Multi-component symbiosis of Legumes with beneficial soil microbes: genetic and evolutionary basis of application in sustainable crop production



Cite item

Full Text

Abstract

Leguminous plants have a genetic system that provides interaction with different beneficial soil microorganisms (BSM). The system has been formed on the basis of the genetic mechanisms that had arisen during the co-evolution of plants with arbuscular-mycorrhizal (AM) fungi and appeared to provide pre-adaptations for further evolution of interaction with various BSM. A concept of the use of BSM in sustainable agriculture is proposed, which postulates an establishment of the multi-component beneficial plant-microbe communities based on varieties of legumes with high potential for interaction with the BSM. 

Keywords

About the authors

Oksana Y Shtark

All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, RF

Email: oshtark@yandex.ru

Aleksey U Borisov

All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, RF

Email: ayborisov@yandex.ru

Vladimir A Zhukov

All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, RF

Email: zhukoff01@yahoo.com

Timofey A Nemankin

All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, RF

Email: nemankin@gmail.com

Igor A Tikhonovich

All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, RF

Email: arriam@arriam.spb.ru. contact@arriam.spb.ru Podbelskiy Ch., 3, Saint-Petersburg, Pushkin-8

References

  1. Борисов А. Ю., Наумкина Т. С., Штарк О. Ю. и др., 2004. Эффективность использования совместной инокуляции гороха посевного (Pisum sativum L.) грибами арбускулярной микоризы и клубеньковыми бактерия-ми для повышения продуктивности растений в устойчивом экологически ориентированном земледелии//Докл. РАСХН. № 2. С. 12-14.
  2. Борисов А. Ю., Цыганов В. Е., Штарк О. Ю. и др., 2002. Каталог мировой коллекции ВИР. Вып. 728. Горох (Симбиотическая эффективность)/Под ред.И. А. Тихоновича, М. А. Вишняковой, СПб.: ВИР, 29 с.
  3. Жуков В. А., Штарк О. Ю., Борисов А. Ю., Тихонович И. А., 2009. Молекулярно-генетические механизмы контроля растением ранних стадий развития взаимовыгодных (мутуалистических) симбиозов бобовых//Генетика. Т. 45. С. 1449-1460.
  4. Игнатов В. В. (ред.), 2005. Молекулярные основы взаимоотношений ассоциативных микроорганизмов с растениями. М.: Наука, 262 с.
  5. Кожемяков А. П., Чеботарь В. К., 2005. Биопрепараты для земледелия//Биопрепараты в сельском хозяйстве (Методология и практика применения микроорганизмов в растениеводстве и кормопроизводстве)/Под ред. И. А. Тихоновича, Ю. В. Круглова, М., С. 18-54.
  6. Лабутова Н. М., 2009. Взаимоотношения эндомикоризных грибов с микроорганизмами ризосферы//Ми-кол. Фитопатол. Т. 43. № 1. С. 3-19.
  7. Лабутова Н. М., Левина Р. Л., 2008. Динамика подвижных форм макроэлементов в ризосфере бобовых растений при функционировании различных симбиотических систем//Материалы Межрегиональной научно-практической конференции «Почвенные ресурсы Северо-Запада России: их состояние, охрана и рациональное использование», СПб., С. 135-140.
  8. Лабутова Н. М., Поляков А. И., Лях В. А., Гор-дон В. Л., 2004. Влияние инокуляции клубеньковы-ми бактериями и эндомикоризным грибом Glomus intraradices на урожай различных сортов сои и содержание белка и масла в семенах//Докл. РАСХН. № 2. C. 10-12.
  9. Проворов Н. А., Воробьев Н. И., Андронов Е. Е., 2008. Макро-и микроэволюция бактерий в системах симбиоза//Генетика. Т. 44. С. 12-28.
  10. Проворов Н. А., 2009. Растительно-микробные симбиозы как эволюционный континуум//Ж. Общ. Биол. Т. 70. № 1. С. 10-34.
  11. Чеботарь В. К., Казаков А. Е., Ерофеев С. В. и др., 2008. Способ получения комплексного микробиологического удобрения. Патент № 2318784 от 10.03.2008.
  12. Штарк О. Ю., Данилова Т. Н., Наумкина Т. С. и др., 2006. Анализ исходного материала гороха посевного (Pisum sativum L.) для селекции сортов с высоким симбиотическим потенциалом и выбор параметров для его оценки//Экол. Генет. T. 4. № 2. С. 22-28.
  13. Якоби Л. М., Кукалев А. С., Ушаков К. В. и др., 2000. Полиморфизм форм гороха посевного по эффективности симбиоза с эндомикоризным грибом Glomus sp. в условиях инокуляции ризобиями//Сельхоз. Биол. 2000. №3. C. 94-102.
  14. Akiyama K., Matsuzaki K., Hayashi H., 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi//Nature. Vol. 435. P. 824-827.
  15. Ané J. M., Kiss G. B., Riely B. K. et al., 2004. Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes//Science. Vol. 303. P. 1364-1367.
  16. Artursson V., Finlay R. D., Jansson J. K., 2006. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth//Environ. Microbiol. Vol. 8. P. 1-10.
  17. Bakker P. A. H. M., Raaijmakers J. M., Bloemberg G. et al. (eds.), 2007. New perspectives and approaches in plant growth-promoting rhizobacteria research (Reprinted from Eropean Journal of Plant Pathology, 119:2, 2007). Dordrecht: Springer. 126 p.
  18. Balachandar D., Raja P., Kumar K., Sundaram S. P., 2007. Non-rhizobial nodulation in legumes//Biotechnol. Molec. Biol. Rev. Vol. 2. P. 49-57.
  19. Barea J.-M., Pozo M.-J., Azcon R., Azcon-Aguilar C., 2005. Microbial cooperation in the rhizosphere//J. Exp. Botany. Vol. 56, N. 14, P. 1761-1788.
  20. Barker S. J., Tagu D., 2000. The role of auxins and cytokinins in mycorrhizal symbiosis//J. Plant Growth Regul. Vol. 19. P. 144-154.
  21. Belimov A. A., Kunakova A. M., Safronova V. I. et al., 2000. Interaction between associative bacteria and barley under environmental stresses: input of partner genotypes and growth conditions//New approaches and techniques in breeding sustainable fodder crops and amenity grasses/Eds. N. A. Provorov et al., St-Petersburg: VIRA Press. P. 146-148.
  22. Bleecker A. B., Kende H., 2000. Ethylene: a gaseous signal molecule in plants//Annu. Rev. Cell Dev. Biol. Vol. 16. P. 1-18.
  23. Borisov A. Y., Danilova T. N., Shtark O. Y. et al., 2008. Tripartite symbiotic system of pea (Pisum sativum L.): applications in sustainable agriculture//Biological Nitrogen Fixation: Towards Poverty Alleviation through Sustainable Agriculture. Proceedings of 15th International Congress on Nitrogen Fixation & 12th International Conference of the African Association for Biological Nitrogen Fixation/Eds. F. D. Dakora et al., Dordrecht: Springer. P. 15-17.
  24. Brewin N. J., 2004. Plant cell wall remodeling in the Rhizobium-legume symbiosis//Crit. Rev. Plant. Sci. Vol. 23. P. 1-24.
  25. Brockwell J., Bottomley P. J., Thies J. E., 1995. Manipulation of rhizobia microflora for improving legume productivity and soil fertility: a critical assessment//Plant Soil. Vol. 174. P 143-180.
  26. Brundrett M. C., 2002. Coevolution of roots and mycorrhizas of land plants//New Phytol. Vol. 154. P. 275-304.
  27. Caetano-Anolles G., Gresshoff P. M., 1991. Plant genetic control of nodulation//Annu. Rev. Microbiol. Vol. 45. P. 345-382.
  28. Chen C., Ane J-M. Zhu H., 2008. OsIPD3, an ortholog of the Medicago truncatula DMI3 interacting protein IPD3, is required for mycorrhizal symbiosis in rice//New Phytol. Vol. 180. P. 311-315.
  29. Compant S., Duffy B., Nowak J., Clément C., Barka E. A., 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects//Appl. Environ. Microbiol. Vol. 71. P. 4951-4959.
  30. Cronk Q. C. B., Bateman R. M., Hawkins J. A., 2002. Developmental genetics and plant evolution. Boca Raton: CRC Press. 543 p.
  31. D'Haeze W., Holsters M., 2002. Nod factor structures, responses, and perception during initiation of nodule development//Glycobiol. Vol. 12. P. 79-105.
  32. Dilworth M. J., James E. K., Sprent J. I., Newton W. E. (eds.), 2008. Nitrogen-fixing leguminous symbioses. Dordrecht: Springer. 404 p.
  33. Dolgikh E. A., Leppyanen I. V., Osipova M. A. et al., 2011. Genetic dissection of Rhizobium-induced infection and nodule organogenesis in pea based on ENOD12A and ENOD5 expression analysis//Plant Biol. V. 13. P. 285-296.
  34. Downie J. A., 2010. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots//FEMS Microbiol. Rev. Vol. 34. P. 150-170.
  35. Duc G., Messager A., 1989. Mutagenesis of pea (Pisum sativum L.) and the isolation of mutants for nodulation and nitrogen fixation//Plant Sci. Vol. 60. P. 207-213.
  36. Endre G., Kereszt A., Kevei Z. et al., 2002. A receptor kinase gene regulating symbiotic nodule development//Nature. Vol. 417. P. 962-966.
  37. Fournier J., Timmers A. C. J., Sieberer B. J. et al., 2008. Mechanism of infection thread elongation in root hairs of Medicago truncatula and dynamic interplay with associated rhizobial colonization//Plant Physiol. Vol. 148. P. 1985-1995.
  38. Garcia-Garrido J. M., Ocampo J. A., 2002. Regulation of the plant defence response in arbuscular mycorrhizal symbiosis//J. ExP. Bot. Vol. 53. P. 1377-1386.
  39. Geil R. D., Peterson L., Guinel F. C., 2001. Morphological alterations of pea (Pisum sativum cv. Sparkle) arbuscular mycorrhizas as a result of exogenous ethylene treatment//Mycorrhiza. Vol. 11. P. 137-143.
  40. Genre A., Bonfante P., 2005. Building a mycorrhizal cell: how to reach compatibility between plants and arbuscular mycorrhizal fungi//J. Plant Interact. Vol. 1. N. 1. P. 3-13.
  41. Genre A., Chabaud M., Timmers T. et al., 2005. Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection//Plant Cell. Vol. 17. P. 3489-3499.
  42. Gianinazzi-Pearson V., 1996. Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis//Plant Cell. Vol. 8. P. 1871-1883.
  43. Graham P. H., Vance C. P., 2003. Legumes: importance and constraints to greater use//Plant Physiology. Vol. 131. P. 872-877.
  44. Gresshoff P. M, Lohar D., Chan P.-K. et al., 2009. Genetic analysis of ethylene regulation of legume nodulation//Plant Signaling & Behavior. Vol. 4. P. 818-823.
  45. Hildebrandt U., Ouziad F., Marner F. J., Bothe H., 2006. The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores//FEMS Microbiol. Lett. Vol. 254. P. 258-267.
  46. Hirsch A. M., Lum M. R., Downie J. A., 2001. What makes the rhizobia-legume symbiosis so special?//Plant Physiol. 2001. Vol. 127. P. 1484-1492.
  47. Imaizumi-Anraku H., Takeda N., Charpentier M. et al., 2005. Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots//Nature. Vol. 433. P. 527-531.
  48. Jacobsen E., 1984. Modification of symbiotic interaction of pea (Pisum sativum L.) and Rhizobium leguminosarum by induced mutations//Plant Soil. Vol. 82. P. 427-438.
  49. Jones K. M., Kobayashi H., Davies B. W. et al., 2007. How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model//Nat. Rev. Microbiol. Vol. 5. P. 619-633.
