Assessment of endometrial receptivity by biomarkers

Cover Page


Cite item

Full Text

Abstract

Endometrial receptivity defect can lead to a recurrent failures in ART. Data on endometrial receptivity assessment by the most studied biomarkers, such as pinopodes, leukemia-inhibitory factor, αVβ3 integrin, mucin MUC 1, are presented. Analysis of controlled ovarian stimulation protocols influence on endometrial receptivity is composed.

Full Text

Бесплодный брак остается одной из важнейших медицинских и социально-экономических проблем во всем мире, в решении которой вспомогательные репродуктивные технологии (ВРТ) приобретают все большее значение. Имплантация эмбриона является сложным многоступенчатым процессом. По современным представлениям, важную роль в этом процессе играют реципрокные взаимодействия эндометрия, с одной стороны, и бластоцисты — с другой. Имплантация эмбриона контролируется цитокинами, простагландинами, факторами роста, молекулами адгезии, а также множеством других гуморальных, клеточных факторов и межклеточных взаимодействий [21, 44]. Успешность имплантации во многом зависит как от качества эмбриона, так и морфофункционального состояния эндометрия. Нарушение рецептивности наблюдается при таких заболеваниях, как эндометриоз, синдром поликистозных яичников, патологии маточных труб [2, 12, 13, 40, 59, 63]. В литературе обсуждается возможное влияние миомы матки на рецептивность эндометрия [11, 35, 37]. Нарушение рецепторного аппарата эндометрия может послужить причиной многократных неудач при проведении программ ВРТ. Поэтому в настоящее время исследователями разных стран уделяется большое внимание изучению состояния эндометрия и ведется поиск новых информативных биологических маркеров окна имплантации, позволяющих прогнозировать наступление беременности в программах ВРТ. На сегодняшний день для оценки рецепторных свойств эндометрия предложен целый ряд потенциальных биомаркеров. В данной статье будут рассмотрены некоторые из них. К наиболее изученным биомаркерам окна имплантации относятся пиноподии. Пиноподии представляют собой микроскопические выпячивания на апикальной поверхности эпителиальных клеток эндометрия, выступающие в полость матки. Развитие пиноподий связано с подъемом уровня прогестерона в среднюю фазу секреции, а также, по некоторым данным, с экспрессией лейкемия-ингибирующего фактора (LIF), интегрина αVβ3 [15, 30, 36, 68, 70]. Кроме того, важную роль в формировании пиноподий играют гены HOXA 10, блокирование которых у мышей приводит к резкому уменьшению количества пиноподий [8]. В исследованиях на крысах было показано, что появление пиноподий строго соответствует короткому периоду окна имплантации [16]. Однако вопрос, могут ли пиноподии быть надежным маркером рецептивности эндометрия у человека, остается спорным [72, 75]. Bentin-Ley U. et al. в условиях in vitro продемонстрировали преимущественное взаимодействие эмбрионов с участками эндометрия, на которых эпителиальные клетки содержали пиноподии, предполагая участие пиноподий в процессе адгезии бластоцисты [58]. В исследованиях, проведенных Psychyos A. et al., а позднее и другими авторами, появление пиноподий совпадало с непродолжительным окном имплантации [54, 61]. В связи с чем пиноподии активно выдвигались на роль достоверного маркера рецептивности эндометрия. В 2004 году Pantos et al. предприняли попытку использовать определение пиноподий в практике для улучшения клинических результатов [14]. Пациенткам с первичным бесплодием, имеющим в анамнезе 3 и более неудачные попытки переноса эмбрионов, проводили биопсию эндометрия на 6-й и 8-й дни от начала терапии прогестероном. Для каждой пациентки устанавливали день, соответствующий максимальной рецептивности, путем выявления зрелых пиноподий. В первой группе перенос донорских эмбрионов проводился в соответствии с установленным днем. Во второй группе перенос эмбрионов осуществлялся по стандартному протоколу на 5-й день от начала терапии прогестероном. В результате в группе с модифицированным протоколом роды произошли у 67 % пациенток. В то время как во второй группе — только у 25 %. Однако имеется множество публикаций, подвергающих сомнению ценность пиноподий в роли маркера «окна имплантации». Так, Ordi J. et al. при исследовании биоптатов эндометрия, полученных от здоровых женщин в трех последовательных циклах на 7-й день после овуляции, показали, что наличие и выраженность пиноподий может значительно отличаться от цикла к циклу [75]. В ряде исследований было показано, что пиноподии могут присутствовать всю среднюю и позднюю фазы секреции, однако претерпевая циклические морфологические изменения [68, 72]. Пиноподии были обнаружены у женщин, страдающих бесплодием [4, 27, 70, 72]. При сравнении количества пиноподий, обнаруженных в биоптатах эндометрия, полученных от пациенток с бесплодием, обусловленным эндометриозом I–II стадии, идиопатическим бесплодием и пациенток, прошедших хирургическую стерилизацию, составивших контрольную группу, статистически значимого различия найдено не было [27]. Схожие результаты были получены и другими авторами [4]. Mikolajczyk M. et al. не удалось выявить корреляционной связи между формированием пиноподий и экспрессией LIF [51]. Таким образом, значимость пиноподий для определения рецептивности эндометрия остается недоказанной. Для оценки способности эндометрия к имплантации у пациенток с бесплодием широко используется определение экспрессии αVβ3 интегрина. Интегрины относятся к молекулам адгезии, они представлены семейством гетеродимерных трансмембранных гликопротеинов, выполняющих множество функций в клетке, в том числе в эндометрии. Рядом авторов было показано, что экспрессия αVβ3 интегрина совпадает с «открытием» окна имплантации и имеет устойчивую корреляционную связь с гистологической картиной эндометрия [45]. Lessey B. et al. при иммуногистохимическом исследовании биоптатов эндометрия, полученных в первом триместре у 112 пациенток, показали, что экспрессия αVβ3 интегрина сохраняется при беременности и распространяется на децидуальные клетки [31]. Также Lessey B. et al. выявили значительное снижение экспрессии αVβ3 интегрина у пациенток с бесплодием, обусловленным эндометриозом легкой степени [31]. Позднее было обнаружено снижение экспрессии в эндометрии αVβ3 интегрина при наличии гидросальпинксов. Хирургическая коррекция в объеме тубэктомии приводила к восстановлению экспрессии данного маркера. При этом другие вмешательства, включающие неосальпингостомию, лигирование и аспирацию, оказались менее эффективными в этом отношении [40]. В литературе описаны попытки использования определения αVβ3 интегрина в качестве предиктора успешности программ ВРТ [26, 55, 43]. В исследовании, проведенном Thomas K. et al., экспрессия αVβ3 интегрина была статистически значимо выше у пациенток с успешным результатом лечения. Однако беременности были получены у нескольких пациенток при отсутствии экспрессии данного маркера [26]. Схожие результаты были получены Revel A. et al. в 2005 году [43]. Так, частота наступления беременности в программах ВРТ была почти в два раза выше у пациенток с нормальной экспрессией β3 интегрина. Однако не во всех исследованиях удалось подтвердить информативность интегринов в качестве биомаркеров рецептивности [18, 34, 46, 75]. В исследовании, проведенном Hii L. и Rogers P., значимого изменения в экспрессии αVβ3 интегрина в клетках железистого эпителия в течение менструального цикла как у пациенток с эндометриозом, так и у пациенток контрольной группы, не имеющих данного заболевания, установлено не было [34]. Кроме того, статистически значимого различия в экспрессии данного биомаркера в клетках железистого эпителия у пациенток обеих групп найдено не было. Creus M. et al. также не удалось выявить различия в экспрессии интегринов у пациенток с эндометриозом и пациенток с другими причинами бесплодия [46]. Экспрессия интегринов у пациенток, спонтанно забеременевших в течение года, и пациенток с сохранившимся бесплодием была схожей. Ordi J. et al. в 2003 году показали, что экспрессия αVβ3 интегрина в течение нескольких менструальных циклов характеризуется значительной вариабельностью [75]. Acosta et al. выявили асинхронность появления пиноподий и экспрессии αVβ3 интегрина. Так, пиноподии определялись с 20–21-го дня и сохранялись до 28-го дня менструального цикла. Экспрессия αVβ3 в поверхностном и железистом эпителии начиналась с 22 дня, то есть через 48 часов после появления пиноподий [23]. Схожие результаты были получены и другими авторами. В исследовании, проведенном Thomas K. et al., достоверного различия в экспрессии αVβ3 между группой пациенток с мужским фактором бесплодия, группой пациенток с другими причинами бесплодия, включающую трубно-перитонеальный фактор, бесплодие, обусловленное эндометриозом, идиопатическое бесплодие и контрольной группой фертильных женщин найдено не было [25]. В более позднем исследовании, Surrey E. et al. изучали информативность определения экспрессии αVβ3 интегрина для прогнозирования эффективности применения супердлинного протокола у пациенток с эндометриозом [18]. Частота наступления клинической беременности, частота имплантации значимо не различались не зависимо от того, проводилось ли предварительное лечение агонистами ГнРГ или нет как в группе с положительной экспрессией интегрина, так и в группе с отрицательной экспрессией. Однако отрицательные результаты могли быть связаны с малой выборкой. Важную роль в регуляции имплантации играет широкий спектр цитокинов. Одним из них является лейкемия-ингибирующий фактор, относящийся к семейству интерлейкина-6. Доказательством влияния LIF на процесс имплантации послужил тот факт, что у мышей, гомозиготных по дефектному гену LIF, имплантация эмбрионов не происходит [65]. Влияние LIF на процесс имплантации реализуется посредством связывания цитокина с рецептором LIF-R с последующей активацией различных сигнальных путей. Несмотря на то, что данные об экспрессии LIF на протяжении пролиферативной и ранней секреторной фазы несколько противоречивы, значительное повышение экспрессии данного фактора в среднюю и позднюю секреторную фазу многократно подтверждено различными исследователями [48, 50]. LIF экспрессируется в поверхностном железистом эпителии и строме эндометрия. Однако в отличие от эпителия в строме эндометрия изменения экспрессии данного фактора на протяжении менструального цикла не наблюдается. Для пациенток с бесплодием, особенно имеющим в анамнезе повторяющиеся неудачные попытки ЭКО, характерно нарушение экспрессии LIF, что также подтверждает важную роль данного фактора в процессе имплантации. Кроме того, мутации гена LIF могут быть причиной повторяющихся неудачных попыток ЭКО [47, 49]. При исследовании эксплантатов эндометрия пациенток с идиопатическим бесплодием секреция LIF в секреторную фазу повышалась незначительно по сравнению с пролиферативной [33]. Аналогично концентрация LIF в смывах из полости матки была значимо ниже у пациенток с идиопатическим бесплодием по сравнению с контрольной группой фертильных женщин [73]. Данная методика определения LIF была предложена для оценки вероятности наступления беременности [69]. Схожие результаты были получены и другими авторами [7]. Однако, по данным Mikolajczyk M. et al., различия экспрессии LIF между пациентками с эндометриозом I–II стадии и контрольной группой фертильных женщин найдено не было [52]. Serafini P. et al. продемонстрировали, что пациентки с высоким уровнем экспрессии LIF в период окна имплантации имеют большую вероятность наступления беременности по сравнению с пациентками с низкой экспрессией данного фактора [22]. Снижение экспрессии в эндометрии LIF было обнаружено у пациенток с бесплодием при наличии гиросальпинксов. При этом оперативное лечение в объеме тубэктомии приводило к восстановлению экспрессии данного маркера [64]. Проводились исследования по улучшению рецептивности эндометрия путем назначения рекомбинантнго LIF человека (r-hLIF). Однако по данным, полученным Brinsden et al., терапия r-hLIF в течение лютеиновой фазы после переноса эмбриона у пациенток с повторяющимися неудачными попытками не привела к улучшению клинических результатов [62]. Муцины представляют собой семейство высокогликозилированных протеинов с большой молекулярной массой. Наиболее изученным является MUC-1. Гену, кодирующему MUC-1, присущ полиморфизм. Вариации в аллелях касаются исключительно числа повторов и не затрагивают саму нуклеотидную последовательность повтора, напрямую коррелируя с полиморфизмом на уровне белка. MUC-1 был определен в эндометрии. В течение менструального цикла наблюдаются колебания экспрессии MUC-1. В исследованиях на мышах, крысах, свиньях было обнаружено снижение экспрессии MUC-1 в период окна имплантации. В связи с чем предполагалась ингибирующая роль MUC-1 в процессе имплантации. Однако при исследовании эндометрия пациенток было обнаружено повышение экспрессии данного фактора в периимплантационный период [6]. Horne A. et al. в 2002 году с помощью сканирующей электронной микроскопии в комбинации с иммуногистохимическим исследованием эндометрия удалось обнаружить MUC-1 только на поверхности реснитчатых клеток. При этом MUC-1 на поверхности клеток, лишенных микроворсинок, а также на поверхности пиноподий не определялся [5]. При исследовании процесса имплантации в условиях in vitro MUC-1 в эпителии под фиксированной бластоцистой и в ближайшей окружности не обнаруживался [38]. Было сделано предположение, что факторы на поверхности бластоцисты или секретируемые самой бластоцистой вызывают локальную потерю MUC-1 [67]. У пациенток с повторными потерями беременности экспрессия MUC-1 в среднюю лютеиновую фазу снижена по сравнению с группой фертильных женщин. При сравнении полиморфизма MUC-1 у пациенток с повторными имплантационными потерями было обнаружено повышение частоты носительства короткого варианта аллеля MUC-1 по сравнению с контрольной группой [53]. Таким образом, первичное бесплодие, связанное с нарушением имплантации, может быть обусловлено полиморфизмом гена MUC-1, приводящим к образованию белка со сниженным количеством повторяющихся последовательностей из 20 аминокислот. Также к биомаркерам, потенциально участвующим в имплантации, относятся трофинин, лиганд L-селектина, гепарин-связывающий эпидермальный фактор роста и многие другие. Однако их роль в оценке рецептивности эндометрия изучена недостаточно. Современные исследования в области иммунологии, протеомики, эпигенетики значительно расширяют список потенциальных биомаркеров, ассоциированных с окном имплантации [3, 9, 10, 17, 29, 32, 39, 41, 60, 66, 74]. Появление геномных биочипов расширило представление о характере экспрессии генов в течение менструального цикла, причем в некоторых исследованиях был обнаружен определенный спектр генов, экспрессируемых в середину секреторной фазы. Diaz-Gimeno P. et al. в 2011 году разработали диагностический метод оценки рецептивности эндометрия, основанный на применении биочипов [1]. Возможность использования более узкого набора генов, временно экспрессируемых в соответствии с фазой рецептивности, делает технологию менее затратной по сравнению с применением биочиопов для оценки полного спектра экспрессируемых генов. Однако дальнейшие исследования необходимы для демонстрации ценности данного диагностического подхода в клинической практике. По многим данным, контролируемая овариальная стимуляция (КОС) негативно сказывается на рецептивности эндометрия. Так, Chen Q. et al. проводили оценку экспрессии β3 интегрина и LIF у пациенток с мужским фактором бесплодия в стимулированном цикле с использованием агонистов ГнРГ и р-ФСГ по длинному протоколу и фертильных женщин в натуральном цикле [20]. В результате исследования была выявлена более низкая экспрессия указанных маркеров в стимулированных циклах по сравнению с натуральными как в группе пациенток с высоким ответом, так и с умеренным. При этом экспрессия LIF в железистом эпителии у пациенток с высоким ответом была ниже по сравнению с пациентками с умеренным ответом. Рядом авторов было продемонстрировано, что КОГ приводит к более раннему образованию пиноподий по сравнению с натуральным циклом [24, 28]. Однако в более позднем исследовании при оценке экспрессии пиноподий у одной и той же пациентки в натуральном и стимулированном цикле различия найдено не было [70]. При изучении экспрессии β3 интегрина в среднюю лютеиновую фазу были получены противоречивые результаты. Так, КОС приводила как к снижению, так и к повышению экспрессии αVβ3 интегрина [70, 71]. В исследованиях на мышах Ruan H. также показали, что овариальная стимуляция приводит к снижению экспрессии β3 интегрина и LIF, а также к снижению частоты имплантации по сравнению с контрольной группой, не получавшей терапию. Однако в группе мышей, получавшей агонисты ГнРГ, все перечисленные параметры были выше по сравнению как с группой, в которой стимуляция проводилась с применением антагонистов ГнРГ, так и с группой, получавшей только гонадотропины сыворотки жеребых кобыл (СЖК) [56]. Схожие результаты были получены Pan Y. et al. [57]. Экспрессия LIF в группах мышей, в которых проводилась суперовуляция с использованием агонистов ГнРГ или только гонадотропинов СЖК, была ниже по сравнению с контрольной группой. При этом экспрессия LIF в группе мышей, получавшей агонисты ГнРГ, была выше, по сравнению с группой, получавшей только гонадотропины. Zhang C. et al. при изучении экспрессии LIF и формирования пиноподий в исследовании на мышах получили следующие результаты [19]. В группах мышей, в которых проводилась стимуляция суперовуляции (группа A), наблюдалось нарушение развития пиноподий по сравнению с контрольной группой мышей, не получавших терапию (группа D), а также группами мышей, в которых в стимулированном цикле проводилась терапия прогестероном с целью поддержки лютеиновой фазы (группа B) или прогестероном в сочетании с эстрадиолом (группа С). Экспрессия LIF в группах C и D значимо не различалась и была выше по сравнению с группами A и B. При этом в группе B экспрессия LIF все же была выше по сравнению с группой A. Однако в клиническом исследовании, проведенном van der Gaast M. et al., экспрессия LIF в стимулированных циклах с использованием антагонистов ГнРГ и натуральных циклах не различалась [42]. Эндометрию принадлежит одна из ключевых ролей в процессе имплантации. Поиск достоверных биомаркеров рецептивности эндометрия остается актуальной задачей, решение которой позволит повысить эффективность диагностики и лечения бесплодия.
×

About the authors

Yana Nikolayevna Kravchuk

Mechnikov University

Email: ynkravchuk@mail.r
postgraduate student at the department of female reproductive health

Alla Stanislavovna Kalugina

Mechnikov University

Email: Kalugina-AS@avaclinic.ru
M.D., lecture at the department of female reproductive health

References

  1. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature / Diaz-Gimeno P. [et al.] // Fertil. Steril. — 2011. — Vol. 95, N 1. — P. 50–60.
  2. Aberrant integrin expression in the endometrium of women with endometriosis / Lessey B. [et al.] // J. Clin. Endocrinol Metab. — 1994. — Vol. 79, N 2. — P. 643–649.
  3. Activating T regulatory cells for tolerance in early pregnancy — the contribution of seminal fluid / Robertson S. A. [et al.] // J. Reprod. Immunol. — 2009. — Vol. 83, N 1–2. — P. 109–116.
  4. Alpha v beta 3 integrin expression and pinopod formation in normal and out-of-phase endometrial of fertile and infertile woman / Creus M. [et al.] // Hum. Reprod. — 2002. — Vol. 17, N 9. — P. 2279–2286.
  5. Analysis of epitopes on endometrial epithelium by scanning immunoelectron microscopy / Horne A. W. [et al.] // Biochem. Biophys. Res. Commun. — 2002. — Vol. 292, N 1. — P. 102–108.
  6. Aplin J. D., Hey N. A., Graham R. A. Human endometrial MUC 1 carries keratin sulphate: characteristic glycoforms in the luminal epithelium at receptivity // Glycobiology. — 1998. — Vol. 8, N 3. — P. 269–276.
  7. Assessment of leukemia inhibitory factor and glycoprotein 130 expression in endometrium and uterine flushings: a possible diagnostic tool for impaired fertility / Tawfeek M. A. [et al.] // BMC Womens Health — 2012. URL: http://www.biomedcentral.com/1472–6874/12/10 (дата обращения 13.08.2012).
  8. Bagot C., Kliman H., Taylor H. Maternal Hoxa 10 is required for pinipod formation in the development of mouse uterine receptivity to embryo implantation // Dev. Dyn. — 2001. — Vol. 222, N 3. — P. 538–544.
  9. Basal and cytokine-stimulated production of epithelial neutrophil activating peptide-78 (ENA-78) and interleukin-8 (IL-8) by cultured human endometrial epithelial and stromal cells / Bersinger N. A. [et al.] // Fertil. Steril. — 2008. — Vol. 89, suppl. 5. — P. 1530–1536.
  10. Basal and steroid hormone-regulated expression of CXCR4 in human endometrium and endometriosis / Ruiz A. [et al.] // Reprod. Sci. — 2010. — Vol. 17, N 10. — P. 894–903.
  11. Beth W. R., Hugh S. T. Submucosal uterine leiomyomas have a global effect on molecular determinants of endometrial receptivity // Fertil. Steril. — 2010. — Vol. 93, N 6. — P. 2027–2034.
  12. Cakmak H, Taylor H. S. Molecular mechanisms of treatment resistance in endometriosis: the role of progesterone-hox gene interactions // Semin. Repr. Med. — 2010. — Vol. 28, N 1. — P. 69–74.
  13. Cermik D., Selam B., Taylor H. S. Regulation of HOXA-10 expression be testosterone in vitro and in the endometrium of patients with polycystic ovary syndrome // J. Clin. Endocrinol. Metab. — 2003. — Vol. 88, N 1. — P. 238–243.
  14. Clinical value of endometrial pinopodes detection in artificial donation cycles / Pantos K. [et al.] // Reprod. Biomed. Online. — 2004. — Vol. 9, N 1. — P. 86–90.
  15. Coexpression of pinopodes and leukemia inhibitory factor, as well as its receptor, in human endometrium / Aghajanova L. [et al.] // Fertil. Steril. — 2003. — Vol. 79, suppl. 1. — P. 808–814.
  16. Correlation of pinopod development on uterine luminal epithelial surface with hormonal events and endometrial sensitivity in rat / Singh M. [et al.] // Eur. J. Endocrinol. — 1996. — Vol. 135, N 1. — P. 107–117.
  17. Differential proteome profiling of eutopic endometrium from women with endometriosis to understand etiology of endometriosis / Rai. P. [et al.] // J. Proteome Res. — 2010. — Vol. 9, N 9. — P. 4407–4419.
  18. Does endometrial integrin expression in endometriosis patients predict enhanced in vitro fertilization cycle outcomes after prolonged GnRH agonist therapy? / Surrey E. [et al.] //Fertil. Steril. — 2010. — Vol. 93, N 2. — P. 646–651.
  19. Effect of estradiol supplementation during the luteal phase on mouse endometrial expression of leukaemia inhibitory factor and pinopodes in controlled ovarian stimulation cycles/Zhang C. L. [et al.] // Zhonghua Fu Chan Ke Za Zhi. — 2008. — Vol. 43, N 12. — P. 937–941.
  20. Effects of ovarian stimulation on endometrial integrin β3 and leukemia inhibitory factor expression in the peri-implantation phase / Chen Q. [et al] // Fertil. Steril. — 2008. — Vol. 89, suppl. 3. — P. 1357–1363.
  21. Embryonic implantation: cytokines, adhesion molecules, and immune cells in establishing an implantation environment / van Mourik M. [et al.] // J. Leukoc. Biol. — 2009. — Vol. 85, N 1. — P. 4–19.
  22. Endometrial claudin-4 and leukaemia inhibitory factor are associated with assisted reproduction outcome / Serafini P. C. [et al.] // Reprod. Biol. Endocrinol. — 2009. URL: http://www.rbej.com/content/7/1/30 (дата обращения 10.05.2012).
  23. Endometrial dating and determination of the window of implantation in healthy fertile women / Acosta A. [et al.] // Fertil. Steril. — 2000. — Vol. 73, N 4. — P. 788–798.
  24. Endometrial estrogen and progesterone receptor and pinopode expression in stimulated cycles of oocytes donors / Develioglu O. H. [et al.] // Fertil. Steril. — 1999. — Vol. 71, N 6. — P. 1040–1047.
  25. Endometrial integrin expression in women undergoing IVF and ICSI: a comparison of the two groups and fertile controls/Thomas K. [et al.] // Hum. Reprod. — 2003. — Vol. 18, N 2. — P. 364–369
  26. Endometrial integrin expression in women undergoing in vitro fertilization and the association with subsequent treatment outcome / Thomas K. [et al.] // Fertil. Steril. — 2003. — Vol. 80, N 3. — P. 502–507.
  27. Endometrial pinopode and alphabeta3 integrin expression is not impaired in infertile patient with endometriosis /Ordi J. [et al.] // J. Assist. Reprod. Genet. — 2003. — Vol. 20, N 11. — P. 465–473.
  28. Endometrial pinopodes indicate a shift in the window of receptivity in the IVF cycles / Nikas G. [et al.] // Hum. Reprod. — 1999. — Vol. 14, N 3. — P. 787–792.
  29. Epigenetic regulation of endometrium during the menstrual cycle / Munro S. K. [et al.] // Mol. Hum. Reprod. — 2010. — Vol. 16, N 5. — P. 297–310.
  30. Formation of pinopodes in human endometrium is associated with the concentrations of progesterone and progesterone receptors / Stavreus-Evers A. [et al.] // Fertil. Steril. — 2001. — Vol. 76, N 4. — P. 782–791.
  31. Further characterization of endometrial integrins during the menstrual cycle and in pregnancy / Lessey B. [et al.] // Fertil. Steril. — 1994. — Vol. 62, N 3. — P. 497–506.
  32. Garrido-Gomez Y., Dominguez F., Simon C. Proteomics of embryonic implantation // Handb. Exp. Pharmacol. — 2010. — Vol. 198. — P. 67–78.
  33. Hambartsoumian E. Endometrial leukaemia inhibitory factor (LIF) as a possible cause of unexplained infertility and multiple failures of implantation // Am. J. Reprod. Immunol. — 1998. — Vol. 39, N 2. — P. 137–143.
  34. Hii L., Rogers P. Endometrial vascular and glandular expression of integrin alpha(v)beta3 in women with and without endometriosis // Hum. Reprod. — 1998. — Vol. 13, N 4. — P. 1030–1035.
  35. Horcajadas J. A., Goyri E., Higon M. A. Endometrial receptivity and implantation are not affected by the presence of uterine intramural leiomyomas: a clinical and functional genomics analysis // J. Clin. Endocrinol. Metab. — 2008. — Vol. 93, N 9. — P. 3490–3498.
  36. Hormonal dependence of pinopode formation at the uterine luminal surface / Martel D. [et al.] // Hum. Reprod. — 1991. — Vol. 6, N 4. — P. 597–603.
  37. Horne A. W., Critchley H. O. The effect of uterine fibroids on embryo implantation // Sem. Reprod. Med. — 2007. — Vol. 25. — N 6. — P. 483–490.
  38. Human endometrial mucin MUC1 is upregulated by progesterone and down regulated in vitro by the human blastocyst/Meseguer M. // Biol. Reprod. — 2001. — Vol. 64, N 2. — P. 590–601.
  39. Human endometrial receptivity: a genomic approach /Dominguez F. [et al.] // Reprod. Biomed. Online — 2003. — Vol. 6, N 3. — P. 332–338.
  40. Hydrosalpinges adversely affect markers of endometrial receptivity / Meyer W. [et al.] // Hum. Reprod. — 1997. — Vol. 12, N 7. — P. 1393–1398.
  41. Identification of new biomarkers of human endometrial receptivity in natural cycle / Haouzi D. [et al.] // Hum. Reprod. — 2008. — Vol. 24, N 1. — P. 198–205.
  42. Impact of ovarian stimulation on mid-luteal endometrial tissue and secretion markers of receptivity / van der Gaast M. H. [et al.] // Reprod. Biomed. Online. — 2008. — Vol. 17, N 4. — P. 553–563.
  43. Implementation of integrin beta 3 level as predictor of implantation in IVF program / Revel A. [et al.] // Fertil. Steril. — Vol. 84, suppl. 1. — P. 144–145.
  44. Inflammation and implantation / Dekel N. [et al.] // Am. J. Reprod. Immunol. — 2010. — Vol. 63, N 1. — P. 17–21.
  45. Integrin adhesion molecules in the human endometrium. Correlation with the normal and abnormal menstrual cycle / Lessey B. // J. Clin. Invest. — 1992. — Vol. 90, N 1. — P. 188–195.
  46. Integrin expression in normal and out-of-phase endometrial /Creus M. [et al.] // Hum. Reprod. — 1998. — Vol. 13, N 12. — P. 3460–3468.
  47. Kralickova M., Sima P., Rokyta Z. Role of the leukemia-inhibitory factor gene mutations in infertile women: the embryo-endometrial cytokine cross talk during implantation — a delicate homeostatic equilibrium // Folia Microbiol. — 2005. — Vol. 50, N 3. — P. 179–186.
  48. Leukaemia inhibitory factor in human endometrium throughout the menstrual cycle / Vogiagis D. [et al.] // J. Endocrinol. — 1996. — Vol. 39, N 2. — P. 95–102.
  49. Leukaemia inhibitory factor (LIF) gene mutations in women with unexplained infertility and recurrent failure of implantation after IVF and embryo transfer / Steck T. [et al.] // Eur. J. Obstet. Gynecol. Reprod. Biol. — 2004. — Vol. 112, N 1. — P. 69–73.
  50. Leukaemia inhibitory factor mRNA concentration peaks in human endometrium at the time of implantation and the blastocyst contains mRNA for the receptor at this time / Charnock-Jones D. S. [et al.] // J. Reprod. Fertil. — 1994. — Vol. 101. — P. 421–426.
  51. Mikolajszyk M., Skrzypczak J., Wirstlein P. No correlation between pinipode formation and LIF and MMP2 expression in endometrium during implantation window // Folia Histochem. Cytobiol. — 2011. — Vol. 49, N 4. — P. 615–621.
  52. Mikolajszyk M., Wirstlein P., Skrzypczak J. Leukaemia inhibitory factor and interleukin 11 levels in uterine flushings of infertile patients with endometriosis // Hum. Reprod. — 2006. — Vol. 21, N 12. — P. 3054–3058.
  53. MUC 1: a genetic susceptibility to infertility? / Horne A. W. [et al.] // Lancet. — 2001. — Vol. 357, N 9265. — P. 1336–1337.
  54. Nikas G. Pinopodes as markers of endometrial receptivity in clinical practice // Hum. Reprod. — 1999. — Vol. 14, suppl. 2. — P. 99–106.
  55. Osteopontin and alphavbeta3 integrin as markers of endometrial receptivity: the effect of different hormone therapies /Casals G. [et al.] // Reprod. Biomed. Online. — 2010. — Vol. 21, N. 3. — P. 349–359.
  56. Ovarian stimulation with GnRH agonist, but not GnRH antagonist, partially restores the expression of endometrial integrin β3 and leukaemia-inhibitory factor and improves uterine receptivity in mice / Ruan H. [et al.] // Hum. Reprod. — 2006. — Vol. 21, N 10. — P. 2521–2529.
  57. Pan Y. M., Shi Y. F., Chen H. Z. Expression of estrogen receptor, progesterone receptor and leukemia inhibitory factor on endometrium during different ovarian stimulation protocols in mice // Zhejiang Da Xue Xue Bao Yi Xue Ban. — 2008. — Vol. 37, N 3. — P. 300–303.
  58. Presence of uterine pinopodes at the embryo-endometrial interface during human implantation in vitro / Bentin-Ley U. [et al.] // Hum. Reprod. — 1999. — Vol. 14, N 2. — P. 515–520.
  59. Progesterone resistance in PCOS endometrium: a microarray analysis in clomiphene citrate-treated and artificial menstrual cycles / Savaris R. F. [et al.] // J. Clin. Endocrinol. Metab. — 2011. — Vol. 96, N 6. — P. 1737–1746.
  60. Proteome of human endometrium: identification of differentially expressed proteins in proliferative and secretory phase endometrium / Rai P. [et al.] // Proteomics Clin. Appl. — 2010. — Vol. 4, N 1. — P. 48–59.
  61. Psychoyos A., Mandon P. Study of the surface of the uterine epithelium by scanning electron microscope. Observation in the rat at the 4th and 5th day of pregnancy // C. R. Acad. Sci. Hebd. Seances Acad. Sci. D. — 1971. — Vol. 272. — P. 2723–2725.
  62. Recombinant human leukemia inhibitory factor does not improve implantation and pregnancy outcomes after assisted reproductive techniques in women with recurrent unexplained implantation failure / Brinsden P. R. [et al.] // Fertil. Steril. — 2009. — Vol. 91, suppl. 4. — P. 1445–1447.
  63. Reduced expression of biomarkers associated with the implantation window in women with endometriosis / Wei Q. [et al.] //Fertil. Steril. — 2009. — Vol. 91, N. 5. — P. 1686–1691.
  64. Removal of hydrosalpinges increases endometrial leukaemia inhibitory factor (LIF) expression at the time of the implantation window / Seli E. [et al] // Hum. Reprod. — 2005. — Vol. 20, N 11. — P. 3012–3017.
  65. Stewart C. Leukaemia inhibitory factor and the regulation of preimplantation development of the mammalian embryo //Mol. Reprod. Dev. — 1994. — Vol.39. — P. 233–238.
  66. Tang A. W., Alfirevic Z., Quenby S. Natural killer cells and pregnancy outcomes in women with recurrent miscarriage and infertility: a systematic review // Hum. Reprod. — 2011. — Vol. 26, N 8. — P. 1971–1980.
  67. Thatiah A., Carson D. D. MT1-MMP mediates MUC1 shedding independent of TACE/ADAM17 // Biochem. J. — 2004. — Vol. 382. — P. 363–373.
  68. Temporal and morphologic characteristics of pinopod expression across the secretory phase of the endometrial cycle in normally cycling women with proven fertility / Usadi R. [et al.] // Fertil. Steril. — 2003. — Vol. 79, N 4. — P. 970–974.
  69. The assessment of LIF in uterine flushing — a possible new diagnostic tool in states of impaired fertility / Mikolajczyk M. [et al.] // Reprod. Biol. — 2003. — Vol. 3, N 3. — P. 259–270.
  70. The effect of different hormone therapies on integrin expression and pinopode formation in the human endometrium: a controlled study / Creus M. [et al.] // Hum. Reprod. — 2003. — Vol. 18, N 4. — P. 683–693.
  71. The effect of gonadotrophic stimulation on integrin expression in the endometrium / Thomas K. [et al.] // Hum. Reprod. — 2002. — Vol. 17, N 1. — P. 63–68.
  72. The presence of pinipodes in the human endometrium does not delineate the implantation window / Quinn C. [et al.] // Fertil. Steril. — 2007. — Vol. 87, N 5. — P. 1015–1021.
  73. The production of leukaemia inhibitory factor by human endometrium: presence in uterine flushings and production by cells in culture / Laird S. M. [et al.] // Hum. Reprod. — 1997. — Vol. 12, N 3. — P. 569–574.
  74. Uterine natural killer cells and angiogenesis in recurrent reproductive failure / Quenby S. [et al.] // Hum. Reprod. — 2009. — Vol. 24, N 1. — P. 45–54.
  75. Within-subject between-cycle variability of histological dating, alpha v beta 3 integrin expression, and pinopod formation in the human endometrium / Ordi J. // J. Clin. Endocrinol. Metab. — 2003. — Vol. 88, N 5. — P. 2119–2125.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2012 Kravchuk Y.N., Kalugina A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies