Criteria for diagnosis of bacterial vaginosis using the test Femoflor-16

Cover Page

Abstract


Background. Bacterial vaginosis is disturbance of the balance of the vaginal microflora, associated with a number of infectious diseases of the urogenital tract and adverse pregnancy outcomes. In this country, for the detection of vaginal dysbiotic conditions, the test Femoflor-16 (DNA-Technology, Moscow) is widely used, however interpretation algorithms of this test do not include the category of BV.

Aim. The study aimed to elaborate diagnostic criteria for the detection of BV using Femoflor-16 test.

Materials and methods. Women of reproductive age addressing a gynecologist with vaginal discharge were enrolled in the study. For clinical diagnosis of BV, the Amsel criteria were used, laboratory analysis for BV was performed via microscopic investigation of vaginal discharge using the Nugent score. Samples of vaginal discharge from all women were analyzed with the test Femoflor-16, intended for characterizing vaginal microbiocenosis using multiplex quantitative real-time PCR.

Results. A total of 280 women were included in the study. BV was diagnosed in 86 women (31%) using the Amsel criteria, and in 81 women (29%) using the Nugent score. All groups of anaerobic bacteria included in Femoflor-16 test were shown to be associated with BV, with the exception of bacteria of the genus Mobiluncus, which are detected together with phylogenetically related but not BV-associated bacteria of the genus Corynebacterium. A low amount of lactobacilli (< 10% of total bacterial load) coupled with an elevated amount of Gardnerella vaginalis/Prevotella bivia/Porphyromonas (> 1%) and/or Eubacterium (> 2%) and/or Sneathia/Leptotrichia/Fusobacterium (> 0.1%) and/or Megasphaera/Veillonella/Dialister (> 0.1%) and/or Lachnobacterium/Clostridium (> 0.1%) and/or Peptostreptococcus (> 0.1%) and/or Atopobium vaginae (> 0.2%) detected BV with a sensitivity of 99% and specificity of 93%.

Conclusions. Criteria for BV diagnosis using the test Femoflor-16 have been elaborated, which enable to detect BV or exclude it with a sensitivity of 99% and specificity of 93%. These criteria for BV and criteria of the test manufacturers for severe anaerobic dysbiosis determine to a large extent the same category of the vaginal microbiocenosis.


Veronika V. Nazarova

Author for correspondence.
iagmail@ott.ru
FSBSI “The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott”
Russian Federation, 3, Mendeleevskaya line, Saint Petersburg, 199034

bacteriologist, Laboratory of Microbiology

Elena V. Shipitsyna

iagmail@ott.ru
FSBSI “The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott” 3, Mendeleevskaya line, Saint Petersburg, 199034

PhD, Leading Researcher, Laboratory of Microbiology

Ekaterina N. Gerasimova

iagmail@ott.ru
FSBSI “The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott”
Russian Federation, 3, Mendeleevskaya line, Saint Petersburg, 199034

Junior Researcher, Laboratory of Microbiology

Alevtina M. Savicheva

savitcheva@mail.ru
FSBSI “The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott”
Russian Federation, 3, Mendeleevskaya line, Saint Petersburg, 199034

PhD, MD, Professor, Head of Laboratory of Microbiology

  • Allsworth JE, Peipert JF. Severity of bacterial vaginosis and the risk of sexually transmitted infection. Am J Obstet Gynecol. 2011;205(2):113.e1-6. doi: 10.1016/ j.ajog.2011.02.060.
  • Taylor BD, Darville T, Haggerty CL. Does bacterial vaginosis cause pelvic inflammatory disease. Sex Transm Dis. 2013;40(2):117-122. doi: 10.1097/OLQ. 0b013e31827c5a5b.
  • Donati L, Di Vico A, Nucci M, et al. Vaginal microbial flora and outcome of pregnancy. Arch Gynecol Obstet. 2010;281(4):589-600. doi: 10.1007/s00404-009-1318-3.
  • Haggerty CL, Totten PA, Tang G, et al. Identification of novel microbes associated with pelvic inflammatory disease and infertility. Sex Transm Infect. 2016.92(6):441-6. doi: 10.1136/sextrans-2015-. 052285.
  • Kenyon C, Colebunders R, Crucitti T. The global epidemiology of bacterial vaginosis: a systematic review. Am J Obstet Gynecol. 2013;209(6):505-23. doi: 10.1016/j.ajog.2013.05.006.
  • Amsel R, Totten PA, Spiegel CA, et al. Nonspecific vaginitis. Diagnostic criteria and microbial and epidemiologic associations. Am J Med. 1983;74:14-22. doi: 10.1016/0002-9343(83)91112-9.
  • Nugent RP, Krohn MA, Hillier SL. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J Clin Microbiol. 1991;29:297-301.
  • Donders GG, Vereecken A, Bosmans E, et al. Definition of a type of abnormal vaginal flora that is distinct from bacterial vaginosis: aerobic vaginitis. BJOG. 2002;109(1): 34-43. doi: 10.1111/j.1471-0528.2002.00432.x.
  • Tansarli GS, Kostaras EK, Athanasiou S, Falagas ME. Prevalence and treatment of aerobic vaginitis among non-pregnant women: evaluation of the evidence for an underestimated clinical entity. Eur J Clin Microbiol Infect Dis. 2013;32(8);977-84. doi: 10.1007/s10096-013-1846-4.
  • Ravel J, Gajer P, Abdo Z, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA. 2011;108:S4680-7. doi: 10.1073/pnas.1002611107.

Supplementary files

There are no supplementary files to display.

Views

Abstract - 56

PDF (Russian) - 30


Copyright (c) 2017 ECO-vector LLC

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.