УДК 551.596.9

ИНФРАЗВУКОВЫЕ ДЕФОРМАЦИОННЫЕ ВОЗМУЩЕНИЯ, ВЫЗВАННЫЕ ТАЙФУНАМИ

© 2019 г. Г. И. Долгих*, В. А. Чупин, Е. С. Гусев

Тихоокеанский океанологический институт им. В.И. Ильичёва ДВО РАН, г. Владивосток, Россия *E-mail: dolgikh@poi.dvo.ru Поступила в редакцию 25.05.2018 г. Принята в печать 03.12.2018 г.

В работе обсуждаются особенности возбуждения мощных инфразвуковых возмущений в диапазоне 7–9 Гц, связанных с прохождением тропических циклонов (тайфунов) в зоне функционирования лазерных деформографов, установленных на м. Шульца Приморского края.

Ключевые слова: инфразвуковоые возмущения, тропические циклоны, лазерные демографы. **DOI:** https://doi.org/10.31857/S0002-333720195110-117

введение

В ходе обработки синхронных экспериментальных данных, полученных при регистрации вариаций деформации земной коры береговым лазерным деформографом, вариаций атмосферного давления лазерным нанобарографом, вариаций гидросферного давления лазерным измерителем вариаций гидросферного давления и вариаций скорости ветра метеостанцией, входящих в состав сейсмоакустико-гидрофизического комплекса на морской экспериментальной станции (МЭС) ТОИ ДВО РАН «мыс Шульца» [Долгих, 2002], обнаружено, что в прибрежной области Приморского края наблюдаются инфразвуковые сейсмоакустические возмущения в диапазоне так называемого «голоса моря» 7–9 Гц.

Впервые документированные экспериментальные исследования инфразвуковых колебаний в диапазоне «голоса моря» были осуществлены академиком В.В. Шулейкиным [Шулейкин, 1935; 1968] в 30-х годах XX века. Так, в работе [Шулейкин, 1935] описаны возникшие над морской поверхностью инфразвуковые колебания в частотном диапазоне 8–13 Гц и проведены первые интерпретации механизмов их появления.

Первые теоретические исследования, описывающие механизмы возникновения «голоса моря» при обтекании волн ветровым потоком, были опубликованы в работе Н.Н. Андреева [Андреев, 1939], в которой обтекание ветром гребней волн моделируется обтеканием цилиндра. Данное допущение считается довольно грубым, хоть и совпадает по порядку величины с экспериментальными данными [Шулейкин, 1935]. Впоследствии появились другие работы, в которых рассматривается механизм возникновения инфразвука при обтекании воздушным потоком взволнованной поверхности моря. Так, в 2013 г. А.Г. Семенов [Semenov, 2013] предлагает и более тщательно описывает физическую модель генерации инфразвуковых волн в диапазоне 2.1–7.5 Гц, где возникновение инфразвуковых волн связывается с обтеканием воздушным потоком трехмерных впадин морской поверхности при сильном шторме.

Экспериментальных наблюдений акустических волн такого диапазона частот в натурных условиях выполнялось достаточно мало и в основном их результаты наблюдения носили описательный характер.

В статье В.Г. Перепёлкина [Перепёлкин, 2015] в 2015 г. описываются колебания высокочастотного инфразвука в диапазоне 2—16 Гц «голоса моря» в акватории Черного моря. Исследованы различные параметры зарегистрированного инфразвукового сигнала, и на основании метеорологических данных сделаны предположения, что для объяснения наблюдаемых инфразвуковых сигналов необходимо исследовать механизм излучения инфразвука в атмосферу стоячими поверхностными морскими волнами, образующимися в результате нелинейного взаимодействия поверхностных ветровых морских волн (или волн зыби), распространяющихся в противоположных друг к другу направлениях.

Роль циклонов в образовании инфразвуковых колебаний вследствии возникновения интерференции волн различного направления и стоячих волн подробным образом рассматривается в работе [Табулевич, 2001]. В своей работе в 2016 г. А.С. Запевалов проводит анализ генерации в водную среду инфразвукового излучения морскими поверхностными волнами. Анализ проводится для ситуации, когда источником инфразвука являются поверхностные волны с частотами, близкими к частотам доминантных волн [Запевалов, 2016].

В иностранной литературе довольно популярной является так же сфера изучения, так называемых, микробаром, в диапазоне от 0.15– 0.3 Гц, процесс образования которых был описан в работе [Longuet-Higgin, 1950; Hetzer, 2008] как генерация посредством столкновения поверхностных волн океана с равной длиной волны, а также использовано правило Бернулли для объяснения распространения образованных ими микросейсм по морскому дну до наземных систем наблюдения. Более расширенно теория генерации микросейсм с использованием двухмерной модели генерации волн описана в работе [Bowen, 2003].

В 2014 г. Филип Блом в своей работе [Blom, 2014] представил модель генерации и распространения микробаром на расстоянии от центра циклона в горизонтальной плоскости. Экспериментальные данные наблюдения микробаром в период прохождения урагана Эрнесто были представлены в работе [Traer, 2008].

Соответственно в выполненных раннее работах появление различных колебаний инфразвукового диапазона связано с несколькими совпадающими гидрометеорологическими факторами, вызванных крупными циклоническими образованиями.

ЭКСПЕРИМЕНТАЛЬНЫЙ КОМПЛЕКС И МЕТОДИКА НАБЛЮДЕНИЙ

МЭС ТОИ ДВО РАН «мыс Шульца» находится в южной части Приморья на побережье залива Петра Великого и была основана в 1986 г. для осуществления научных задач, связанных с проведением натурных измерений в области геофизики, гидрофизики, гидроакустики и испытаний инновационных методов и приборов. На полигоне станции расположен сейсмоакустико-гидрофизический комплекс, основная измерительная приборная база которого состоит из устройств, работа которых основана на лазерно-интерференционных методах.

Комплекс включает в себя два подземных 52.5-метровых горизонтальных лазерных деформографа неравноплечего типа, измеряющих сейсмические колебания на разных геологических образованиях и имеющих расположение вдоль линии «север-юг» [Dolgikh, 2015] и 17.5-метровый лазерный деформограф с расположением измерительной оси ортогонально к оси деформографов с большей измерительной базой вдоль линии «запад-восток» [Долгих, 2016]. В состав комплекса входит лазерный нанобарограф [Долгих. 2016], предназначенный для измерения вариаций атмосферного давления, и лазерные измерители вариаций давления гидросферы различных модификаций [Долгих, 2016], оснащенные различными системами компенсации температурного воздействия. Входящие в состав комплекса низкочастотные гидроакустические излучатели и инфразвуковые сейсмоакустические излучатели позволили по данным комплекса провести исследования характеристик распространения и преобразования различных колебаний и волн в зоне перехода геосфер [Долгих, 1993; 2005; 2015]; метеорологическая станция контролирует поверхностные измерения температуры, атмосферного давления, влажности воздуха, скорости и направления ветра. Диапазон сбора данных с лазерно-интерференционных устройств в пределах от 0 (условно) до 1000 Гц позволяет исследовать природные явления в широком спектре их проявления.

Данные с приборов и установок, входящих в комплекс, синхронно поступают в вычислительные машины, позволяя выполнить дальнейшую оперативную обработку и организацию базы данных. Программно-вычислительный комплекс включает в себя: аналого-цифровой преобразователь, два компьютера, станции бесперебойного питания, способные обеспечить работу всего комплекса при отсутствии энергопитания в течение длительного времени, программы управления работой комплекса, а также первичной и окончательной обработки экспериментальных данных.

Метеорологическая станция регистрирует данные изменения атмосферного давления, температуры воздуха, влажности, скорости и направления ветра с дискретностью 1 Гц.

Первоначально был проведен анализ базы данных тайфунов, проходящих в северо-западной части Тихого океана и оказавших непосредственное влияние на Дальневосточный регион России. Были подготовлены синхронные данные всех измерительных приборов, входящих в комплекс за периоды времени прохождения тайфунов в районе измерительного полигона. Периоды времени и названия исследуемых тайфунов приведены в табл.

Периоды обработки данных наблюдения за тайфунами.

Nº	Название тайфуна	Период времени
1	Болавен (Bolaven)	28.08.2012-31.08.2012
2	Санба (Sanba)	17.09.2012-20.09.2012
3	Матмо (Matmo)	25.07.2014-28.07.2014
4	Чан-хом (Chan-hom)	12.07.2015-15.07.2015

Обработка полученных экспериментальных данных лазерно-интерференционного комплекса включала в себя несколько этапов. Для начала был определен временной промежуток относительно полигона наблюдения, когда в данных лазерных деформографов появлялся шум на частоте «голоса моря». При исследовании динамических спектров в исследуемой области частот «голоса моря» первоначально визуально были выявлены непосредственно инфразвуковые возмущения и определены их временные характеристики. Для синхронности интерпретации экспериментальных данных была определена воображаемая линия на земной поверхности, соответствующая 35° с.ш., относительно которой рассматривалось время начала воздействия циклонического вихря и на основании данных Японского метеорологического агентства [URL: http://www.ima.go.jp/ima/ima-eng/ima-center/rsmchp-pub-eg/besttrack viewer 2010s.html] составлена комплексная карта траекторий движения рассматриваемых тайфунов (рис. 1), с обозначением полусуточных интервалов времени их движения по японскому стандартному времени JST (UTC+09). Также были собраны спутниковые снимки японского спутника Himawari-8 [URL: http://weather.is.kochi-u.ac.jp/archive-e.html], принадлежащие этому агентству, позволяющие с дискретностью 1 ч визуально проследить область распределения циклонического вихря.

Рис. 1. Комплексная карта траекторий движения тайфунов: треугольник — место расположения измерительного комплекса; черный круг — 00:00 (JST); белый круг — 12:00 (JST); жирная линия — линия начала воздействия циклонического вихря на полигон (35° с.ш.).

В соответствии с принятой системой были подготовлены осциллограммы и динамические спектрограммы, имеющие начальную точку при пересечении центральной области тайфуна принятой линии.

Обработка данных лазерных деформографов проводилась в нескольких диапазонах с целью выявить проявляющиеся инфразвуковые возмущения диапазона «голос моря» и определить зависимость их проявления.

Первоначально обработка данных с лазерных деформографов включала в себя совмещение данных с частотой дискретизации 1000 Гц за каждый час рассматриваемого временного промежутка в один большой файл, затем проводилось удаление скачков сбросов и анализ сигнала на возможные ошибки в работе установок. В заключение на данные деформографов был наложен низкочастотный фильтр Хэмминга длиной 1500 с граничной частотой 60 Гц и выполнена децимация рядов наблюдения до граничной частоты 60 Гц для выявления инфразвуковых возмущений в частотном диапазоне «голоса моря», и полосовой фильтр Хэмминга с граничными частотами от 0.05 до 0.5 Гц для поиска микросейсм, генерируемых морскими ветровыми волнами (волнами зыби), что позволило устранить избыточность объема данных и исключить влияния высокочастотных спектральных компонент.

ОПИСАНИЕ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В результате объединения данных и поиска зависимости появления сигналов «голоса моря» в данных лазерных деформографов было определено, что в основном это явление начинает наблюдаться во время нахождения центральной области низкого давления тайфунов еще в акватории Желтого моря.

Для каждого тайфуна были выделены три основных периода развития инфразвуковых колебаний: начало, максимальное возмущение и затухание. Приведем частотно-временные характеристики каждого из тайфунов.

Тайфун Болавен. Начало развития инфразвуковых колебаний в диапазоне от 6.5 до 10 Гц приходилось на 28 августа 2012 г. примерно в 12:00 (UTC). В это время центр тайфуна находился в районе измерительного полигона на широте 43° с. ш. с пиковой частотой 8.9 Гц.

Самая высокая активность инфразвуковых колебаний наблюдалась 29 августа в 06:00–07:00 [UTC], в момент, когда центр тайфуна ушел

вглубь материковой зоны и двигался на северовосток в сторону о. Сахалин, на широте 50° с. ш. с пиковой частотой 8.1 Гц.

Затухание инфразвуковых возмущений начиналось 29 августа примерно в 20:20 (UTC) в момент нахождения центра тайфуна около широты 53° с. ш., над о. Сахалин. Пиковая частота составляла 8.2 Гц.

Тайфун Санба. Начало развития инфразвуковых возмущений в диапазоне от 6.5 до 10 Гц приходилось на 17 сентября 2012 г. около 22:00 (UTC). Центр тайфуна в этот период находился над материковой частью Приморского края на широте 44°. Пиковая частота составляла 8.5 Гц.

Самая высокая мощность инфразвуковых возмущений наблюдалась 18 сентября в 8:00 (UTC) в момент, когда тайфун ушел на север Приморского края в районе 50° с.ш. с пиковой частотой 8.28 Гц.

Затухание колебаний началось 18 сентября около 17:00 (UTC). Вихрь тайфуна, уже практически рассеявшись, в этот период двигался на север в Охотское море. Пиковая частота составляла 8.5 Гц.

Тайфун Матмо. В спектрограммах инфразвуковых возмущений, генерируемых этим тайфуном, мы наблюдаем самые слабые проявления исследуемых сигналов в низкочастотном диапазоне, которые начали развиваться 26 июля 2014 г. около 10:00 (UTC) утра и имели примерно одинаковую интенсивность в течение всего временного промежутка его проявления. Центр тайфуна в этот период находился в Японском море ближе к о. Хоккайдо на широте 45° с. ш. Пиковая частота составляла 7.8 Гц. Полное затухание возмущений произошло 26 июля в 23:00 (UTC).

Тайфун Чан-хом. Начало развития инфразвуковых колебаний приходилось на 13 июля 2015 г. около 00:45 (UTC). Центр тайфуна в этот период находился над материковой частью Приморского края на широте 44° с. ш. Пиковая частота составляла 7.9 Гц.

Самая высокая активность инфразвуковых колебаний наблюдалась 13 июля в 10:00 (UTC) утра с пиковой частотой 7.8 Гц. Тайфун в этот период двигался на северо-восток в сторону Охотского моря.

Затухание произошло 13 июля около 19:30 (UTC) в момент нахождения центра тайфуна над Охотским морем с пиковой частотой 8.1 Гц.

В результате исследования синхронных спектрограмм данных наблюдения измерительных приборов и данных спутникового наблюдения,

Рис. 2. Динамические спектрограммы экспериментальных данных одного из лазерных деформографов, направленного по оси «север—юг», с длиной измерительного плеча 52.5 м в диапазоне «голоса моря», в периоды воздействия тайфунов на регион. Сверху вниз: тайфун Болавен, тайфун Санба, тайфун Матмо, тайфун Чан-хом.

на которых видно, что ветер в периоды проявлений колебаний в низкочастотном диапазоне был направлен в противоположную сторону остаточных волн зыби циклона, т. е. имела место интерференция противоположно направленных волн, что генерировало стоячие морские волны, что, в свою очередь, согласно работам [Табулевич, 2001; Запевалов, 2016] стало причиной образования инфразвуковых колебаний, которые были зафиксированы. Так же в работе [Bowen, 2003] проводятся подобные исследования возникновения инфразвуковых сигналов, связанных с прохождением тайфунов и влиянием на них поверхности океана.

В соответствии с данными о тайфунах, возбуждение инфразвуковых колебаний проявляется при движении тайфуна в направлении региона наблюдения и при нахождении его центральной области на расстоянии до 900 км от точки наблюдения.

В результате анализа траектории движения тайфунов были определены пространственновременные характеристики низкочастотного акустического влияния на регион и в соответствии с этим построены синхронные динамические спектрограммы данных лазерного деформографа в диапазоне частот от 3 до 15 Гц, представляющих проявление сигналов в диапазоне «голоса моря» на измерительном полигоне (рис. 2). Полученные спектрограммы иллюстрируют периоды проявления исследуемого сигнала при движении источника относительно измерительной системы. Проведено сравнение появления инфразвуковых возмущений на исследуемых частотах в соответствии с ветровым воздействием на полуостров, где расположен измерительный комплекс, и влияния морских волн зыби, вызванных тайфуном. Для этого были получены динамические спектрограммы лазерного деформографа в диапазоне частот от 0.01 до 0.5 Гц (рис. 3), демонстрирующие инфразвуковые

Рис. 3. Динамические спектрограммы экспериментальных данных одного из лазерных деформографов, направленного по оси «север—юг», с длиной измерительного плеча 52.5 м в диапазоне частот морского волнения, в периоды воздействия тайфунов на регион. Сверху вниз: тайфун Болавен, тайфун Санба, тайфун Матмо, тайфун Чан-хом.

сейсмические сигналы (микросейсмы), связанные с влиянием морского волнения на береговую линию в зоне перехода.

Подготовлены графики скорости ветра, синхронные по времени со спектрограммами сейсмических колебаний, зарегистрированные метеорологической станцией на МЭС м. Шульца, в период прохождения тайфунов (рис. 4). При сопоставлении этих данных были выделены импульсные возмущения инфразвукового диапазона частот, влияющие на весь низкочастотный спектр данных, происходящих во время превышения скорости ветра отметки 15 м/с, что вероятнее всего связано с резонансными явлениями при взаимодействии сильного ветра с сооружениями и постройками на мысе Шульца. Резонирующие частоты 8 и 11 Гц проявляются на лазерном деформографе «запад—восток», 12.3 и 14.3 Гц — на лазерном нанобарографе, и 12 Гц — на лазерном деформографе «север юг». Эти возмущения соответствуют началу ветрового влияния при подходе зоны низкого давления тайфуна к измерительному полигону.

Как известно, на внешней части тропического циклона наблюдается наиболее сильный ветер. Возникновение инфразвуковых возмущений «голоса моря» всегда происходит после начала действия тайфуна и продолжительного

Рис. 4. Осциллограммы скорости ветра в периоды воздействия тайфунов на регион.

времени (до суток) после прохода центральной зоны тайфуна далеко от области нахождения измерительного полигона.

В результате исследования частотно-временной зависимости генерируемого инфразвукового возмущения первоначально при проявлении сигналов «голоса моря» происходит удаление области его возбуждения от региона наблюдения, что подтверждается из теории эффекта Доплера, наблюдаемой в графиках зависимости проявления частоты от времени наблюдения, имеющей максимальную амплитуду, в общем шумовом диапазоне проявления (рис. 5). Графики частотно-временной зависимости были составлены по данным регистрации лазерных деформографов. В качестве характеристики изменения частоты на графиках приведены полиномиальные линии трендов.

По результатам комплексного анализа всех собранных данных, в области от западного побережья и к центральной части Японского моря, происходит генерация волн зыби с периодом от 12 с. Период морских волн постепенно уменьшается со временем при движении тайфуна в сторону Охотского моря. При прохождении центра основного вихря по материку в море возникает так называемый вихревой хвост, первоначально оказывающий ветровое влияние, начиная от западной части Японского моря, при входе тайфуна в его акваторию, к его центральной части. Далее вихревой хвост географически перемещается ближе к восточной части Японского моря и вытягивается по направлению к северной части моря. Данные этих наблюдений также получены при анализе данных спутникового

Рис. 5. Графики зависимости доминирующей частоты от времени и места нахождения центра тайфунов: (а) – Тайфун Болавен; (б) – Тайфун Санба.

наблюдения. При расположении вихревого хвоста по направлению юго-запад—северо-восток, происходит наибольшее взаимодействие возбуждаемого им ветра с волнами зыби и генерация сигналов «голоса моря», что подтверждает синхронность спектрограмм диапазона ветровых волн и диапазона «голоса моря».

Согласно выдвинутой теории [Табулевич, 2001] наиболее эффективная генерация акустического излучения в низкочастотном диапазоне происходит именно в ситуации, когда поле поверхностных волн является суперпозицией двух волновых систем, распространяющихся во встречных направлениях с близкими друг к другу доминантными частотами. Данный эффект возникает при взаимодействии ветровых волн и волн зыби, в основном, в тыловой части тайфунов, что подтверждается нашими наблюдениями.

При прохождении тайфуна Матмо в 2014 г., пространственное положение остаточного вихря было направлено от Корейского полуострова к Сангарскому проливу. В результате направление хвостового вихря, а соответственно и ветра, располагалось по линии запад—восток. В связи с этим на спектрограммах лазерного деформографа отмечено слабое влияние в диапазоне «голоса моря», в котором присутствует сигнал достаточно малой амплитуды.

выводы

На сейсмоакустико-гидрофизическом полигоне в Приморском крае были получены многолетние натурные наблюдения сейсмических и гидрометеорологических явлений. По результатам обработки полученных данных лазерных деформографов выявлено сейсмоакустическое воздействие в низкочастотном диапазоне четырех тайфунов на Дальневосточный регион России. После сопоставления комплексных динамических спектрограмм и осциллограмм экспериментальных данных был произведен их совместный анализ. Выявлена четкая взаимозависимость между колебаниями, вызванными морскими волнами зыби с инфразвуковыми колебаниями «голоса моря» в диапазоне 7-9 Гц. Определены локальные частотные шумы, вызванные скоростью и направлением ветра.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при частичной финансовой поддержке РФФИ (грант № 18-05-80011_ Опасные явления).

СПИСОК ЛИТЕРАТУРЫ

Андреев Н.Н. О голосе моря // Докл. АН СССР. 1939. Т. 23. № 7. С. 625.

Данные Японского метеорологического агентства о движении тропических циклонов за 2010–2018 [Электронный ресурс]. URL: http://www.jma.go.jp/jma/jma-eng/ jma-center/rsmc-hp-pub-eg/besttrack_viewer_2010s.html (дата обращения 15.04.2018).

Долгих Г.И., Батюшин Г.Н., Валентин Д.И., Долгих С.Г., Ковалёв С.Н., Корень И.А., Овчаренко В.В., Яковенко С.В. Сейсмоакустико-гидрофизический комплекс для мониторинга системы «атмосфера – гидросфера – литосфера» // Приборы и техника эксперимента. 2002. № 3. С. 120–122.

Долгих Г.И., Будрин С.С., Долгих С.Г, Овчаренко В.В., Чупин В.А., Швец В.А., Яковенко С.В. Морские внутренние волны и атмосферные депрессии // Докл. РАН. 2015. Т. 462. № 5. С. 601–604.

Долгих Г.И., Давыдов А.В. Изучение сейсмоакустических процессов лазерными деформографами // Оптика атмосферы и океана. 1993. Т. 6. № 7. С. 844–857.

Долгих Г.И., Привалов В.Е. Лазерная физика. Фундаментальные и прикладные исследования. 2016. Владивосток: изд-во «Рея». 343 с.

Долгих Г.И., Чупин В.А. Экспериментальная оценка преобразования гидроакустического излучения в сейсмоакустическую волну // Акустический журнал. 2005. Т. 51. № 5. С. 628–632.

Запевалов А.С. Моделирование спектра инфразвукового гидроакустического излучения, генерируемого морской поверхностью в штормовых условиях // Акустический журнал. 2016. Т. 62. № 5. С. 550–555.

Перепёлкин В.Г. Об опыте регистрации «голоса моря» в акватории черного моря // Изв. РАН. Физика атмосферы и океана. 2015. Т. 51. № 6. С. 716–728. Табулевич В.Н., Пономарев Е.А., Сорокин А.Г., Дреннова Н.Н. Стоячие океанские волны, микросейсмы и инфразвук. // Изв. РАН. Физика атмосферы и океана. 2001. Т. 37. № 2. С. 235–244.

Шулейкин В.В. О голосе моря // Докл. АН СССР. 1935. Т. 3 (8). № 6. С. 259.

Шулейкин В.В. Физика моря. Изд. 4. М.: Наука. 1968. С. 1083.

Bowen S.P., Richard J.C. Microseism and infrasound generation by cyclones // The Journal of the Acoustical Society of America. 2003. V. 113. No. 5. C. 2562–2573.

Blom P., Waxler R. Observations of the refraction of microbaroms generated by large maritime storms by the wind field of the generating storm // Journal of Geophysical Research: Atmospheres. 2014. V. 119. P. 7179–7192.

Dolgikh G.I. Pendulum-type laser strainmeter // Earthquake Science. 2015. V. 28. Iss. 4. P. 311–317.

Hetzer C.H., Waxler R., Gilbert K.E., Talmadge C.L., Bass H.E. Infrasound from hurricanes: Dependence on the ambient ocean surface wave field // Geophysical research letters. 2008. V. 35.

Himawari 8 Data Archive, GMS/GOES9/MTSAT Data Archive for Research and Education [Электронный реcypc]. URL: http://weather.is.kochi-u.ac.jp/archive-e.html (дата обращения 15.04.2018).

Longuet-Higgin M.S. A theory of the origin of microseism. Philosophical Transactions of the Royal Society of London. Series A // Mathematical and Physical Sciences.V. 243. № 857. (Sep. 27, 1950). P. 1–35.

Semenov A.G. On "Voice of Sea" Generation Mechanism // International Journal of Geosciences. 2013. № 4 C. 116–128.

Traer J. Low-frequency acoustic signature of hurricane Ernesto // The Journal of the Acoustical Society of America. 2008. V. 123. P. 3624.

Infrasound Strain Perturbations Caused by Typhoons

G. I. Dolgikh^{*a*,*}, V. A. Chupin^{*a*}, and E. S Gusev^{*a*}

^aV.I. Il'ichev Pacific Oceanological Institute, Far eastern Branch, Russian Academy of Sciences, Vladivostok, 690041 Russia

*e-mail: dolgikh@poi.dvo.ru

Received May 25, 2018

The paper addresses excitation of high-power infrasound disturbances in the 7-9 Hz frequency band associated with passage of tropical cyclones (typhoons) in the zone of operation of laser strainmeters installed at Cape Shultz in Primorskii krai.

Keywords: infrasound disturbances, tropical cyclones, laser strainmeters