi: 10.1016/j.taap.2004.11.003. http://www.pubmedcentral.nih.gov/redirect3.cgi?&&reftype=pubmed&artid=1280344&iid=123957&jid=253&FROM=Article|CitationRef&TO=Entrez|PubMed|Record&article-id=1280344&journal-id=253&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=15963341.
  • Qiao D, Seidler FJ, Tate CA, et al. Fetal chlorpyrifos exposure: adverse effects on brain cell development and cholinergic biomarkers emerge postnatally and continue into adolescence and adulthood. Environ Health Perspect. 2003;111:536-544. doi: 10.1289/ehp.5828. http://www.pubmedcentral.nih.gov/redirect3.cgi?&&reftype=pubmed&artid=1280344&iid=123957&jid=253&FROM=Article|CitationRef&TO=Entrez|PubMed|Record&article-id=1280344&journal-id=253&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=12676612
  • Raines KW, Seidler FJ, Slotkin TA. Alterations in serotonin transporter expression in brain regions of rats exposed neonatally to chlorpyrifos. Dev Brain Res. 2001;130: 65-72. doi: 10.1016/S0165-3806(01)00211-5. http://www.pubmedcentral.nih.gov/redirect3.cgi?&&reftype=pubmed&artid=1280344&iid=123957&jid=253&FROM=Article|CitationRef&TO=Entrez|PubMed|Record&article-id=1280344&journal-id=253&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=11557094.
  • Rapier C, Lunt GG, Wonnacott S. Nicotinic modulation of (3H)dopamine release from striatal synaptosomes: pharmacological characterisation. J Neurochem. 1990;54:937-945. doi: 10.1111/j.1471-4159.1990.tb02341.x.
  • Ribary U, Lichtensteiger W. Effects of acute and chronic prenatal nicotine treatment on central catecholamine systems of male and female rat fetuses and offspring. J Pharmacol Exp Ther. 1989;248:786-792.
  • Ricceri L, Markina N, Valanzano A, et al. Developmental exposure to chlorpyrifos alters reactivity to environmental and social cues in adolescent mice. Toxicol Appl Pharmacol. 2003;191:189-201. doi: 10.1016/S0041-008X(03)00229-1. http://www.pubmedcentral.nih.gov/redirect3.cgi?&&reftype=pubmed&artid=1280344&iid=123957&jid=253&FROM=Article|CitationRef&TO=Entrez|PubMed|Record&article-id=1280344&journal-id=253&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=13678652.
  • Richardson JR, Chambers JE. Effects of gestational exposure to chlorpyrifos on postnatal central and peripheral cholinergic neurochemistry. J Toxicol Environ Health. 2003;66:275-289. doi: 10.1080/15287390306369.
  • Richardson JR, Chambers JE. Neurochemical Effects of Repeated Gestational Exposure to Chlorpyrifos in Developing Rats. Toxicol Sci. 2004;77(1):83-90. doi: 10.1093/toxsci/kfh014.
  • Rowell PP. Nanomolar concentrations of nicotine increase the release of (3H)dopamine from rat striatal synaptosomes. Neurosci Lett. 1995;189171-175. doi: 10.1016/0304-3940(95)11471-8.
  • Russell RW, Overstreet DH. Mechanisms underlying sensitivity to organophosphorus anticholinesterase compounds. Prog Neurobiol. 1987;28:161-166. doi: 10.1016/0301-0082(87)90008-6.
  • Sacaan AI, Dunlop JL, Lloyd GK. Pharmacological characterization of neuronal acetylcholine gated ion channel receptor-mediated hippocampal norepinephrine and striatal dopamine release from rat brain slices. J Pharmacol Exp Ther. 1995;274:224-230.
  • Sai L, Li X, Liu Y, et al. Effects of chlorpyrifos on reproductive toxicology of male rats. Environ Toxicol. 2014;29(9):1083-8. doi: 10.1002/tox.21838.
  • Cross SJ, Linker KE, Leslie FM. Sex-dependent effects of nicotine on the developing brain. Journal of Neuroscience Research. 2017;95:422-436. doi: 10.1002/jnr.23878.
  • Schifferli P, Caldeyro-Barcia R. Effects of atropine and betaadrenergic drugs on the heart rate of the human fetus. In: Boreus L, ed. Fetal Pharmacology. New York: Raven Press; 1973: P. 264.
