Surgical site infections in spinal neurosurgery

Cover Page


Cite item

Abstract

The review presents current data on the problem of surgical site infections in spinal neurosurgery. Infectious complications are the most common cause of unsatisfactory results of surgical treatment and prolonged hospital stay of patients after spinal surgery. Clinical and economic analysis shows that each case of infection at the site of surgical intervention causes additional 7.3 days of hospital stay in the postoperative period and $3152 extra costs per patient. According to the world literature, the incidence of wound infection in spinal neurosurgery varies from 0.7 to 11.9%. The main risk factors for this complication are long period from the moment of hospitalization to the operation, significant blood loss and long duration of surgical intervention. In the article, special role in the development of wound infection is given to the malnutrition syndrome. Patients suffering from this syndrome are considered to be at high risk of surgical site infections developing. Insufficient amounts of protein and energy substances are the cause of disturbed reparative processes in the wound and decreased level of immune defense. Diagnosis of wound infection is based on a comprehensive analysis of clinical and laboratory-instrumental research methods. The review presents current data on the pathogens of surgical site infections, regimens of antibiotic prophylaxis and effective methods of treatment (local and systemic antibiotic therapy, vacuum-assisted closure, flow-washing drainage, hyperbaric oxygenation). Undoubtedly, early diagnosis and correctly chosen management of a patient allows to reverse signs of wound infection and to avoid unfavorable clinical outcomes after surgical interventions on the spine.

About the authors

V A Byval’tsev

Irkutsk State Medical University; Railway Clinical Hospital at the Irkutsk-Passazhirsky railway station; Irkutsk Scientific Center of Surgery and Traumatology; Irkutsk State Medical Academy of Continuing Education

Author for correspondence.
Email: byval75vadim@yandex.ru
Irkutsk, Russia; Irkutsk, Russia; Irkutsk, Russia; Irkutsk, Russia

I A Stepanov

Irkutsk State Medical University

Email: byval75vadim@yandex.ru
Irkutsk, Russia

V E Borisov

Irkutsk State Medical University

Email: byval75vadim@yandex.ru
Irkutsk, Russia

A A Kalinin

Irkutsk State Medical University; Railway Clinical Hospital at the Irkutsk-Passazhirsky railway station; Irkutsk Scientific Center of Surgery and Traumatology

Email: byval75vadim@yandex.ru
Irkutsk, Russia; Irkutsk, Russia; Irkutsk, Russia

I V Pleshko

Irkutsk State Medical University

Email: byval75vadim@yandex.ru
Irkutsk, Russia

E G Belykh

Irkutsk State Medical University

Email: byval75vadim@yandex.ru
Irkutsk, Russia

M A Aliev

City Clinical Hospital №7

Email: byval75vadim@yandex.ru
Almaty, Kazakhstan

References

  1. Backes M., Schep N.W.L., Luitse J.S.K et al. The effect of postoperative wound infections on functional outcome following intra-articular calcaneal fractures. Arch. Orthop. Trauma Surg. 2015; 135 (8): 1045-1052. doi: 10.1007/s00402-015-2219-5.
  2. Whitehouse J.D., Friedman N.D., Kirkland K.B. et al. The impact of surgical-site infections following orthopedic surgery at a community hospital and a university hospital: adverse quality of life, excess length of stay, and extra cost. Infect. Control. Hosp. Epidemiol. 2002; 23: 183-189. doi: 10.1086/502033.
  3. Friedman N.D., Sexton D.J., Connelly S.M. et al. Risk factors for surgical site infection complicating laminectomy. Infect. Control. Hosp. Epidemiol. 2007; 28: 1060-1050. doi: 10.1086/519864.
  4. Manoso M.W., Cizik A.M., Bransford R.J. et al. Medicaid status is associated with higher surgical site infection rates after spine surgery. Spine. 2014; 39 (20): 1707-1713. doi: 10.1097/BRS.0000000000000496.
  5. Nota S.P., Braun Y., Ring D. et al. Incidence of surgical site infection after spine surgery: What is the impact of the definition of infection? Clin. Orthop. Related Res. 2015; 473 (5): 1612-1619. doi: 10.1007/s11999-014-3933-y.
  6. Chahoud J., Kanafani Z., Kanj S.S. et al. Surgical site infections following spine surgery: Eliminating the controversies in the diagnosis. Frontiers in Med. 2014; 1: 7. doi: 10.3389/fmed.2014.00007.
  7. Capen D.A., Calderone R.R., Green A. Perioperative risk factors for wound infections after lower back fusions. Orthop. Clin. North Am. 1996; 27: 83-86.
  8. Basques B.A., Golinvaux N.S., Bohl D.D. et al. Use of an operating microscope during spine surgery is associated with minor increases in operating room times and no increased risk of infection. Spine. 2014; 39 (22): 1910-1916. doi: 10.1097/BRS.0000000000000558.
  9. Tominaga H., Setoguchi T., Kawamura H. et al. Risk factors for unavoidable removal of instrumentation after surgical site infection of spine surgery: A retrospective case-control study. Medicine. 2016; 95 (43): e5118. doi: 10.1097/MD.0000000000005118.
  10. Ishii M., Iwasaki M., Ohwada T. et al. Postoperative deep surgical-site infection after instrumented spinal surgery: A multicenter study. Global Spine J. 2013; 3 (2): 95-102. doi: 10.1055/s-0033-1343072.
  11. Amenu D., Belachew T., Araya F. Surgical site infection rate and risk factors among obstetric cases of Jimma University Specialized Hospital, Southwest Ethiopia. Ethiopian J. Health Sci. 2011; 21 (2): 91-100.
  12. Jackson K.L., Devine J.G. The effects of obesity on spine surgery: A systematic review of the literature. Global Spine J. 2016; 6 (4): 394-400. doi: 10.1055/s-0035-1570750.
  13. Parchi P.D., Evangelisti G., Andreani L. et al. Postoperative spine infections. Orthop. Rev. 2015; 7 (3): 5900. doi: 10.4081/or.2015.5900.
  14. Kulkarni A.G., Patel R.S., Dutta S. Does minimally invasive spine surgery minimize surgical site infections? Asian Spine J. 2016; 10 (6): 1000-1006. doi: 10.4184/asj.2016.10.6.1000.
  15. Schimmel J.P., Horsting P.P., de Kleuver M. et al. Risk factors for deep surgical site infections after spinal fusion. Eur. Spine J. 2010; 19 (10): 1711-1719. doi: 10.1007/s00586-010-1421-y.
  16. Iwata E., Shigematsu H., Okuda A. et al. Lymphopenia at 4 days postoperatively is the most significant laboratory marker for early detection of surgical site infection following posterior lumbar instrumentation surgery. Asian Spine J. 2016; 10 (6): 1042-1046. doi: 10.4184/asj.2016.10.6.1042.
  17. Kim J.H., Ahn D.K., Kim J.W., Kim G.W. Particular features of surgical site infection in posterior lumbar interbody fusion. Clin. Orthop. Surg. 2015; 7 (3): 337-343. doi: 10.4055/cios.2015.7.3.337.
  18. Wang T., Wang H., Yang D.-L. et al. Factors predicting surgical site infection after posterior lumbar surgery: A multicenter retrospective study. Medicine. 2017; 96 (5): e6042. doi: 10.1097/MD.0000000000006042.
  19. Petherick E.S., Dalton J.E., Moore P.J. et al. Methods for identifying surgical wound infection after discharge from hospital: a systematic review. BMC Infectious Dis. 2006; 6: 170. doi: 10.1186/1471-2334-6-170.
  20. Nuttall J., Evaniew N., Thornley P. et al. The inter-rater reliability of the diagnosis of surgical site infection in the context of a clinical trial. Bone & Joint Res. 2016; 5 (8): 347-352. doi: 10.1302/2046-3758.58.BJR-2016-0036.R1.
  21. Yuwen P., Chen W., Lv H. et al. Albumin and surgical site infection risk in orthopaedics: a meta-analysis. BMC Surgery. 2017; 17: 7. doi: 10.1186/s12893-016-0186-6.
  22. Iwata E., Shigematsu H., Koizumi M. et al. Lymphopenia and elevated blood C-reactive protein levels at four days postoperatively are useful markers for early detection of surgical site infection following posterior lumbar instrumentation surgery. Asian Spine J. 2016; 10 (2): 220225. doi: 10.4184/asj.2016.10.2.220.
  23. Abdallah D.Y., Jadaan M.M., McCabe J.P. Body mass index and risk of surgical site infection following spine surgery: a meta-analysis. Eur. Spine J. 2013; 22 (12): 2800-2809. doi: 10.1007/s00586-013-2890-6.
  24. Kasliwal M.K., Tan L.A., Traynelis V.C. Infection with spinal instrumentation: Review of pathogenesis, diagnosis, prevention, and management. Surg. Neur. Intern. 2013; 4 (5): 392-403. doi: 10.4103/2152-7806.120783.
  25. Hegde V., Meredith D.S., Kepler C.K., Huang R.C. Management of postoperative spinal infections. World J. Orth. 2012; 3 (11): 182-189. doi: 10.5312/wjo.v3.i11.182.
  26. Saeedinia S., Nouri M., Azarhomayoun A. et al. The incidence and risk factors for surgical site infection after clean spinal operations: A prospective cohort study and review of the literature. Surg. Neur. Intern. 2015; 6: 154. doi: 10.4103/2152-7806.166194.
  27. Xing D., Ma J.-X., Ma X.-L. et al. A methodological, systematic review of evidence-based independent risk factors for surgical site infections after spinal surgery. Eur. Spine J. 2013; 22 (3): 605-615. doi: 10.1007/s00586-012-2514-6.
  28. Moritani T., Kim J., Capizzano A.A. et al. Pyogenic and non-pyogenic spinal infections: emphasis on diffusion-weighted imaging for the detection of abscesses and pus collections. Brit. J. Radiol. 2014; 87 (1041): 20140011. doi: 10.1259/bjr.20140011.
  29. Yeom J.A., Lee I.S., Suh H.B et al. Magnetic resonance imaging findings of early spondylodiscitis: Interpretive challenges and atypical findings. Korean J. Radiol. 2016; 17 (5): 565-580. doi: 10.3348/kjr.2016.17.5.565.
  30. Oztekin O., Calli C., Kitis O. et al. Reliability of diffusion weighted MR imaging in differentiating degenerative and infectious end plate changes. Radiol. Oncol. 2010; 44 (2): 97-102. doi: 10.2478/v10019-010-0006-z.
  31. Molinari R.W., Khera O.A., Molinari III W.J. Prophylactic intraoperative powdered vancomycin and postoperative deep spinal wound infection: 1,512 consecutive surgical cases over a 6-year period. Eur. Spine J. 2012; 21 (4): 476-482. doi: 10.1007/s00586-011-2104-z.
  32. Kim B., Moon S.-H., Moon E.-S. et al. Antibiotic microbial prophylaxis for spinal surgery: Comparison between 48 and 72-hour AMP protocols. Asian Spine J. 2010; 4 (2): 71-76. doi: 10.4184/asj.2010.4.2.71.
  33. Kanayama M., Hashimoto T., Shigenobu K. et al. Effective prevention of surgical site infection using a Centers for Disease Control and Prevention guideline-based antimicrobial prophylaxis in lumbar spine surgery. J. Neur. Spine. 2007; 6: 327-329.
  34. Savitz S., Rivlin M., Savitz M. The ethics of prophylactic antibiotics for neurosurgical procedures. J. Med. Ethics. 2002; 28 (6): 358-363. doi: 10.1136/jme.28.6.358.
  35. Singh K., Bauer J.M., LaChaud G.Y. et al. Surgical site infection in high-energy peri-articular tibia fractures with intra-wound vancomycin powder: a retrospective pilot study. J. Orthop. Traum.: Official Journal of the Italian Society of Orthopaedics and Traumatology. 2015; 16 (4): 287-291. doi: 10.1007/s10195-015-0352-0.
  36. Núñez-Pereira S., Pellisé F., Rodríguez-Pardo D. et al. Individualized antibiotic prophylaxis reduces surgical site infections by gram-negative bacteria in instrumented spinal surgery. Eur. Spine J. 2011; 20 (3): 397-402. doi: 10.1007/s00586-011-1906-3.
  37. Pawar A.Y., Biswas S.K. Postoperative spine infections. Asian Spine J. 2016; 10 (1): 176-183. doi: 10.4184/asj.2016.10.1.176.
  38. Sponseller P.D., Shah S.A., Abel M.F. et al. Infection rate after spine surgery in cerebral palsy is high and impairs results: Multicenter analysis of risk factors and treatment. Clin. Orthop. Related Res. 2010; 468 (3): 711-716. doi: 10.1007/s11999-009-0933-4.
  39. Kavanagh K.T., Calderon L.E., Saman D.M. et al. The use of surveillance and preventative measures for methicillin-resistant staphylococcus aureus infections in surgical patients. Antimicrobial Resistance and Infection Control. 2014; 3: 18. doi: 10.1186/2047-2994-3-18.
  40. Anderson D.J., Podgorny K., Berríos-Torres S.I. et al. Strategies to prevent surgical site infections in acute care hospitals: 2014 Update. Infection Control and Hospital Epidemiology: the official journal of the Society of Hospital Epidemiologists of America. 2014; 35 (6): 605-627. doi: 10.1086/676022.
  41. Lee K.Y., Coleman K., Paech D. et al. The epidemiology and cost of surgical site infections: a systematic review. J. Korean Surg. Society. 2011; 81 (5): 295-307. doi: 10.4174/jkss.2011.81.5.295.
  42. Meredith D.S., Kepler C.K., Huang R.C. et al. Postoperative infections of the lumbar spine: presentation and management. Intern. Orthop. 2012; 36 (2): 439-444. doi: 10.1007/s00264-011-1427-z.
  43. Shantz J.A., Vernon J., Leiter J. et al. Sutures versus staples for wound closure in orthopaedic surgery: a randomized controlled trial. BMC Musculoskeletal Dis. 2012; 13: 89. doi: 10.1186/1471-2474-13-89.
  44. Al-Mulhim F.A., Baragbah M.A., Sadat-Ali M. et al. Prevalence of surgical site infection in orthopedic surgery: A 5-year analysis. Intern. Surg. 2014; 99 (3): 264-268. doi: 10.9738/INTSURG-D-13-00251.1.
  45. Billières J., Uçkay I., Faundez A. et al. Variables associated with remission in spinal surgical site infections. J. Spine Surg. 2016; 2 (2): 128-134. doi: 10.21037/jss.2016.06.06.
  46. Waly F., Alzahrani M.M., Abduljabbar F.H. et al. The outcome of using closed suction wound drains in patients undergoing lumbar spine surgery: A systematic review. Global Spine J. 2015; 5 (6): 479-485. doi: 10.1055/s-0035-1566288.
  47. Poorman C.E., Passias P.G., Bianco K.M. et al. Effectiveness of postoperative wound drains in one- and two-level cervical spine fusions. Intern. J. Spine Surg. 2014; 8: 34. doi: 10.14444/1034.
  48. Karlakki S., Brem M., Giannini S. et al. Negative pressure wound therapy for management of the surgical incision in orthopaedic surgery: A review of evidence and mechanisms for an emerging indication. Bone Joint Res. 2013; 2 (12): 276-284. doi: 10.1302/2046-3758.212.2000190.
  49. Chang C., Chan H., Lim S. et al. Negative pressure wound therapy in infected wound following posterior spinal instrumentation using simple self-assembled system: A case report. Malaysian Orthop. J. 2014; 8 (2): 49-51. doi: 10.5704/MOJ.1407.004.
  50. Karaaslan F., Erdem Ş., Mermerkaya M.U. Wound management with vacuum-assisted closure in postoperative infections after surgery for spinal stenosis. Intern. Med. Case Reports J. 2015; 8: 7-11. doi: 10.2147/IMCRJ.S76214.

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2017 Byval’tsev V.A., Stepanov I.A., Borisov V.E., Kalinin A.A., Pleshko I.V., Belykh E.G., Aliev M.A.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies