Energy release in the atmosphere induced by the impact of meteoroids 20–200 meters in size

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The results of calculations of destruction, evaporation and deceleration of stony meteoroids with sizes from 20 to 200 meters in the Earth’s atmosphere are presented. The redistribution of thermal and kinetic energy between the condensed matter of the meteoroid, its vapors, and air is studied in detail. It is shown that when the size of the impactor is several tens of meters, the vaporized matter is not decelerated immediately, but flies along the trajectory for a long time, gradually transferring energy to the air. As a result, the main energy release in the atmosphere occurs at the stage of vapor jet deceleration, after the meteoroid and its fragments have completely vaporized.

Full Text

Restricted Access

About the authors

V. V. Shuvalov

Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences

Author for correspondence.
Email: shuvalov@idg.ras.ru
Russian Federation, Moscow

O. P. Popova

Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences

Email: shuvalov@idg.ras.ru
Russian Federation, Moscow

D. O. Glazachev

Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences

Email: shuvalov@idg.ras.ru
Russian Federation, Moscow

References

  1. Авилова И.В., Биберман Л.М., Воробьев В.С. и др. Оптические свойства горячего воздуха. М.: Наука. 1970. 320 с.
  2. Бронштэн В.А. Физика метеорных явлений. М.: Наука. 1981. 416 с.
  3. Григорян С.С. О движении и разрушении метеоритов в атмосферах планет // Космические исследования. 1979. Т. 17. № 6. С. 875–893.
  4. Косарев И.Б. Расчет термодинамических и оптических свойств паров вещества космических тел, вторгающихся в атмосферу Земли // Инженерно-физический журн. 1999. Т. 72. № 6. С. 1067–1075.
  5. Кузнецов Н.М. Термодинамические функции и ударные адиабаты воздуха при высоких температурах. М.: Машиностроение. 1965. 463 с.
  6. Шувалов В.В., Трубецкая И.А. Гигантские болиды в атмосфере Земли // Астрономический вестник. 2007. Т. 41. № 3. С. 241–251.
  7. Шувалов В.В., Иванов Б.А. Трехмерное моделирование торможения астероида в атмосфере Венеры // Динамические процессы в геосферах. 2023. Т. 15. № 1. С. 54–62.
  8. Шувалов В.В., Иванов Б.А. Ударные структуры на Венере как результат разрушения астероидов в атмосфере // Астрономический вестник. 2024. Т. 56. № 2. С. 241–251 .
  9. Boslough M.B., Crawford D.A. Shoemaker-Levy 9 and plume-forming collisions on Earth. Near-Earth Objects / Remo J.L. (ed.). New York: N.Y. Academy of Sciences. 1997. P. 236–282.
  10. Boslough M.B.E., Crawford D.A. Low-altitude airbursts and the impact threat // International Journal of Impact Engineering. 2008.V. 35. № 12. P. 1441–1448.
  11. Chyba C.F., Thomas P.J., Zahnle K.J. The 1908 Tunguska explosion: atmospheric disruption of a stony asteroid // Nature. 1993. V. 361. № 6407. P. 40–44.
  12. Crawford D.A., Boslough M.B., Trucano T.G., Robinson A.C. The impact of Comet Shoemaker-Levy 9 on Jupiter // Shock Waves. 1994. V. 4. № 1. P. 47–50.
  13. Hills J.H., Goda M.H. The fragmentation of small asteroids in the atmosphere // Astronomical J. 1993. V. 105. № 3. P. 1114–1144.
  14. Korycansky D.G., Zahnle K.J., Mac Low M.-M. High-resolution simulations of the impacts of asteroids into the Venusian atmosphere II: 3D models // Icarus. 2002. V. 157. P. 1–23.
  15. Shuvalov V.V. Multi-dimensional hydrodynamic code SOVA for interfacial flows: Application to thermal layer effect // Shock Waves. 1999. V. 9. № 6. P. 381–390.
  16. Shuvalov V.V., Artem’eva N.A., Kosarev I.B. 3D hydrodynamic code SOVA for multimaterial flows, application to Shoemaker-Levy 9 comet impact problem // Int. J. Impact Engineering. 1999. V. 23. P. 847–858.
  17. Shuvalov V.V., Artemieva N.A. Numerical modeling of Tunguska-like impacts // Planetary and Space Science. 2002. V. 50. P. 181–192.
  18. Shuvalov V.V., Ivanov B.A. Impact Structures on Venus as a Result of Asteroid. Destruction in the Atmosphere // Solar System Research. 2024. V. 58. № 2. P. 220–230.
  19. Svetsov V.V., Nemtchinov I.V., Teterev A.V. Disintegration of Large Meteoroids in Earth’s atmosphere: Theoretical models // Icarus. 1995. V. 116. № 1. P. 131–153.
  20. Shuvalov V.V., Trubetskaya I.A. Аerial bursts in the terrestrial atmosphere // Solar System Research. 2007. V. 41. № 3. P. 220–230.
  21. Thompson S.L., Lauson H.S. Improvements in the Chart-D radiation hydrodynamic code III: Revised analytical equation of state. Rep. SC-RR-71 0714. Albuquerque, NM: Sandia Laboratories. 1972. 119 p.
  22. Zahnle K.J., Mac-Low M.M. The Collision of Jupiter and Comet Shoemaker-Levy 9 // Icarus. 1994. V. 108. № 1. P. 1–17.
  23. Zahnle K.J. Airburst origin of dark shadows on Venus // J. Geophysical Research. 1992. V. 97. № E6. P. 10243–10255.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distributions of condensed meteoroid matter (shown in black), meteoroid vapor (shown in dark gray) and shock-compressed air (shown in light gray) during the flight of a meteoroid with a diameter of 50 m at different altitudes H. All distances are given in km.

Download (280KB)
3. Fig. 2. Temperature distributions in kK during the flight of a meteoroid with a diameter of 50 m at different altitudes H. All distances are indicated in km.

Download (303KB)
4. Fig. 3. Dependences on the flight altitude H of the energy of a meteoroid or its fragments (thin black line), the total (thick gray line) and kinetic along the trajectory (dashed thick gray line) energy of vapors, the total (thin gray line) and kinetic along the trajectory (dashed thin gray line) energy of shock-compressed air and the velocity of the meteoroid (thick black line) during the fall of meteoroids of size D = 20 m (a), D = 50 m (b) and D = 120 m (c). All energies are related to the initial energy of the meteoroid Em0, and the velocity is related to the initial velocity of the meteoroid.

Download (194KB)
5. Fig. 4. Dependences on the flight altitude H of the intensity of energy loss by meteoroids with an initial size D = 20 m (a) and 50 m (b) dEm/dH (thick black lines) and the intensity of energy release in the air dEα/dH (thick gray lines). Em(H) and Eα(H) are the dependences of the energy of the condensed matter of the meteoroid Em and air Eα on the flight altitude H. The thin black curves show the distribution of air energy by altitude H at the moment when the vapors slowed down. All energies are related to the initial energy of the meteoroid Em0.

Download (139KB)
6. Fig. 5. Dependences on the initial diameter of the impactor: (a) — the relative energy of the meteoroid or its fragments Em/Em0 (thin curves) and the relative energy of the meteoroid vapor Ev/Em0 (thick curves); (b) — the relative effective diameter D/D0 of the asteroid (or cloud of its fragments and/or vapors) at the moment of impact on a solid surface. The black curves show the results of calculations for an incidence angle of 45°, the gray ones — 90°.

Download (195KB)

Copyright (c) 2025 Russian academy of sciences