  • Schilstrom B, Nomikos GG, Nisell M, et al. N-methyl-D-aspartate receptor antagonism in the ventral tegmental area diminishes the systemic nicotine-induced dopamine release in the nucleus accumbens. Neuroscience. 1998;82:781-789. doi: 10.1016/S0306-4522(97)00243-1.
  • Schlumpf M, Gahwiler M, Ribary U, Lichtensteiger W. A new device for monitoring early motor development: prenatal nicotine-induced changes. Pharmacol Biochem Behav. 1988;30:199-203. doi: 10.1016/0091-3057(88)90444-3.
  • Scott-Goodwin AC, Puerto M, Moreno I. Toxic effects of prenatal exposure to alcohol, tobacco and other drugs. Reprod Toxicol. 2016;61:120-30. doi: 10.1016/j.reprotox.2016.03.043.
  • Seidler FJ, Albright ES, Lappi SE, Slotkin TA. In search of a mechanism for receptor-mediated neurobehavioral teratogenesis by nicotine: catecholamine release by nicotine in immature rat brain regions. Brain Res Dev Brain Res. 1994;82:1-8. doi: 10.1016/0165-3806(94)90142-2.
  • Seidler FJ, Levin ED, Lappi SE, Slotkin TA. Fetal nicotine exposure ablates the ability of postnatal nicotine challenge to release norepinephrine from rat brain regions. Brain Res Dev Brain Res. 1992;69:288-291. doi: 10.1016/0165-3806(92)90170-2.
  • Seidler FJ, Slotkin TA. Developmental neurotoxicity targeting hepatic and cardiac sympathetic innervation: effects of organophosphates are distinct from those of glucocorticoids. Brain Res Bull. 2011;85(3-4):225-30. doi: 10.1016/j.brainresbull.2011.03.021.
  • Semba K. Development of central cholinergic neurons. In: Bjorklund A, Hokfelt T, Tohyama M, editors. Ontogeny of Transmitters and Petides in the CNS. Amsterdam: Elsevier; 1992. P. 33-62.
  • Shacka JJ, Fennell OB, Robinson SE. Prenatal nicotine sex-dependently alters agonist-induced locomotion and stereotypy. Neurotoxicol Teratol. 1997;19:467-476. doi: 10.1016/S0892-0362(97)00063-9.
  • Shenassa ED, Wen X, Braid S. Exposure to tobacco metabolites via breast milk and infant weight gain: A population-based study. J Hum Lact. 2016;32(3):462-471. doi: 10.1177/0890334415619154.
  • Sherman KA, Friedman E. Pre- and post-synaptic cholinergic dysfunction in aged rodent brain regions: new findings and an interpretive review. Int J Dev Neurosci. 1990;8:689-708. doi: 10.1016/0736-5748(90)90063-8.
  • Shinebourne EA, Vapaavuori EK, Williams RL, et al. Development of baroreflex activity in unanesthetized fetal and neonatal lambs. Circ Res. 1972;31(5):710-718. doi: 10.1161/01.RES.31.5.710.
  • Shittu M, Ayo JO, Ambali SF, et al. Chronic chlorpyrifos-induced oxidative changes in the testes and pituitary gland of wistar rats: Ameliorative effects of vitamin C. Pest Biochem Physiol. 2012;102:79-85. doi: 10.1016/j.pestbp.2011.10.014.
  • Simon H, Taghzouti K, Le Moal M. Deficits in spatial-memory tasks following lesions of septal dopaminergic terminals in the rat. Behav Brain Res. 1986;19:7-16. doi: 10.1016/0166-4328(86)90042-2.
  • Slotkin TA. Cholinergic systems in brain development and disruption by neurotoxicants: nicotine, environmental tobacco smoke, organophosphates. Toxicol Appl Pharmacol. 2004;198:132-151. doi: 10.1016/j.taap.2003.06.001.http://www.pubmedcentral.nih.gov/redirect3.cgi?&&reftype=pubmed&artid=1280344&iid=123957&jid=253&FROM=Article|CitationRef&TO=Entrez|PubMed|Record&article-id=1280344&journal-id=253&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=15236950.
  • Slotkin TA. Developmental cholinotoxicants: nicotine and chlorpyrifos. Environ Health Perspect. 1999;107(1):71-80. doi: 10.1289/ehp.99107s171.
  • Slotkin TA. If nicotine is a developmental neurotoxicant in animal studies, dare we recommend nicotine replacement therapy in pregnant women and adolescents? Neurotoxicol Teratol. 2008;30(1):1-19. doi: 10.1016/j.ntt.2007.09.002.
  • Slotkin TA, Cho H, Whitmore WL. Effects of prenatal nicotine exposure on neuronal development: selective actions on central and peripheral catecholaminergic pathways. Brain Res Bull. 1987;18:601-611. doi: 10.1016/0361-9230(87)90130-4.
  • Slotkin TA, Cousins MM, Tate CA, Seidler FJ. Persistent cholinergic presynaptic deficits after neonatal chlorpyrifos exposure. Brain Res. 2001;902:229-243. doi: 10.1016/j.ntt.2007.03.039. http://www.pubmedcentral.nih.gov/redirect3.cgi?&&reftype=pubmed&artid=1280344&iid=123957&jid=253&FROM=Article|CitationRef&TO=Entrez|PubMed|Record&article-id=1280344&journal-id=253&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=11384617
  • Slotkin TA, Greer N, Faust J, et al. Effects of maternal nicotine injections on brain development in the rat: ornithine decarboxylase activity, nucleic acids and proteins in discrete brain regions. Brain Res Bull. 1986;17:41-50. doi: 10.1016/0361-9230(86)90159-0.
  • Slotkin TA, Lappi SE, Tayyeb MI, Seidler FJ. Chronic prenatal nicotine exposure sensitizes rat brain to acute postnatal nicotine challenge as assessed with ornithine decarboxylase. Life Sci. 1991;49:665-670. doi: 10.1016/0024-3205(91)90113-P.
  • Slotkin TA, Seidler FJ. Mimicking maternal smoking and pharmacotherapy of preterm labor: fetal nicotine exposure enhances the effect of late gestational dexamethasone treatment on noradrenergic circuits. Brain Res Bull. 2011;86(5-6):435-40. doi: 10.1016/j.brainresbull.2011.08.009.
  • Slotkin TA, Seidler FJ. Prenatal nicotine alters the developmental neurotoxicity of postnatal chlorpyrifos directed toward cholinergic systems: better, worse, or just “different?” Brain Res Bull. 2015;110:54-67. doi: 10.1016/j.brainresbull.2014.12.003.
  • Slotkin TA, Seidler FJ, Ali SF. Cellular determinants of reduced adaptability of the aging brain: neurotransmitter utilization and cell signaling responses after MDMA lesions. Brain Res. 2000;879:163-173. doi: 10.1016/S0006-8993(00)02767-0. http://www.pubmedcentral.nih.gov/redirect3.cgi?&&reftype=pubmed&artid=1280344&iid=123957&jid=253&FROM=Article|CitationRef&TO=Entrez|PubMed|Record&article-id=1280344&journal-id=253&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=11011018.
  • Slotkin TA, Skavicus S, Levin ED, Seidler FJ. Prenatal nicotine changes the response to postnatal chlorpyrifos: Interactions targeting serotonergic synaptic function and cognition. Brain Res Bull. 2015;111:84-96. doi: 10.1016/j.brainresbull.2015.01.003.
  • Slotkin TA, Skavicus S, Seidler FJ. Prenatal drug exposures sensitize noradrenergic circuits to subsequent disruption by chlorpyrifos. Toxicology. 2015;338:8-16. doi: 10.1016/j.tox.2015.09.005.
  • Slotkin TA, Tate CA, Cousins MM, Seidler FJ. Functional alterations in CNS catecholamine systems in adolescence and adulthood after neonatal chlorpyrifos exposure. Dev Brain Res. 2002;133:163-173. doi: 10.1016/S0165-3806(02)00284-5. http://www.pubmedcentral.nih.gov/redirect3.cgi?&&reftype=pubmed&artid=1280344&iid=123957&jid=253&FROM=Article|CitationRef&TO=Entrez|PubMed|Record&article-id=1280344&journal-id=253&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=11882346.
  • Smith DB, Goldstein SG, Roomet A. A comparison of the toxicity effects of the anticonvulsant eterobarb (antilon, DMMP) and phenobarbital in normal human volunteers. Epilepsia. 1986;27:149-155.
  • Steingart RA, Abu-Roumi M, Newman ME, et al. Neurobehavioral damage to cholinergic systems caused by prenatal exposure to heroin or phenobarbital: cellular mechanisms and the reversal of deficits by neural grafts. Brain Res Dev Brain Res. 2000a;122:125-131. doi: 10.1016/S0165-3806(00)00063-8.
  • Steingart RA, Barg J, Maslaton J, et al. Pre- and postsynaptic alterations in the septohippocampal cholinergic innervations after prenatal exposure to drugs. Brain Res Bull. 1998;46:203-209. doi: 10.1016/S0361-9230(97)00454-1.
  • Steingart RA, Silverman WF, Barron S, et al. Neural grafting reverses prenatal drug-induced alterations in hippocampal PKC and related behavioral deficits. Brain Res Dev Brain Res. 2000b;125:919. doi: 10.1016/S0165-3806(00)00123-1.
  • Suemaru K, Gomita Y, Furuno K, Araki Y. Chronic nicotine treatment potentiates behavioral responses to dopaminergic drugs in rats. Pharmacol Biochem Behav. 1993;46:135-139. doi: 10.1016/0091-3057(93)90329-R.
  • Svensson TH, Engberg G. Effect of nicotine on single cell activity in the noradrenergic nucleus locus coeruleus. Acta Physiol Scand Suppl. 1980;479:31-34.
  • Swann AC, Hewitt LO. Hemicholinium-3 binding: Correlation with high-affinity choline uptake during changes in cholinergic activity. Neuropharmacology. 1988;27:611-5. doi: 10.1016/0028-3908(88)90182-7.
  • Tavares RS, Escada-Rebelo S, Correia M. The non-genomic effects of endocrine-disrupting chemicals on mammalian sperm. Reproduction. 2016;151(1):1-13. doi: 10.1530/REP-15-0355.
  • Toth E, Sershen H, Hashim A, et al. Effect of nicotine on extracellular levels of neurotransmitters assessed by microdialysis in various brain regions: role of glutamic acid. Neurochem Res. 1992;17:265-271. doi: 10.1007/BF00966669.
  • Tung CS, Grenhoff J, Svensson TH. Nicotine counteracts midbrain dopamine cell dysfunction induced by prefrontal cortex inactivation. Acta Physiol Scand. 1990;138:427-38. doi: 10.1111/j.1748-1716.1990.tb08868.x.
  • Valaes TN, Harvey-Wilkes K. Pharmacologic approaches to the prevention and treatment of neonatal hyperbilirubinemia. Clin Perinatol. 1990;17(2):245-273.
  • Vatury O, Barg J, Slotkin TA, Yanai J. Altered localization of choline transporter sites in the mouse hippocampus after prenatal heroin exposure. Brain Res Bull. 2004;53:25-32. doi: 10.1016/j.brainresbull.2003.11.004.
  • Virtanen HE, Jørgensen N, Toppari J. Semen quality in the 21st century. Nat Rev Urol. 2017;14(2):120-130. doi: 10.1038/nrurol.2016.261.
  • Wallace SJ. Studies on the effect of anticonvulsant drugs on the developing human brain. Elsevier Science Publishers BV: Amsterdam; 1984. P. 133-151.
  • Wang H, Gondré-Lewis MC. Prenatal nicotine and maternal deprivation stress de-regulate the development of CA1, CA3, and dentate gyrus neurons in hippocampus of infant rats. PLoS One. 2013;8(6):e65517. doi: 10.1371/journal.pone.0065517.
  • Weiss B, Amler S, Amler RW. Pesticides. Pediatrics. 2004;113(4):1030-1036. http://www.pubmedcentral.nih.gov/redirect3.cgi?&&reftype=pubmed&artid=1280344&iid=123957&jid=253&FROM=Article|CitationRef&TO=Entrez|PubMed|Record&article-id=1280344&journal-id=253&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=15060196.
  • White HK, Levin ED. Four-week nicotine skin patch treatment effects on cognitive performance in Alzheimer’s disease. Psychopharmacology (Berl). 19991;43:158-165. doi: 10.1007/s002130050931.
  • Whyatt RM, Garfinkel R, Hoepner LA, et al. A biomarker validation study of prenatal chlorpyrifos exposure within an innercity cohort during pregnancy. Environ Health Perspect. 2009;117(4):559-567. doi: 10.1289/ehp.0800041.
  • Williams R, Ali SF, Scalzo FM, et al. Prenatal haloperidol exposure: effects on brain weights and caudate neurotransmitter levels in rats. Brain Res Bull. 1992;29(3-4): 449-458. doi: 10.1016/0361-9230(92)90082-9.
  • Winzer-Serhan UH, Leslie FM. Codistribution of nicotinic acetylcholine receptor subunit a3 and b4 mRNAs during rat brain development. J Comp Neurol. 1997;386:540-554. doi: 10.1002/(SICI)1096-9861(19971006)386:4<540::. AID-CNE2>3.0.CO;2-2.
  • Wong MK, Barra NG, Alfaidy N, et al. Adverse effects of perinatal nicotine exposure on reproductive outcomes. Reproduction. 2015;150(6):185-193. doi: 10.1530/REP-15-0295.
  • Woodruff TJ, Carlson A, Schwartz JM, Giudice LC. Proceedings of the Summit on Environmental Challenges to Reproductive Health and Fertility: Executive Summary. Fertil Steril. 2008;89:281-300. doi: 10.1016/j.fertnstert.2008.01.065.
  • Woodruff TJ. Bridging epidemiology and model organisms to increase understanding of endocrine disrupting chemicals and human health effects. J Steroid Biochem Mol Biol. 2011;127:108-117. doi: 10.1016/j.jsbmb.2010.11.007.
  • Xu TY, Guo LL, Wang P, et al. Chronic exposure to nicotine enhances insulin sensitivity through α7 nicotinic acetylcholine receptor-STAT3 pathway. PLoS One. 2012;7(12): 512-7. doi: 10.1371/journal.pone.0051217.
  • Xu Z, Seidler FJ, Ali SF, et al. Fetal and adolescent nicotine administration: effects on CNS serotonergic systems. Brain Res. 2001;914:166-78. doi: 10.1016/S0006-8993(01)02797-4.
  • Yanai J. An animal model for the effects of barbiturate on the development of the central nervous system. Neurobehav Terarol. 1984;52:111-132.
  • Yanai J, Abu-Roumi M, Silverman WF, Steingart RA. Neural grafting as a tool for the study and reversal of neurobehavioral birth defects. Pharmacol Biochem Behav 1996;55:673-681. doi: 10.1016/S0091-3057(96)00252-3.
  • Yanai J, Beer A, Huleihel R, et al. Convergent effects on cell signaling mechanisms mediate the actions of different neurobehavioral teratogens: alterations in cholinergic regulation of PKC in chick and avian models. Ann NY Acad Sci. 2004;1025:595-601. doi: 10.1196/annals.1316.074.http://www.pubmedcentral.nih.gov/redirect3.cgi?&&reftype=pubmed&artid=1280344&iid=123957&jid=253&FROM=Article|CitationRef&TO=Entrez|PubMed|Record&article-id=1280344&journal-id=253&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=15542768.
  • Yanai J, Huleihel R, Izrael M, et al. Functional changes after prenatal opiate exposure related to opiate receptors’ regulated alterations in cholinergic innervation. Int J Neuropsychopharmacol. 2003;6:253-265. doi: 10.1017/S1461145703003523.
  • Yanai J, Vatury O, Slotkin TA. Cell signaling as a target and underlying mechanism for neurobehavioral teratogenesis. Ann NY Acad Sci. 2002;965:473-478. doi: 10.1111/j.1749-6632.2002.tb04188.x. http://www.pubmedcentral.nih.gov/redirect3.cgi?&&reftype=pubmed&artid=1280344&iid=123957&jid=253&FROM=Article|CitationRef&TO=Entrez|PubMed|Record&article-id=1280344&journal-id=253&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=12105122.
  • Yang S, Xu L, He Y, et al. Childhood secondhand smoke exposure and pregnancy loss in never smokers: the Guangzhou Biobank Cohort Study. Tob Control. 2016. doi: 10.1136/tobaccocontrol-2016-053239.
  • Yu ZJ, Wecker L. Chronic nicotine administration differentially affects neurotransmitter release from rat striatal slices. J Neurochem. 1994;63:186-194. doi: 10.1046/j.1471-4159.1994.63010186.x.
  • Zhou FM, Liang Y, Dani JA. Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci. 2001;4:1224-1229. doi: 10.1038/nn769.
  • Zhou S, Rosenthal DG, Sherman S, et al. Physical, behavioral, and cognitive effects of prenatal tobacco and postnatal secondhand smoke exposure. Curr Probl Pediatr Adolesc Health Care. 2014;44(8):219-241. doi: 10.1016/j.cppeds.2014.03.007.
  • Zidan NA. Evaluation of the reproductive toxicity of chlorpyrifos methyl, diazinon and profenofos pesticides in male rats. Int J Pharmacol. 2009;5:51-57. doi: 10.3923/ijp.2009.51.57.

Views

Abstract - 19

PDF (Russian) - 17


Copyright (c) 2017 ECO-vector LLC

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.