  50. Jones K. M., Sharopova N., Lohar D. P. et al., 2008. Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant//PNAS. Vol. 105. P. 704-709.
  51. Kalo P., Gleason C., Edwards A. et al., 2005. Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators//Science. Vol. 308. P. 1786-1789.
  52. Kistner C., Winzer T., Pitzschke A. et al., 2005. Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis//Plant Cell. Vol. 17. P. 2217-2229.
  53. Koltai H., Kapulnik Y. (eds.), 2010. Arbuscular mycorrhizas: physiology and function. Dordrecht: Springer. 623 p.
  54. Kosuta S., Chabaud M., Lougnon G. et al., 2003. A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula//Plant Physiol. Vol. 131. P. 952-962.
  55. Krusell L., Madsen L. H., Sato S. et al., 2002. Shoot control of root development and nodulation is mediated by a receptor-like kinase//Nature. Vol. 420. P. 422-426.
  56. Kumagai H., Kinoshita E., Ridge R. W., Kouchi H., 2006. RNAi knock-down of ENOD40s leads to significant suppression of nodule formation in Lotus japonicus//Plant Cell Physiol. Vol. 47. P. 1102-1111.
  57. Küster H., Vieweg M. F., Manthey K. et al., 2007. Identification and expression regulation of symbiotically activated legume gene//Phytochem. Vol. 68. P. 8-18.
  58. Lie T. A., 1971. Temperature-dependent root-nodule formation in pea cv. Iran//Plant Soil. Vol. 34. P. 751-752.
  59. Limpens E., Mirabella R., Fedorova E. et al., 2005. Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2//PNAS. Vol. 102. P. 10375-10380.
  60. Madsen E. B., Madsen L. H., Radutoiu S. et al., 2003. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals//Nature. Vol. 425. P. 637-640.
  61. Madsen L. H., Tirichine L., Jurkiewicz A. et al., 2010. The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus//Nature Communications. 1:10. doi: 10. 1038/ncomms1009 (2010).
  62. Maillet F., Poinsot V., André O. et al., 2011. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza//Nature. Vol. 469. P. 58-64.
  63. Markmann K., Parniske M., 2009. Evolution of root endosymbiosis with bacteria: how novel are nodules?//Trends Plant Sci. Vol. 14. P. 77-86.
  64. Messinese E., Mun J. H., Yeun L. H., 2007. A novel nuclear protein interacts with the symbiotic DMI3 calcium-and calmodulin-dependent protein kinase of Medicago truncatula//Mol. Plant-Microbe Interact. Vol. 20. P. 912-921.
  65. Minerdi D., Bianciotto V., Bonfante P., 2002. Endosymbiotic bacteria in mycorrhizal fungi: from their morphology to genomic sequences//Plant Soil. Vol. 244. P. 211-219.
  66. Mitra R. M., Gleason C. A., Edwards A. et al., 2004. A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning//PNAS. Vol. 101. P. 4701-4705.
  67. Morandi D., Sagan M., Prado-Vivant E., Duc G., 2000. Influence of genes determining supernodulation on root colonisation by the mycorrhizal fungus Glomus mosseae in Pisum sativum and Medicago truncatula mutants//Mycorrhiza. Vol. 10. P. 37-42.
  68. Murakami Y., Miwa H., Imaizumi-Anraku H. et al., 2006. Positional cloning identifies Lotus japonicus NSP2, a putative transcription factor of the GRAS family, required for NIN and ENOD40 gene expression in nodule initiation//DNA Res. Vol. 13. P. 255-265.
  69. Murray J. D., Karas B. J., Sato S. et al., 2007. A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis//Science. Vol. 315. P. 101-104.
  70. Nagahashi G., Douds J. D. D., 1997. Appressorium formation by AM fungi on isolated cell walls of carrot roots//New Phytol. Vol. 136. P. 299-304.
  71. Navazio L., Moscatiello R., Genre A. et al., 2007. A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells//Plant Physiol. Vol. 144. P. 673-681.
  72. Nishimura R., Hayashi M., Wu G. J. et al., 2002. HAR1 mediates systemic regulation of symbiotic organ development//Nature. Vol. 420. P. 426-429.
  73. Nutman P. S., 1946. Genetic factors concerned in the symbiosis of clover and nodule bacteria//Nature. Vol. 151. P. 463-465.
  74. Ovchinnikova E., Limpens E., Borisov A. et al., 2010. Intracellular accommodation of Rhizobium bacteria is controlled by the common symbiotic signaling pathway//Abstract book of the 9th European Nitrogen Fixation Conference, 6-10 Sept. 2010, Geneva, Switzerland. P. 214.
  75. Parniske M., 2000. Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease?//Curr. Opin. Plant Biol. Vol. 3. P. 320-328.
  76. Parniske M., 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses//Nature Rev. Microbiol. Vol. 6. P. 763-775.
  77. Preston G. M., 2004. Plant perceptions of plant growthpromoting Pseudomonas//Phil. Trans. R. Soc. Lond. B. Vol. 359. P. 907-918.
  78. Provorov N. A., Shtark O. Y., Zhukov V. A. et al., 2010. Developmental genetics of plant-microbe symbioses. -NY, USA: Nova Science Publishers. 152 p.
  79. Provorov N. A., Tikhonovich I. A., 2003. Genetic resources for improving nitrogen fixation in legume-rhizobia symbiosis//Genet. Resources and Crop Evolution. Vol. 50. P. 89-99.
  80. Provorov N. A., Vorobyov N. I., 2009. Host plant as an organizer of microbial evolution in the beneficial symbioses//Phytochem. Rev. Vol. 8. P. 519-534.
  81. Radutoiu S., Madsen L. H., Madsen E. B. et al., 2003. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases//Nature. Vol. 425. P. 585-592.
  82. Redecker D., 2002. Molecular identification and phylogeny of arbuscular mycorrhizal fungi//Plant Soil. Vol. 244. P. 67-73.
  83. Remy W., Taylor T. N., Hass H., Kerp H., 1994. Four hundred-million-year-old vesicular arbuscular mycorrhizas//PNAS. Vol. 91. P. 11841-11843.
  84. Requena N., Jimenez J., Toro M., Barea J. M., 1997. Interactions between plant-growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for re-vegetation in Mediterranean semi-arid ecosystems//New Phytol. Vol. 136. P. 667-677.
  85. Requena N., Perez-Solis E., Azcón-Aguilar C. et al., 2001. Management of indigenous plant-microbe symbioses aids restoration of decertified ecosystems//Appl. Environ. Microbiol. Vol. 67. P. 495-498.
  86. Sanchez L., Weidmann S., Arnould C. et al., 2005. Pseudomonas fluorescens and Glomus mosseae trigSanchez L., Weidmann S., Arnould C. et al., 2005. Pseudomonas fluorescens and Glomus mosseae trig
  87. Sandhu H. S., Gupta V. V. S. R., Wratten S. D., 2010. Evaluating the economic and social impact of soil microbes//Soil microbiology and sustainable crop production/Eds. G. R. Dixon, E. L. Tilston. Dordrecht: Springer. P. 399-417.
  88. Schnabel E., Journet E. P., de Carvalho-Niebel F. et al., 2005. The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length//Plant Mol. Biol. Vol. 58. P. 809-822.
  89. Schulz B., Boyle S., Sieber T. (eds.), 2006. Microbial root endophytes. Dordrecht: Springer. 367 p. 90. Schüßler A., Schwarzott D., Walker C., 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution//Mycol. Res. Vol. 105. P. 1413-1297.
  90. Sessitsch A., Howieson J. G., Perret X. et al., 2002. Advances in Rhizobium research//Crit. Rev. Plant Sci. Vol. 21. P. 323-378.
  91. Shtark O. Y., Borisov A. Y., Zhukov V. A. et al., 2010. Intimate associations of beneficial soil microbes with the host plants//Soil microbiology and sustainable crop production/Eds. G. R. Dixon, E. L. Tilston, Dordrecht: Springer. P. 119-196.
  92. Smith K. P., Goodman R. M., 1999. Host variation for interactions with beneficial plant-associated microbes//Annu. Rev. Phytopathol. Vol. 37. P. 473-491.
  93. Smith S. E., Read D. J., 2008. Mycorrhizal symbiosis, 3nd ed. Maryland Heights, USA: Elsevier, Academic Press. 800 p.
  94. Sprent J. I., 2001. Nodulation in Legumes. Kew, Royal Botanical Gardens: Cromwell Press Ltd. 146 p.
  95. Sprent J. I., 2007. Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation.//New Phytol. Vol. 174. P. 11-25.
  96. Stracke S., Kistner C., Yoshida S. et al., 2002. A plant receptor-like kinase required for both bacterial and fungal symbiosis//Nature. Vol. 417. P. 959-962.
  97. Suzaki T., Sato M., Ashikari M. et al., 2004. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1//Development. Vol. 131. P. 5649-5657.
  98. Tikhonovich I. A., Provorov N. A., 2007. Cooperation of plants and microorganisms: getting closer to the genetic construction of sustainable agro-systems//Biotechnol. J. Vol. 2. P. 833-848.
  99. Timmers A. C. J., Vallotton P., Heym C., Menzel D., 2007. Microtubule dynamics in root hairs of Medicago truncatula//Eur. J. Cell Biol. Vol. 86. P. 69-83.
  100. Tirichine L., Imaizumi-Anraku H., Yoshida S. et al., 2006. Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development//Nature. Vol. 441. P. 1153-1156.
  101. Tirichine L., Sandal N., Madsen L. H. et al., 2007. A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis//Science. Vol. 315. P. 104-107.
  102. Tokala R. K., Strap J. L., Jung C. M. et al., 2002. Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum)//Appl. Environ. Microbiol. Vol. 68. P. 2161-2171.
  103. Vallad E., Goodman R. M., 2004. Systemic acquired resistance and induced systemic resistance in conventional agriculture // Crop Sci. Vol. 44. P. 1920-1934. 105. van Brussel A. A. N., Bakhuizen R., van Spronsen P. C. et al., 1992. Induction of pre-infection thread structures in the leguminous host plant by mitogenic lipo-oligosaccharides of Rhizobium // Science. Vol. 257. P. 70-72.
  104. Vance C. P., 2001. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in the world of declining renewable resources//Plant Physiol. Vol. 127. P. 390-397.
  105. Vavilov N. I., 1922. The law of homologous series in variation//J. Genet. Vol. 12. N 1. P. 47-89.
  106. Wan X., Hontelez J., Lillo A. et al., 2007. Medicago truncatula ENOD40-1 and ENOD40-2 are both involved in nodule initiation and bacteroid development//J. Exp. Bot. Vol. 58. P. 2033-2041.
  107. Yano K., Yoshida S., Muller J. et al., 2008. CYCLOPS, a mediator of symbiotic intracellular accommodation//PNAS. Vol. 105. P. 20540-20545.
  108. Yokota K., Takashi S., Kouchi H., Hayashi M., 2010. Function of GRAS proteins in root nodule symbiosis is retained in homologs of a non-legume, rice//Plant Cell Physiol. Vol. 51. P. 1436-1442.
  109. Young N. D., Udvardi M., 2009. Translating Medicago truncatula genomics to crop legumes//Curr. Opin. Plant Biol. Vol. 12. P. 193-201.
  110. Zhu H., Choi H. K., Cook D. R., Shoemaker R. C., 2005. Bridging model and crop legumes through comparative genomics//Plant Physiol. Vol. 137. P. 1189-1196.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2011 Shtark O.Y., Borisov A.U., Zhukov V.A., Nemankin T.A., Tikhonovich I.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies