Scleral capsule biophysical properties in the prognosis of the stabilizing effectiveness of orthokeratological myopia correction

Cover Page


Cite item

Abstract

Purpose: determine the impact of biophysical properties of the scleral capsule on the stabilizing effect of orthokeratological correction in progressive myopia.

Material and methods. In 57 patients (114 eyes) aged 8-18 (average age 12.5 ± 0.6 years) with myopia from 1.0 to 7.0 D, acoustic scleral density (ASD) was tested. All patients used (during different terms) orthokeratological (OK) lenses Contex – OKE-System during the night time. To measure ASD (in conventional units) we used digital analysis of ultrasound tissue histograms obtained with a multifunctional ultrasound diagnostic device Voluson 730 Pro (Kretztechnik AG) with a linear frequency sensor of 10 to 16 mHz. ASD was measured in the posterior pole and in the superior temporal quadrant of the equatorial zone. The anteroposterior axis (APA) was measured by ultrasound biometry using an ultrasound device A/B Scan System Model 837 (Allergan Humphrey, USA). Myopia progression was found in 18 eyes of 9 patients with APA increase over 0.1 mm in 6 months, i. e. in 15.5% of cases, while the remaining 48 patients (96 eyes) showed no myopia progression over the follow-up period.

Results. APA was less in eyes with progressive myopia as compared to those with stabilized myopia, both in the equatorial and the posterior pole zones. In progressive myopia, mean APA was 213 ± 3.6 units in the posterior pole and 208 ± 2.19 units in the equatorial zone. In cases of stable myopia, APA was 2.1% higher in the posterior pole area (217 ± 1.3 units) and 1.86% higher in the equatorial area (212 ± 1.4 units). On average, APA in stable myopia was 4 ± 2.0 units higher than in progressive myopia (р < 0.05).

Conclusion. The APA parameter could serve as a prognostic criterion for the myopia course by OK-correction, and as an indicator for choosing treatment tactics.

Full Text

Introduction

In the past few years, orthokeratology (OK) vision correction has gained popularity as a treatment method for progressive myopia in children [8–10, 19]. However, the stabilizing effect of this treatment seems to vary among patients. In 20%–30% of myopia cases, wearing OK lenses has not prevented myopia progression [3, 14, 16, 19].

Recently, a longitudinal study [8] assessed the effect of wearing OK lenses on the dynamics of refraction and anteroposterior axis (APA) in eyes of children and adolescents (84 patients, 168 eyes) of mean age 10.15 ± 3.87 years and a myopia of –3.88 ± 0.12 D; they observed that 20% of the patients experienced the myopia progression of >1.0 D (APA elongation by 0.35 mm) during the follow-up period. The reason underlying such variability in the effect of wearing OK lenses on myopia progression remains unclear and difficult to predict [6, 16].

According to the current concepts of myopia, the disturbance of biophysical (primarily biomechanical) characteristics of the sclera is crucial for myopia pathogenesis [1, 4, 5, 15, 18]. Multiple experimental and laboratory studies have demonstrated that progressive myopia was associated with reduced insoluble collagen and glycosaminoglycans levels in the sclera, decreased collagen cross-linking, and impaired metabolism of microelements that are crucial for the maintenance of the connective tissue, which altogether result in decreased supporting function and elasticity of the sclera, reduced range of reversible deformations, and accumulation of plastic deformations. Finally, these conditions lead to irreversible scleral stretching and axial elongation [4].

In 1990s, researchers from the Helmholtz Moscow Research Institute of Eye Diseases developed a method for the clinical assessment of biophysical and biomechanical characteristics of the sclera by evaluating its acoustic density. The scleral acoustic density (SAD) was estimated by measuring the amplitude attenuation of the echo signal reflected from the scleral tissue [2, 13]. Patients with myopia were showed significantly reduced SAD, which correlated with myopia severity and the state of the fundus. The developers of this technique also developed a method for predicting peripheral chorioretinal dystrophies in children and adolescents with myopia as well as a method for predicting myopia progression, including a list of indications for the additional strengthening of the sclera [11].

The aim of the present study was to investigate the role of biomechanical characteristics of the sclera in the stabilizing effect of OK correction for progressive myopia.

Materials and Methods

To estimate SAD, digital analysis of ultrasonic tissue histograms was performed using a multifunctional ultrasonic diagnostic device (Voluson 730 Pro; Kretztechnik, Austria) equipped with a linear frequency sensor (range: 10–16 MHz). SAD was measured in the posterior pole and in the equatorial region of the upper temporal quadrant of the eye. Using the grayscale mode, a horizontal section of the posterior segment of the eyeball passing through the optic nerve was obtained. The sclera was visualized as hyperechogenic lines. All images were analyzed at the same distance from the optic disc using various magnifications, followed by the quantitative assessment of the characteristics and densitometric parameters of a selected area measured in conventional units for the digital analysis of the ultrasonic images (Figures 1 and 2).

 

Fig. 1. Acoustic scleral density assessment using Voluson 730 Pro (Kretztechnik, Germany) multifunctional diagnostic system with a linear probe and 10 to 16 MHz frequency

 

Fig. 2. Acoustic scleral density assessment using digital analysis of ultrasound tissue histogram: а – histogram of emmetropic eye sclera; b – histogram of myopic eye sclera

 

SAD was measured in 57 patients (114 eyes) aged 8–18 (mean age, 12.5 ± 0.6) years, with a myopia of 1.0–7.0 D. All patients were using overnight OK lenses (Contex – OKE-System).

Once a patient starts using OK lenses, the refraction in the cornea and in the entire optical system of the eye changes, which creates obstacles for the refraction control. Moreover, the refraction may vary significantly depending on the duration of overnight lens wear and the time between lens removal and examination. Therefore, the dynamics of myopic process in these patients is primarily evaluated using ultrasound examination, particularly by measuring the axial length of the eye [10, 12].

Ultrasonography was performed to assess the axial length of the eye using the A/B Scan System (Model 837; Allergan Humphrey, USA).

Results and Discussion

Myopia progression (APA elongation >0.1 mm during the last 6 months) was observed in 9 patients (15.5%, 18 eyes), whereas no myopia progression was observed in 48 participants (96 eyes) for at least 6 months predating the examination.

The results of SAD measurement in the equatorial area and at the posterior pole in patients with progressive and non-progressive myopia are summarized in Table 1.

 

Table 1. ASD (conventional units) value in progressive and stable myopia when using OK-correction

Таблица 1. Величина акустической плотности (усл. ед.) склеры глаз с прогрессирующей и непрогрессирующей на фоне ношения ОК-линз миопией (M ± σ)

Area of the sclera

Progressive myopia

Non-progressive myopia

Equatorial area

208 ± 2.19*

212 ± 1.4

Posterior pole

213 ± 3.6*

217 ± 1.3

Mean

210 ± 2.7*

214 ± 1.4

* Differences between the patients with progressive and non-progressive myopia are statistically significant, р < 0.05

 

SAD in both the equatorial area and at the posterior pole was lower in patients with progressive myopia than in patients with stable myopia. In eyes with progressive myopia, mean SAD was 213 ± 3.6 units at the posterior pole and 208 ± 2.19 units in the equatorial area, whereas in eyes with non-progressive myopia, this was 217 ± 1.3 units and 212 ± 1.4 units, respectively; values of mean SAD were 2.1% (posterior pole) and 1.86% (equatorial area) higher in eyes with non-progressive myopia than in eyes with progressive myopia. Mean SAD in patients with stable myopia was 4 ± 2.0 units higher than that in patients with progressive myopia (р < 0.05).

Therefore, patients with progressive myopia had significantly lower SAD in the equatorial area and at the posterior pole than patients with stable refraction. Thus, it is obvious that the initial impairments of the biophysical characteristics of the sclera contribute to the further progression of myopia, regardless of OK correction.

Thus, SAD can be used as a prognostic factor for myopia progression in patients wearing OK lenses, which should be considered when selecting a treatment strategy. Our results suggest that SAD values of <215 units at the posterior pole and <210 units in the equatorial area are prognostically unfavorable for further myopia progression. In such cases, the patients are recommended to undergo additional stabilization procedures, such as scleroplastic surgery [6].

Conclusions

  1. Biophysical characteristics of the sclera were investigated in myopic patients who have been wearing overnight OK lenses. Patients with progressive myopia had significantly lower SAD in the equatorial area and at the posterior pole than patients with stable refraction.
  2. SAD can be used as a prognostic factor for myopia progression in patients wearing OK lenses, and it should be considered when selecting a treatment strategy.

The study was supported in part by a grant from the Russian Foundation for Basic Research No. 15-29-03874.

The authors declare no conflict of interest.

Authors’ contribution:

Development of a research concept and study design: E.P. Tarutta and E.N. Iomdina.

Data collection and processing: R.R. Toloraya and G.V. Kruzhkova.

Data analysis and drafting the manuscript: E.P. Tarutta and E.N. Iomdina.

×

About the authors

Yelena P. Tarutta

Moscow Helmholtz Research Institute of Eye Diseases

Author for correspondence.
Email: elenatarutta@mail.ru

doctor of medical science, professor

Russian Federation, Moscow

Yelena N. Iomdina

Moscow Helmholtz Research Institute of Eye Diseases

Email: iomdina@mail.ru

Dr. Sci., Professor, Principal researcher

Russian Federation, Moscow

Rusadani R. Toloraya

Moscow Helmholtz Research Institute of Eye Diseases

Email: dr.toloraya@gmail.com

MD, PhD, Researcher

Russian Federation, Moscow

Galina V. Kruzhkova

Moscow Helmholtz Research Institute of Eye Diseases

Email: info@igb.ru

MD, PhD, Senior Researcher

Russian Federation, Moscow

References

  1. Аветисов Э.С. Близорукость. – М.: Медицина, 1999. – 288 с. [Avetisov ES. Myopia. Moscow: Meditsina; 1999. 288 p. (In Russ.)]
  2. Аветисов Э.С., Фридман Ф.Е., Тарутта Е.П., и др. Акустические исследования склеры при прогрессирующей близорукости у детей и подростков // Вестник офтальмологии. – 1996. – № 2. – С. 41–42. [Avetisov ES, Fridman FE, Tarutta EP, et al. Acoustic studies of the sclera in progressive myopia in children and adolescents. Vestnik oftal’mologii. 1996;(2):41-2. (In Russ.)]
  3. Вержанская Т.Ю., Тарутта Е.П. 5-летний опыт применения ортокератологических линз при миопии у детей // Российский офтальмологический журнал. – 2008. – № 1. – С. 50–51. [Verzhanskaya TYu, Tarutta EP. 5 years experience of using orthokeratology of myopic children. Russian Ophthalmological Journal. 2008;1(1):50-1. (In Russ.)]
  4. Иомдина Е.Н. Биомеханические и биохимические нарушения склеры при прогрессирующей близорукости и методы их коррекции // Зрительные функции и их коррекция у детей / Под ред. С.Э. Аветисова, Т.П. Кащенко, А.М. Шамшиновой. – М.: Медицина, 2005. – С. 163–183. [Iomdina EN. Biomechanical and biochemical disorders of the sclera in progressive myopia and methods of their correction. In: Visual functions and their correction in children. Ed by S.E. Avetisov, T.P. Kashchenko, A.M. Shamshinova. Moscow: Meditsina; 2006: P. 163-183. (In Russ.)]
  5. Иомдина Е.Н., Тарутта Е.П., Маркосян Г.А., и др. Биомеханические показатели корнеосклеральной оболочки глаза и состояние соединительнотканной системы у детей и подростков с различными формами прогрессирующей миопии // Российская педиатрическая офтальмология. – 2013. – № 1. – С. 18–23. [Iomdina EN, Tarutta EP, Markossian GA, et al. Biomechanical characteristics of the corneoscleral tunic and the state of the connective tissue system in the children and adolescents presenting with various forms of progressive myopia. Rossijskaja Pediatricheskaja Oftal’mologija. 2013;(1):18-23. (In Russ.)].
  6. Тарутта Е.П. Склероукрепляющее лечение и профилактика осложнений прогрессирующей близорукости // Зрительные функции и их коррекция у детей / Под ред. С.Э. Аветисова, Т.П. Кащенко, А.М. Шамшиновой. – М., 2006. – С. 191–202. [Tarutta EP. Sclera reinforcement treatment and prevention of complication of progressive myopia. In: Visual functions and their correction in children. Ed by S.E. Avetisov, T.P. Kashchenko, A.M. Shamshinova. Moscow: Meditsina; 2006: P. 191-202. (In Russ.)]
  7. Тарутта Е.П., Вержанская Т.Ю. Возможные механизмы тормозящего влияния ортокератологических линз на прогрессирование миопии // Российский офтальмологический журнал. – 2008. – № 2. – С. 26–30. [Tarutta EP, Verzhanskaya TYu. Possible mechanisms of inhibiting impact of orthokeratology on myopia progression. Russian Ophthalmological Journal. 2008;(2):26-30. (In Russ.)]
  8. Тарутта Е.П., Вержанская Т.Ю. Стабилизирующий эффект ортокератологической коррекции миопии (результаты десятилетнего наблюдения) // Вестник офтальмологии. – 2017. – Т. 133. – № 1. – С. 49–54. [Tarutta EP, Verzhanskaya TYu. Stabilizing effect of orthokeratology lenses (ten-year follow-up results). Vestnik oftal’mologii. 2017;133(1):49-54. (In Russ.)]
  9. Тарутта Е.П., Епишина М.В., Милаш С.В., и др. Возникновение и течение ПВХРД у детей с миопией на фоне ночных ортокератологических линз // Российский офтальмологический журнал. – 2014. – Т. 7. – № 3. – С. 50–55. [Tarutta EP, Epishina MV, Milash SV, et al. The emergence and development of peripheral vitreochorioretinal dystrophies in myopic children wearing orthokeratological lenses. Russian Ophthalmological Journal. 2014;7(3):50-55. (In Russ.)]
  10. Тарутта Е.П., Иомдина Е.Н., Толорая Р.Р., Кружкова Г.В. Динамика периферической рефракции и формы глаза на фоне ношения ОК-линз у детей с прогрессирующей миопией // Российский офтальмологический журнал. – 2016. – Т. 9. – № 1. – С. 62–66. [Tarutta EP, Iomdina EN, Toloraja RR, Kruzhkova GV. The dynamics of peripheral refraction and eye shape in children with progressive myopia wearing orthokeratology lenses. Russian Ophthalmological Journal. 2016;9(1):62-66. (In Russ.)]
  11. Тарутта Е.П., Максимова М.В., Кружкова Г.В., Ходжабекян Н.В. Акустическая плотность склеры как фактор прогноза развития ПВХРД при миопии: результаты 10-летнего динамического наблюдения // Вестник офтальмологии. – 2013. – № 1. – С. 16–20. [Tarutta EP, Maksimova MV, Kruzhkova GV, Khodjabekian NV. Acoustic density of sclera as a prognostic factor of peripheral vitreochorioretinal degenerations in myopia: results of 10-years follow-up. Vestnik oftal’mologii. 2013,(1):16-20. (In Russ.)]
  12. Тарутта Е.П., Милаш С.В., Тарасова Н.А., и др. Индуцированный периферический дефокус и форма заднего полюса глаза на фоне ортокератологической коррекции миопии // Российский офтальмологический журнал. – 2015. – № 3. – С. 52–56. [Tarutta EP, Milash SV, Tarasova NA, et al. Induced peripheral defocus and the shape of the posterior eye pole in orthokeratological myopia correction. Russian Ophthalmological Journal. 2015;(3):52-56. (In Russ.)]
  13. Фридман Ф.Е., Кружкова Г.В., Тарутта Е.П. Способ прогнозирования периферической витреоретинальной дистрофии у детей. Патент РФ № 2055522 с приоритетом 08.10.1992 // Бюллетень изобретений. – 1996. – № 7. [Fridman FE, Kruzhkova GV, Tarutta EP. Method of the prognosis of peripheral vitreoretinal degeneration in children. RU patent N 2055522 with the priority of 08.10.1992. Bulleten’ izobretenij. 1996;(7). (In Russ.)]
  14. Charm J, Cho P. High myopia-partial reduction ortho-k: a 2-year randomized study. Optom Vis Sci. 2013Jun;90(6):530-9. doi: 10.1097/OPX.0b013e318293657d.
  15. Curtin B. The myopias. Basic science and clinical management. Philadelphia: Harper Row, 1985.
  16. He M, Du Y, Liu Q, et al. Effects of orthokeratology on the progression of low to moderate myopia in Chinese children. BMC Ophthalmol. 2016Jul;27;16:126.
  17. Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, Gutiérrez-Ortega R. Factors preventing myopia progression with orthokeratology correction. Optom Vis Sci. 2013Nov;90(11):1225-36. doi: 10.1097/OPX.0000000000000034.
  18. Spaide RF, Ohno-Matsui K, Lawrence YA, eds. Pathologic Myopia. New York: Springer; 2014.
  19. Yuan Sun, Fan Xu, Ting Zhang, et al. Orthokeratology to Control Myopia Progression: A Meta-Analysis. PLoS One. 2015;10(4):e0124535. doi: 10.1371/journal.pone.0124535.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Tarutta Y.P., Iomdina Y.N., Toloraya R.R., Kruzhkova G.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-65574 от 04 мая 2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies