Impact of dichloroethane on the microbicidal activity of neutrophils and mononuclear phagocytes

Cover Page

Abstract


Aim. To study the damaging effect of dichloroethane on the functional state of neutrophils and peritoneal macrophages.

Methods. Dichloroethane was administered to animals intragastrically daily in olive oil at a dose of 0.84 mg/kg of body weight for 60 days so that the total dose was 0.1 of 50% lethal dose. The number of leukocytes, neutrophils and lymphocytes in peripheral blood, intensity of oxygen-dependant metabolism (induced test with nitro blue tetrazolium), antimicrobial activity in the conditions of functioning and blockade (by sodium azide), oxygen-dependent factors of microbicidity, content of myeloperoxidase and cationic proteins in neutrophils and peritoneal macrophages were measured. The results were recorded the next day after introduction of the toxicant. Fungicidal activity was measured by the number of colony-forming units of C. albicans, growing on day 3 at culture medium.

Results. Intoxication with dichloroethane for 60 days leads to the formation of leukopenia, mainly due to the decreased number of neutrophils while reducing the number of lymphocytes. This is accompanied by inhibition of oxygen-dependant killing of neutrophils as a result of suppression of peroxidase-dependant mechanisms of microbicidity (the formation of oxygen active forms decreases). Besides, decrease of activity of oxygen-independant mechanisms of killing develops, which correlates with a reduction of cationic proteins level. Suppression of oxidative and non-oxidative mechanisms of microbicidity of peritoneal macrophages. This is accompanied by a decrease of oxygen-dependant metabolism intensity, myeloperoxidase activity and cationic protein level in these cells.

Conclusion. Intoxication with dichloroethane for 60 days in a total dose of 0.1 of 50% lethal dose has a profound damaging effect on the cells of phagocytic link of nonspecific resistance: formation of leukopenia, suppression of oxidative metabolism and microbicidal activity of neutrophils and mononuclear phagocytes occur.


I A Men’shikova

Author for correspondence.
i-menshikova@bk.ru
Bashkir State Medical University Ufa, Russia

N A Mufazalova

i-menshikova@bk.ru
Bashkir State Medical University Ufa, Russia

F Kh Kamilov

i-menshikova@bk.ru
Bashkir State Medical University Ufa, Russia

L F Mufazalova

i-menshikova@bk.ru
Bashkir State Medical University Ufa, Russia

  • Забродский П.Ф., Мандыч В.Г. Иммунотоксикология ксенобиотиков. Саратов: СВИБХБ. 2007; 420 с.
  • Mayer-Blackwell K., Fincker M., Molenda O. et al. 1,2-Dichloroethane exposure alters the population structure, metabolism, and kinetics of a trichloroethene-dechlorinating dehalococcoides mccartyi consortium. Environ. Sci. Technol. 2016; 50 (22): 12 187-12 196. doi: 10.1021/acs.est.6b02957.
  • McDermott C., Heffron J.A. Toxicity of industrially relevant chlorinated organic solvents in vitro catherine. Intern. J. Toxicol. 2013; 32 (2): 136-145. doi: 10.1177/1091581813482006.
  • Sun Q., Wang G., Gao L. et al. Roles of CYP2e1 in 1,2-dichloroethane-induced liver damage in mice. Environ. Toxicol. 2016; 31 (11): 1430-1438. doi: 10.1002/tox.22148.
  • Wang G., Qi Y., Gao L., Li G. Effects of subacute exposure to 1,2-dichloroethane on mouse behavior and the related mechanisms. Human Experim. Toxicol. 2013; 9: 983-991. doi: 10.1177/0960327112470270.
  • Забродский П.Ф., Громов М.С., Масляков В.В. Снижение иммунных реакций и изменение цитокинового профиля при подострой интоксикации 1,2-дихлорэтаном. Токсикол. вестн. 2014; (1): 18-21.
  • Срубилин Д.В., Еникеев Д.А., Мышкин В.А. Изменения цитокинового профиля и активности процессов перекисного окисления липидов в крови крыс в механизмах формирования воспалительного ответа при хронической интоксикации дихлорэтаном. Соврем. пробл. науки и образования. 2015; (5). https://www.science-education.ru/ru/article/view?id=21763 (дата обращения: 12.03.2017).
  • Волчегорский И.А., Долгушин И.И., Колесников О.Л. и др. Экспериментальное моделирование и лабораторная оценка адаптивных реакций организма. Челябинск: ЧелГПУ. 2000; 167 с.
  • Lone M.I., Nazam N., Hussain A., Singh S.K. Genotoxicity and immunotoxic effects of 1,2-dichloroethane in Wistar rats. J. Environ. Sci. Health C. Environ. Carcinog. Ecotoxico. Rev. 2016; 34 (3): 169-186. doi: 10.1080/10590501.2016.1193924.
  • Долгушин И.И., Андреева Ю.С., Савочкина А.Ю. Нейтрофильные ловушки и методы оценки функционального статуса нейтрофилов. М.: РАМН. 2009; 208 с.
  • Маянский А.Н. НАДФН-оксидаза нейтрофилов: активация и регуляция. Цитокины и воспаление. 2007; 6 (3): 3-13.
  • Степовая Е.А., Петина Г.В., Жаворонок Т.В. Роль тиолдисульфидной системы в механизмах изменений функциональных свойств нейтрофилов при окислительном стрессе. Бюлл. эксперим. биол. и мед. 2010; 150 (8): 161-165.
  • Токсикологическая химия. Метаболизм и анализ токсикантов. Под ред. Н.И. Калетиной. М.: ГЭОТАР-Медиа. 2008; 1016 с.
  • Ягода А.В. Клиническая цитохимия. Под ред. А.В. Ягоды, Н.А. Локтева. Ставрополь. 2005; 485 с.
  • Сбойчаков В.Б. Медицинская микология. Пособие для врачей. М.: ГЭОТАР-Медиа. 2008; 218 с.
  • Гареев Е.М. Основы математико-статистической обработки медико-биологической информации. Уфа: Башгосмедуниверситет Росздрава. 2009; 346 с.

Views

Abstract - 43

PDF (Russian) - 26


© 2017 Men’shikova I.A., Mufazalova N.A., Kamilov F.K., Mufazalova L.F.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.