Aromatase P450 activity in the natural menstrual cycle and during controlled ovarian stimulation

Cover Page

Abstract


The Aim of the study was to assess modern considerations about the role of aromatase P450 enzyme in female reproductive system and the effect of its activity on the protocols of in vitro fertilization (IVF).

Materials: foreign and Russian literature data from 1978 to 2016.

Methods:review and synthesis of publications has been performed.

Conclusions: Ovarian aromatase is the key steroidogenesis enzyme of the female reproductive system. Its activity depends on many factors, both of intraovarian and extragonadal origin. The ovarian follicular response and oocyte quality in IVF may depend on aromatase activity.


Pavel P. Yakovlev

Author for correspondence.
iakovlevpp@gmail.com
Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Russian Federation, Saint Petersburg

PhD student

  • Kamat A, Hinshelwood MM, Murry BA, et al. Mechanisms in tissue-specific regulation of estrogen biosynthesis in humans. Trends in Endocrinology and Metabolism. 2002;13(3):122-8. doi: 10.1016/S1043-2760(02)00567-2.
  • Stocco C. Aromatase expression in the ovary: hormonal and molecular regulation. Steroids. 2008;73(5):473-87. doi: 10.1016/j.steroids.2008.01.017.
  • Suzuki T, Sasano H, Sasaki H, et al. Quantitation of P450 aromatase immunoreactivity in human ovary during the menstrual cycle: relationship between the enzyme activity and immunointensity. J Histochem Cytochem. 1994;42:1565-73. doi: 10.1177/42.12.7983357.
  • Shaw ND, Srouji SS, Welt CK, et al. Compensatory increase in ovarian aromatase in older regularly cycling women. J Clin Endocrinol Metab. 2015;100(9):3539-47. doi: 10.1210/JC.2015-2191.
  • Kitawaki J, Kusuki I, Koshiba H, et al. Detection of aromatase cytochrome P-450 in endometrial biopsy specimens as a diagnostic test for endometriosis. Fertil Steril. 1999;72(6):1100-6. doi: 10.1016/S0015-0282(99)00424-0.
  • Lin L, Ercan O, Raza J, et al. Variable phenotypes associated with aromatase (CYP19) insufficiency in humans. J Clin Endocrinol Metab. 2007; 92:982-90. doi: 10.1210/jc.2006-1181.
  • Айламазян Э.К. Содержание бета-эндорфина, эстрона и андростендиона в крови женщин с ожирением и недостаточностью яичников / Актуальные вопросы физиологии и патологии репродуктивной функции женщины: материалы XXI научной сессии НИИ акушерства и гинекологии им. Д.О. Отта РАМН. – СПб., 1992. – С. 117–120. [Ajlamazjan JeK. Soderzhanie beta-jendorfina, jestrona i androstendiona v krovi zhenshhin s ozhireniem i nedostatochnost’ju jaichnikov. Aktual’nye voprosy fiziologii i patologii reproduktivnoj funkcii zhenshhiny. [Conference proceedings] Materialy XXI nauchnoj sessii NII akusherstva i ginekologii im. D.O. Otta RAMN. Saint Petersburg; 1992. P. 117-120. (In Russ.)]
  • Tilson-Mallett N, Santner SJ, Feil PD, et al. Biological significance of aromatase activity in human breast tumors. J Clin Endocrinol Metab. 1983;57:1125-1128. doi: 10.1210/jcem-57-6-1125.
  • Патент на изобретение № 2481587/ 10.05.2013. Бюл. № 13. Потин В.В., Тарасова М.А., Ярмолинская М.И., и др. Способ оценки ароматазной активности. [Patent RUS No 2481587/ 10.05.2013, Bjul. No 13. Potin VV, Tarasova MA, Jarmolinskaja MI, et al. Sposob ocenki aromataznoj aktivnosti. (In Russ.)]
  • Тимофеева Е.М., Потин В.В., Ярмолинская М.И. Методика определения овариальной ароматазной активности у женщин репродуктивного возраста // Вестник Российской военно-медицинской академии. – 2014. – Т. 2. – № 46. – С. 58–62. [Timofeeva EM, Potin VV, Yarmolinskaya MI. The method of determination of ovarion aromatase activity in women of reproductiv age. Vestnik Rossijskoj voenno-medicinskoj akademii. 2014;2(46):58-62. (In Russ.)]
  • Тимофеева Е.М., Мишарина Е.В., Николаенков И.П., др. Методические подходы к определению овариальной ароматазы при синдроме поликистозных яичников // Журнал акушерства и женских болезней. – 2016. – Т. 65. – № 1. – С. 54–61. [Timofeeva EM, Misharina EV, Nikolaenkov IP. Methodological approaches to the definition of ovarian aromatase in polycystic ovary syndrome. Journal of Obstetrics and Women’s Diseases. 2016;65(1):54-61. (In Russ.)]. doi: 10.17816/JOWD65154-61.
  • Hillier SG, Tetsuka M, Fraser HM. Location and developmental regulation of androgen receptor in primate ovary. Hum Reprod. 1997;12:107-111. doi: 10.1093/humrep/12.1.107.
  • Luo W, Wiltbank MC. Distinct regulation by steroids of messenger RNAs for FSHR and CYP19A1 in bovine granulosa cells. Biol Reprod. 2006;75:217-25. doi: 10.1095/biolreprod.105.047407.
  • Shiina H, Matsumoto T, Sato T, et al. Premature ovarian failure in androgen receptor-deficient mice. Proc Natl Acad Sci USA. 2006;103:224-9. doi: 10.1073/pnas.0506736102.
  • Wu YG, Bennett J, Talla D, et al. Testosterone, not 5α-dihydrotestosterone, stimulates LRH-1 leading to FSH-independent expression of Cyp19 and P450scc in granulosa cells. Mol Endocrinol. 2011;25:656-8. doi: 10.1210/me.2010-0367.
  • Nielsen ME, Rasmussen IA, Kristensen SG, et al. In human granulosa cells from small antral follicles, androgen receptor mRNA and androgen levels in follicular fluid correlate with FSH receptor mRNA. Mol Hum Reprod. 2011;17:63-70. doi: 10.1093/molehr/gaq073.
  • Di Nardo G, Gilardi G. Human aromatase: perspectives in biochemistry and biotechnology. Biotechnology and Applied Biochemistry. 2013;60(1):92-101. doi: 10.1002/bab.1088.
  • Prapa E, Vasilaki A, Dafopoulos K, et al. Effect of Anti-Mullerian hormone (AMH) and bone morphogenetic protein 15 (BMP-15) on steroidogenesis in primary-cultured human luteinizing granulosa cells through Smad5 signalling. J Assist Reprod Genet. 2015;32:1079-88. doi: 10.1007/s10815-015-0494-2.
  • Pellatt L, Rice S, Dilaver N, et al. Anti-Mullerian hormone reduces follicle sensitivity to follicle-stimulating hormone in human granulosa cells. Fertil Steril. 2011;96:1246-51. doi: 10.1016/j.fertnstert.2011.08.015.
  • Chang HM, Klausen C, Leung PC. Anti-Mullerian hormone inhibits follicle-stimulating hormone-induced adenylyl cyclase activation, aromatase expression, and estradiol production in human granulosa-lutein cells. Fertil Steril. 2013;100:585-92. doi: 10.1016/j.fertnstert.2013.04.019.
  • Durlinger AL, Gruijters MJ, Kramer P, et al. Anti-Mullerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology 2001;142:4891-99. doi: 10.1210/endo.142.11.8486.
  • Baarends WM, Uilenbroek JT, Kramer P, et al. Anti-Mullerian hormone and anti-Mullerian hormone type II receptor messenger ribonucleic acid expression in rat ovaries during postnatal development, the estrous cycle, and gonadotropin-induced follicle growth. Endocrinology.1995;136:4951-62. doi: 10.1210/endo.136.11.7588229.
  • Jeppesen JV, Anderson RA, Kelsey TW, et al. Which follicles make the most anti-Mullerian hormone in humans? Evidence for an abrupt decline in AMH production at the time of follicle selection. Mol Hum Reprod. 2013;19:519-27. doi: 10.1093/molehr/gat024.
  • Dumesic DA, Lesnick TG, Stassart JP, et al. Intrafollicular anti-Mullerian hormone levels predict follicle responsiveness to follicle-stimulating hormone (FSH) in normoandrogenic ovulatory women undergoing gonadotropin releasing-hormone analog/recombinant human FSH therapy for in vitro fertilization and embryo transfer. Fertil Steril. 2009;92:217-21. doi: 10.1016/j.fertnstert.2008.04.047.
  • Grynberg M, Pierre A, Rey R, et al. Differential regulation of ovarian anti-Mullerian hormone (AMH) by estradiol through alpha- and beta-estrogen receptors. J Clin Endocrinol Metab. 2012;97: E1649-E1657. doi: 10.1210/jc.2011-3133.
  • Hagen CP, Aksglaede L, Sorensen K, et al. Individual serum levels of anti-Mullerian hormone in healthy girls persist through childhood and adolescence: a longitudinal cohort study. Hum Reprod. 2012;27:861-66. doi: 10.1093/humrep/der435.
  • Weintraub A, Margalioth EJ, Chetrit AB, et al. The dynamics of serum anti-Mullerian-hormone levels during controlled ovarian hyperstimulation with GnRH-antagonist short protocol in polycystic ovary syndrome and low responders. Eur J Obstet Gynecol Reprod Biol. 2014;176:163-7. doi: 10.1016/j.ejogrb.2014.02.020.
  • Andersen CY, Lossl K. Increased intrafollicular androgen levels affect human granulosa cell secretion of anti-Mullerian hormone and inhibin-B. Fertil Steril. 2008;89:1760-5. doi: 10.1016/j.fertnstert.2007.05.003.
  • Gnoth C, Roos J, Broomhead D, et al. Antimüllerian hormone levels and numbers and sizes of antral follicles in regularly menstruating women of reproductive age referenced to true ovulation day. Fertil Steril 2015;104:1535-43. doi: 10.1016/j.fertnstert.2015.08.027.
  • Monga R, Ghai S, Datta TK, et al. Tissue-specific promoter methylation and histone modifications regulate CYP19 gene expression during folliculogenesis and luteinization in buffalo ovary. General and Comparative Endocrinology. 2011;173:205-15. doi: 10.1016/j.ygcen.2011.05.016.
  • Couse JF, Yates MM, Deroo BJ, et al. Estrogen receptor-beta is critical to granulosa cell differentiation and the ovulatory response to gonadotropins. Endocrinology. 2005;146:3247-62. doi: 10.1210/en.2005-0213.
  • Fitzpatrick SL, Richards JS. Regulation of cytochrome P450 aromatase messenger ribonucleic acid and activity by steroids and gonadotropins in rat granulosa cells. Endocrinology. 1991;129:1452-62. doi: 10.1210/endo-129-3-1452.
  • Lee HS, Kim KH, Hwang JS. Association of aromatase (TTTA)n repeat polymorphisms with central precocious puberty in girls. Clin Endocrinol (Oxf). 2014;81(3):395-400. doi: 10.1111/cen.12439.
  • Berstein LM, Imyanitov EN, Kovalevskij AJ, et al. CYP17 and CYP19 genetic polymorphisms in endometrial cancer: association with intratumoral aromatase activity. Cancer Lett. 2004;207:191-6. doi: 10.1016/j.canlet.2004.01.001.
  • Stratakis CA, Vottero A, Brodie A, et al. The aromatase excess syndrome is associated with feminization of both sexes and autosomal dominant transmission of aberrant P450 aromatase gene transcription. J Clin Endocrinol Metabol. 1998;83:1348-57.
  • Xita N, Lazaros L, Georgiou I, et al. CYP19 gene: a genetic modifier of polycystic ovary syndrome phenotype. Fertil Steril. 2010;94:250-4. doi: 10.1016/j.fertnstert.2009.01.147.
  • Baghaei F, Rosmond R, Westberg L, et al. The CYP19 gene and associations with androgens and abdominal obesity in premenopausal women. Obes Res. 2003;11:578-85. doi: 10.1038/oby.2003.81.
  • Haiman CA, Hankinson SE, Spiegelman D, et al. A tetranucleotide repeat polymorphism in CYP19 and breast cancer risk. Int J Cancer. 2000;87:204-10. doi: 10.1002/1097-0215(20000715)87:2<204::. AID-IJC8>3.0.CO;2-3.
  • Lazaros L, Hatzi E, Xita N, et al. Aromatase (CYP19) gene variants influence ovarian response to standard gonadotrophin stimulation. J Assist Reprod Genet. 2012;29:203-209. doi: 10.1007/s10815-011-9673-y.
  • Altmäe S, Haller K, Peters M, et al. Aromatase gene (CYP19A1) variants, female infertility and ovarian stimulation outcome: a preliminary report. Reprod Biomed Online. 2009;18:651-7. doi: 10.1016/S1472-6483(10)60009-0.
  • Roulier R, Chabert-Orsini V, Sitri MC, et al. Depot GnRH agonist versus the single dose GnRH antagonist regimen (cetrorelix, 3 mg) in patients undergoing assisted reproduction treatment. Reprod Biomed Online. 2003;7:185-189. doi: 10.1016/S1472-6483(10)61749-X.
  • Garcia-Velasco JA, Isaza V, Vidal C, et al. Human ovarian steroid secretion in vivo: effects of GnRH agonist versus antagonist (cetrorelix). Hum Reprod. 2001;16:2533-2539. doi: 10.1093/humrep/16.12.2533.
  • Khalaf M, Mittre H, Levallet J, et al. GnRH agonist and GnRH antagonist protocols in ovarian stimulation: differential regulation pathway of aromatase expression in human granulosa cells. Reprod Biomed Online. 2010;21:56-65. doi: 10.1016/j.rbmo.2010.03.017.
  • Winkler N, Bukulmez O, Hardy DB, et al. Gonadotropin releasing hormone antagonists suppress aromatase and anti-Mullerian hormone expression in human granulosa cells. Fertil Steril. 2010;94(5):1832-1839. doi: 10.1016/j.fertnstert.2009.09.032.
  • Neal MS, Younglai EV, Holloway AC, et al. Aromatase activity in granulosa cells as a predictor of pregnancy potential. International Congress Series. 2004;1271:139-42. doi: 10.1016/j.ics.2004.05.022.
  • Bahçeci M, Ulug U, Turan E, et al. Comparisons of follicular levels of sex steroids, gonadotropins and insulin like growth factor-1 (IGF-1) and epidermal growth factor (EGF) in poor responder and normoresponder patients undergoing ovarian stimulation with GnRH antagonist. Uropean Journal of Obstetrics, Gynecology, and Reproductive Biology. 2007;130:93-98. doi: 10.1016/j.ejogrb.2006.04.032.
  • Hurst BS, Zacur HA, Schlaff WD, et al. Use of granulosa-luteal cell culture to evaluate low and high clinical responses to menotropin stimulation. Journal of Endocrinological Investigation. 1992;15:567-572. doi: 10.1007/BF03344926.
  • Neal MS, Reade CJ, Younglai EV, et al. Granulosa cell aromatase activity in women undergoing IVF: a comparison of good and poor responders. J Obstet Gynaecol Can. 2008;30:138-142. doi: 10.1016/S1701-2163(16)32737-2.
  • Takekida S, Matsuo H, Maruo T. GnRH agonist action on granulosa cells at varying follicular stages. Mol Cell Endocrinol. 2003;202:155-164. doi: 10.1016/S0303-7207(03)00077-7.
  • Ireland JJ, Richards JS. Acute effects of estradiol and follicle-stimulating hormone on specific binding of human [125I] iodofollicle-stimulating hormone to rat ovarian granulosa cells in vivo and in vitro. Endocrinol. 1978;102:876-83. doi: 10.1210/endo-102-3-876.
  • Wang XN, Greenwald GS. Synergistic effects of steroids with FSH on folliculogenesis, steroidogenesis and FSH- and hCG-receptors in hypophysectomized mice. J Reprod Fertil. 1993;99:403-13. doi: 10.1530/jrf.0.0990403.
  • Chang X, Wu J. Effects of luteal estradiol pre-treatment on the outcome of IVF in poor ovarian responders. Gynecological Endocrinology. 2013;29(3):196-200. doi: 10.3109/09513590.2012.736558.
  • IVF Worldwide Survey. (2012). Poor responders: How to define, diagnose and treat? Retrieved from www.IVF-Worldwide.com.
  • Kotb MM, Hassan AM, Awadallah AM. Does dehydroepiandrosterone improve pregnancy rate in women undergoing IVF/ICSI with expected poor ovarian response according to the Bologna criteria? A randomized controlled trial. European Journal of Obstetrics and Gynecology and Reproductive Biology. 2016;200:11-5. doi: 10.1016/j.ejogrb.2016.02.009.
  • Tartagni M, Cicinelli MV, Baldini D, et al. Dehydroepiandrosterone decreases the age-related decline of the in vitro fertilization outcome in women younger than 40 years old. Reproductive Biology and Endocrinology. 2015;13:18. doi: 10.1186/s12958-015-0014-3.
  • ElBeltagy K, Honda K, Ozaki K, et al. In vitro effect of dehydroepiandrosterone sulfate on steroid receptors, aromatase, cyclooxygenase-2 expression, and steroid hormone production in preovulatory human granulosa cells. Fertil Steril. 2007;88(Suppl.4):1135-42. doi: 10.1016/j.fertnstert.2007.01.008.
  • Catteau-Jonard S, Jamin SP, Leclerc A, et al. Anti-Mullerian hormone, its receptor, FSH receptor, and androgen receptor genes are overexpressed by granulosa cells from stimulated follicles in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93:4456-61. doi: 10.1210/jc.2008-1231.
  • Yang F, Ruan YC, Yang YJ, et al. Follicular hyperandrogenism downregulates aromatase in luteinized granulosa cells in polycystic ovary syndrome women. Reproduction. 2015;150:289-96. doi: 10.1530/REP-15-0044.
  • Coffler MS, Patel K, Dahan MH, et al. Evidence for abnormal granulosa cell responsiveness to follicle-stimulating hormone in women with polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism. 2003;88:1742-47. doi: 10.1210/jc.2002-021280.
  • Jakimiuk AJ, Weitsman SR, Brzechffa PR, et al. Aromatase mRNA expression in individual follicles from polycystic ovaries. Molecular Human Reproduction. 1998;4:1-8. doi: 10.1093/molehr/4.1.1.
  • Lu X, Wu Y, Gao X-H, et al. Effect of letrozole on estradiol production and P450 aromatase messenger RNA expression of cultured luteinized granulosa cells from women with and without endometriosis. Fertil Steril. 2012;98(1):131-5. doi: 10.1016/j.fertnstert.2012.03.055.
  • De Abreu LG, Romão GS, Reis RMD, et al. Reduced aromatase activity in granulosa cells of women with endometriosis undergoing assisted reproduction techniques. Gynecol Endocrinol. 2006;22(8):432-6. doi: 10.1080/09513590600902937.
  • Harlow C, Cahill D, Maile L, et al. Reduced preovulatory granulosa cell steroidogenesis in women with endometriosis. J Clin Endocrinol Metab. 1996;81(1):426-9.
  • De Abreu LG, Silveira VS, Scrideli CA, et al. Endometriosis does not alter aromatase gene expression (CYP19A1) in mural lutein-granulosa cells of women undergoing assisted reproduction techniques – a pilot study. J Endometriosis. 2011;3(4):177-82. doi: 10.5301/JE.2012.9070.
  • Hosseini E, Mehraein F, Shahhoseini M, et al. Epigenetic alterations of CYP19A1 gene in Cumulus cells and its relevance to infertility in endometriosis. J Assist Reprod Genet. 2016;33(8):1105-13. doi: 10.1007/s10815-016-0727-z.
  • Barcelos IDE, Donabella FC, Ribas CP, et al. Down-regulation of the CYP19A1 gene in cumulus cells of infertile women with endometriosis. RBM Online. 2015;30(5):532-41. doi: 10.1016/j.rbmo.2015.01.012.

Views

Abstract - 167

PDF (Russian) - 44


Copyright (c) 2017 ECO-vector LLC

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.