Influence of L-Nω-nitroarginine methyl ester and sodium nitroprusside in vitro on the oxidative modification of rat lysosome proteins

Cover Page


Aim. To investigate in vitro effects of 5 mM L-Nω-nitroarginine methyl ester and 0.1 mM sodium nitroprusside on oxidative modification of lysosomal proteins of liver of intact sexually mature female rats of Wistar line. Methods. In the control groups in vitro incubation of isolated lysosomes in the isolation medium for 1, 2 and 4 hours was carried out. Experimental groups were incubated similarly in solutions of 5 mM L-Nω-nitroarginine methyl ester and 0.1 mM sodium nitroprusside. Protein oxidative modification was measured in sedimentary fraction according to R.L. Levine’s method in E.E. Dubinina’s modification. Reserve-adaptive capacity was calculated as the difference between total area under the curve of carbonyl derived proteins after metal-catalyzed oxidation (taken as 100%) and spontaneous oxidation, expressed as a percentage. Results. After 4-hour in vitro incubation 5 mM L-Nω-nitroarginine methyl ester was found to statically significantly increase the total level of protein oxidative modification compared to the control group by 2.41 times and to reduce reserve-adaptive capacity by 4.96 times, and 0.1 mM sodium nitroprusside increases the total level of protein oxidative modification compared to the control group by 2.05 times and reduces reserve-adaptive capacity by 1.56 times. One of the possible mechanisms of this phenomenon may be the reduced activity of lysosomal proteinases. 2-hour and 4-hour in vitro incubation of lysosomes in 5 mM L-Nω-nitroarginine methyl ester is accompanied by an increase of secondary markers of the ratio of protein oxidative modification relatively to 1-hour exposure by 1.18 times and 1.35 times, respectively. At 1-hour in vitro incubation in 0.1 mM sodium nitroprusside, increase of secondary markers of protein oxidative degradation by 1.64 times occurs. Conclusion. The in vitro effect of 5 mM -Nω-nitroarginine methyl ester and 0.1 mM sodium nitroprusside results in visible changes of oxidative modification of rat liver lysosomal proteins.

M A Fomina
Ryazan State Medical University named after I.P. Pavlov Ryazan, Russia

A M Kudlaeva
Ryazan State Medical University named after I.P. Pavlov Ryazan, Russia

S A Isakov
Ryazan State Medical University named after I.P. Pavlov Ryazan, Russia

A N Ryabkov
Ryazan State Medical University named after I.P. Pavlov Ryazan, Russia

  • Rinalducci S., Murgiano L., Zolla L. Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. J. Experim. Botany. 2008; 59 (14): 3781-3801. doi: 10.1093/jxb/ern252.
  • Nagaokaa Y., Otsua K., Okada F. et al. Specific inactivation of cysteine protease-type cathepsin by singlet oxygen generated from naphthalene endoperoxides. Biochem. Biophys. Res. Communications. 2005; 331 (1): 215-223. doi: 10.1016/j.bbrc.2005.03.146.
  • Stadtman E.R. Protein oxidation and aging. Free Radic. 2006; 40 (12): 1250-1258. doi: 10.1080/10715760600918142.
  • Hsieh H., Liu C., Huang B. et al. Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J. Biomed. Sci. 2014; 21: 3. doi: 10.1186/1423-0127-21-3.
  • Nazari Q.A., Mizuno K., Kume T. et al. In vivo brain oxidative stress model induced by microinjection of sodium nitroprusside in mice. J. Pharmacol. Sci. 2012; 120: 105-111. doi: 10.1254/jphs.12143FP.
  • Sasso S., Dalmedico L., Delwing-Dal M. et al. Effect of N-acetylarginine, a metabolite accumulated in hyperargininemia, on parameters of oxidative stress in rats: protective role of vitamins and L-NAME. Cell. Biochem. Funct. 2014; 32 (6): 511-519. doi: 10.1002/cbf.3045.
  • Теплов С.А., Абаленихина Ю.В., Фомина М.А. и др. Изменение спектра поглощения продуктов окислительной модификации белков печени крыс в условиях дефицита синтеза оксида азота различной выраженности. Наука молодых (Eruditio Juvenium). 2016; (1): 50-54.
  • Дубинина Е.Е., Бурмистров С.О., Ходов Д.А. и др. Окислительная модификация белков сыворотки крови человека, метод её определения. Вопр. мед. химии. 1995; 41 (1): 24-26.
  • Фомина М.А., Абаленихина Ю.В., Фомина Н.В., Терентьев А.А. Способ комплексной оценки содержания продуктов окислительной модификации белков в тканях и биологических жидкостях. Патент №2524667. Бюлл. №21 от 27.07.2014.
  • Губский Ю.И., Беленичев И.Ф., Левицкий Е.Л. и др. Токсикологические последствия окислительной модификации белков при различных патологических состояниях (обзор литературы). Соврем. пробл. токсикол. 2005; 8 (3): 20-27.
  • Dunlop R.A., Brunk U.T., Rodgers K.J. Oxidized proteins: Mechanisms of removal and consequences of accumulation. Life. 2009; 61 (5): 522-527. doi: 10.1002/iub.189.
  • Siemieniuk E., Kolodziejczyk L., Skrzydlewska E. Oxidative modifications of rat liver cell components during fasciola hepatica infection. Toxicology Mechanisms and Methods. 2008; 18 (6): 519-524. doi: 10.1080/15376510701624001.
  • Lee J., Giordano S., Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signaling. Biochem. J. 2012; 441 (2): 523-540. doi: 10.1042/BJ20111451.
  • Абаленихина Ю.В., Фомина М.А., Исаков С.А. Окислительная модификация белков и изменение активности катепсина L селезёнки крыс в условиях моделирования дефицита синтеза оксида азота. Рос. мед.-биол. Вестн. им. акад. И.П. Павлова. 2013; (1): 44-48.
  • Zeng J., Dunlop R.A., Rodgers K.J. et al. Evidence for inactivation of cysteine proteases by reactive carbonyls via glycation of active site thiols. Biochem. J. 2006; 398: 197-206. doi: 10.1042/BJ20060019.


Abstract - 21

PDF (Russian) - 5

© 2017 Fomina M.A., Kudlaeva A.M., Isakov S.A., Ryabkov A.N.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.