Tissue-engineered vascular grafts


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

There is no doubt that the introduction of synthetic materials was the prerequisite for success of vascular surgery. Biological inertness, durability, eases of sterilization and modeling of synthetic vascular grafts contributed to their widespread use as in aortic and great vessels. However, analysis of the accumulated clinical experience in using of synthetic grafts showed that fascination with them was gradually replaced by cautious attitude, and sometimes by refusing, because in the presence of well-known advantages, synthetic grafts are prone to thrombosis and the development of infection. Thereby, it takes place searching of anticoagulant and antibiotic therapy schemes, and the ways of creation of such grafts which will minimize the risk of thrombus formation and the development of infectious complications. Not without reason one of such ways includes tissue engineering, which allows to create substitute for biological tissues and organs using the principles and methods of engineering and biology. Tissue engineering vascular grafts (TIVG), created on the basis of natural acellular allogeneic or xenogeneic vascular matrices and populated with patient cells, so personalized, are thought to be biocompatible, athrombogenic, and deprived of any deficiencies of synthetic grafts. Being biocompatible products, they will be able to grow and will be suitable not only for adults but also for children with cardiovascular defects. However, a number of questions related to the search of optimal conditions for obtaining TIVG remain open.

Full Text

Restricted Access

About the authors

Viktor Nikolayevich Aleksandrov

Saint Petersburg State Pediatric Medical University

Email: vnaleks9@yandex.ru
MD, PhD, Dr Med Sci Professor, Head of the Research center

Genady Grigorievich Khubulava

Russian Medicomilitary Academy

Email: khubulava@clubcvs.ru
MD, PhD, Dr Med Sci, Professor, Head of the 1st Department of Surgery Postgraduate Medical

Vladimir Victorovich Levanovich

Saint Petersburg State Pediatric Medical University

Email: spb@gpma.ru
MD, PhD, Dr Med Sci, Professor, rector

References

  1. Ахмедов Ш. Д., Афанасьев С. А., Егорова М. В., Андреев С. Л., Иванов А. В., Роговская Ю. В., Усов В. Ю., Шведов А. Н., Steinhoff G. Использование бесклеточного коллагенового матрикса в качестве платформы для изготовления кровеносных сосудов в сердечно-сосудистой хирургии. Ангиология и сосудистая хирургия. 2012; 18 (2): 7-12.
  2. Assmann A., Akhyari P., Delfs C., Flögel U., Jacoby C., Kamiya H., Lichtenberg A. Development of a growing rat model for the n vivo assessment of engineered aortic conduit. J. Surg. Res. 2012; 176 (2): 367-75.
  3. Bechtel J. F., Gellissen J., Erasmi A. W., Petersen M., Hiob A., Stierle U., Sievers H. H. Mid-term findings on echocardiography and computed tomography after RVOT-reconstruction: comparison of decellularized (SynerGraft) and conventional allografts. Eur. J. Cardiothorac. Surg. 2005; 27: 410-15.
  4. Brown M. A., Zhang L. S., Levering V. W., Wu J. H., Satterwhite L. L., Brian L., Freedman N. J., Truskey G. A. Human umbilical cord blood-derived endothelial cells reendothelialize vein grafts and prevent thrombosis. Arterioscler Thromb Vasc Biol. 2010; 30 (11): 2150-5.
  5. Cebotari S., Lichtenberg A., Tudorache I., Hilfiker A., Mertsching H., Leyh R., Breymann T., Kallenbach K., Maniuc L., Batrinac A., Repin O., Maliga O., Ciubotaru A., Haverich A. Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation. 2006; 114 (1 Suppl): I132-I137.
  6. Cho S. W., Kim I. K., Kang J. M., Song K. W., Kim H. S., Park C. H., Yoo K. J., Kim B. S. Evidence for in vivo growth potential and vascular remodeling of tissue-engineered artery. Tissue Eng.: Part A. 2009; 15 (4): 901-12.
  7. Cho S. W., Lim J. E., Chu H. S., Hyun H. J., Choi C. J., Hwang K. C., Yoo K. J., Kim D. I., Kim B. S. Enhancement of in vivo endothelialization of tissue engineered vascular grafts by granulocyte colonystimulating factor. J Biomed Mater Res. 2006; 76A: 252-63.
  8. Dohmen P. M., Lembcke A., Hotz H., Kivelitz D., Konertz W. F. Ross operation with a tissue-engineered heart valve. Ann Thorac Surg. 2002; 74: 1438-42.
  9. Funamoto S., Nam K., Kimura T., Murakoshi A., Hashimoto Y., Niwaya K., Kitamura S., Fujisato T., Kishida A. The use of highhydrostatic pressure treatment to decellularize blood vessels. Biomaterials. 2010; 31: 3590-5.
  10. Gui L., Muto A., Chan S. A., Breuer C. K., Niklason L. E. Development of decellularized human umbilical arteries as small-diameter vascular grafts. Tissue Engineering: Part A. 2009; 15 (9): 2665-76.
  11. Hashi C. K., Zhu Y. Q., Yang G. Y., Young W. L., Hsiao B. S., Wang K., Chu B., Li S. Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci USA. 2007; 104 (29): 11915-20.
  12. Hibino N., Yi T., Duncan D. R., Rathore A., Dean E., Naito Y., Dardik A., Kyriakides T., Madri J., Pober J. S., Shinoka T., Breuer C. K. A critical role for macrophages in neovessel formation and the development of stenosis in tissue-engineered vascular grafts. FASEB J. 2011; 12: 4253-63.
  13. Hjortnaes J., Gottlieb D., Figueiredo J. L., Molero-Martin J., Kohler R. H., Bischoff J., Weissleder R., Mayer J. E., Aikawa E. Intravital molecular imaging of small-diameter tissue-engineered vascular grafts in mice: a feasibility study. Tissue Eng Part C Methods. 2010; 16 (4): 597-607.
  14. Hwang S. J., Kim S. W., Choo S. J., Lee B. W., Im I. R., Yun H. J., Lee S. K., Song H., Cho W. C., Lee J. W. The decellularized vascular allograft as an experimental platform for developing a biocompatible small-diameter graft conduit in a rat surgical model. Yonsei Med J. 2011; 52 (2): 227-33.
  15. Kallenbach K., Sorrentino S., Mertsching H., Kostin S., Pethig K., Haverich A., Cebotari S. A novel small-animal model for accelerated investigation of tissue-engineered aortic valve conduit. Tissue Engineering. Part C. 2010; 16 (1): 41-50.
  16. Kaushal S., Amiel G. E., Guleserian K. J., Shapira O. M., Perry T., Sutherland F. W., Rabkin E., Moran A. M., Schoen F. J., Atala A., Soker S., Bischoff J., Mayer J. E.Jr. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med. 2001; 7: 1035-1040.
  17. Krawiec J. T., Vorp D. A. Adult stem cell-based tissue engineered blood vessels: A review. Biomaterials. 2012; 33 (12): 3388-3400.
  18. Lichtenberg A., Tudorache I., Cebotari S., Ringes-Lichtenberg S., Sturz J., Hoeffler K., Hurscheler C., Brandes J., Hilfiker A., Haverich A. In vitro re-endothelialization of detergent decellularized heart valves under simulated physiological dynamic conditions. Biomaterials. 2006a; 27: 4221-9.
  19. Lichtenberg A., Tudorache I., Cebotari S., Suprunov M., Tudorache J., Goerler H., Park J. K., Hilfiker-Kleiner D., Ringes-Lichtenberg S., Karck M., Brandes G., Hilfiker A., Haverich A. Preclinical testing of tissue-engineered heart valvesre-endothelialized under simulated physiological conditions. Circulation. 2006b; 114 (1 Suppl): I559-I565.
  20. Liu G. F., He Z. J., Yang D. P., Han X. F., Guo T. F., Hao C. G., Ma H., Nie C. L. Decellularized aorta of fetal pigs as a potential scaffold for small diameter tissue engineered vascular graft. Chin Med J. 2008; 121 (15): 1398-1406.
  21. Mirensky T. L., Hibino N., Sawh-Martinez R. F., Yi T., Villalona G., Shinoka T., Breuer C. K. Tissue-engineered vascular grafts: does cell seeding matter? J Pediatr Surg. 2010; 45 (6): 1299-1305.
  22. Muller F., Gailani D., Renne T. Factor XI and XII as antithrombotic targets. Curr. Opin. Hematol. 2011; 18 (5): 349-55.
  23. Neff L. P., Tillman B. W., Yazdani S. K., Machingal M. A., Yoo J. J., Soker S., Bernish B. W., Geary R. L., Christ G. J. Vascular smooth muscle enhances functionality of tissue-engineered blood vessels in vivo. J Vasc Surg. 2011; 53 (2): 426-34.
  24. Negishi J., Funamoto S., Kimura T., Nam K., Higami T., Kishida A. Effect of treatment temperature on collagen structures of the decellularized carotid artery using highhydrostatic pressure. J. Artif. Organs. 2011; 14 (3): 223-31.
  25. Quint C., Arief M., Muto A., Dardik A., Niklason L. E. Allogeneic human tissue-engineered blood vessel. J Vasc Surg. 2012; 55 (3): 790-8.
  26. Rieder E., Kasimir M.-T., Silberhumer G., Seebacher G., Wolner E., Simon P., Weigel G. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J. Thorac. Cardiovasc. Surg. 2004; 127 (2): 399-405.
  27. Roh J. D., Sawh-Martinez R., Brennan M. P., Jay S. M., Devine L., Rao D. A., Yi. T, Mirensky T.L, Nalbandian A., Udelsman B., Hibino N., Shinoka T., Saltzman W. M., Snyder E., Kyriakides T. R., Pober J. S., Breuer C. K. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci USA. 2010; 107 (10): 4669-74.
  28. Kim S. S., Lim S. H., Hong Y. S., Cho S. W., Ryu J. H., Chang B. C., Choi C. Y., Kim B. S. Tissue engineering of heart valves in vivo using bone marrow-derived cells. Artificial Organs. 2006; 30 (7): 554-7.
  29. Swartz D.D, Andreadis S. T. Animal models for vascular_tissue engineering. Curr. Opin. Biotechnol. 2013; 24 (5): 916-25.
  30. Zehr K. J., Yagubyan M., Connolly H. M., Nelson S. M., Schaff H. V. Aortic root replacement with a novel decellularized cryopreserved aortic homograft: postoperative immunoreactivity and early results. J. Thorac. Cardiovasc. Surg. 2005; 130: 1010-15.
  31. Zeng W., Yuan W., Li L., Mi J., Xu S., Wen C., Zhou Z., Xiong J., Sun J., Ying D., Yang M., Li X., Zhu C. The promotion of endothelial progenitor cells recruitment by nerve growth factors in tissueengineered blood vessels. Biomaterials. 2010; 31 (7): 1636-45.
  32. Zhao Y. L., Zhang S., Zhou J. Y., Wang J. L., Zhen M. C., Liu Y., Chen J., Qi Z. The development of a tissue-engineered artery using decellularized scaffold and autologous ovine mesenchymal stem cells. Biomaterials. 2010; 31 (2): 296-307.
  33. Zhou M., Liu Z., Li K., Qiao W., Jiang X., Ran F., Qiao T., Liu C. Beneficial effects of granulocyte-colony stimulating factor on small-diameter heparin immobilized decellularized vascular graft. J Biomed Mater Res A. 2010; 95A (2): 600-10.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Aleksandrov V.N., Khubulava G.G., Levanovich V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 69634 от 15.03.2021 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies