Energy release in the atmosphere induced by the impact of meteoroids 20–200 meters in size
- Authors: Shuvalov V.V.1, Popova O.P.1, Glazachev D.O.1
-
Affiliations:
- Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences
- Issue: No 2 (2025)
- Pages: 179-186
- Section: Articles
- URL: https://journals.eco-vector.com/0002-3337/article/view/686376
- DOI: https://doi.org/10.31857/S0002333725020146
- EDN: https://elibrary.ru/DMYKII
- ID: 686376
Cite item
Abstract
The results of calculations of destruction, evaporation and deceleration of stony meteoroids with sizes from 20 to 200 meters in the Earth’s atmosphere are presented. The redistribution of thermal and kinetic energy between the condensed matter of the meteoroid, its vapors, and air is studied in detail. It is shown that when the size of the impactor is several tens of meters, the vaporized matter is not decelerated immediately, but flies along the trajectory for a long time, gradually transferring energy to the air. As a result, the main energy release in the atmosphere occurs at the stage of vapor jet deceleration, after the meteoroid and its fragments have completely vaporized.
Keywords
Full Text

About the authors
V. V. Shuvalov
Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences
Author for correspondence.
Email: shuvalov@idg.ras.ru
Russian Federation, Moscow
O. P. Popova
Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences
Email: shuvalov@idg.ras.ru
Russian Federation, Moscow
D. O. Glazachev
Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences
Email: shuvalov@idg.ras.ru
Russian Federation, Moscow
References
- Авилова И.В., Биберман Л.М., Воробьев В.С. и др. Оптические свойства горячего воздуха. М.: Наука. 1970. 320 с.
- Бронштэн В.А. Физика метеорных явлений. М.: Наука. 1981. 416 с.
- Григорян С.С. О движении и разрушении метеоритов в атмосферах планет // Космические исследования. 1979. Т. 17. № 6. С. 875–893.
- Косарев И.Б. Расчет термодинамических и оптических свойств паров вещества космических тел, вторгающихся в атмосферу Земли // Инженерно-физический журн. 1999. Т. 72. № 6. С. 1067–1075.
- Кузнецов Н.М. Термодинамические функции и ударные адиабаты воздуха при высоких температурах. М.: Машиностроение. 1965. 463 с.
- Шувалов В.В., Трубецкая И.А. Гигантские болиды в атмосфере Земли // Астрономический вестник. 2007. Т. 41. № 3. С. 241–251.
- Шувалов В.В., Иванов Б.А. Трехмерное моделирование торможения астероида в атмосфере Венеры // Динамические процессы в геосферах. 2023. Т. 15. № 1. С. 54–62.
- Шувалов В.В., Иванов Б.А. Ударные структуры на Венере как результат разрушения астероидов в атмосфере // Астрономический вестник. 2024. Т. 56. № 2. С. 241–251 .
- Boslough M.B., Crawford D.A. Shoemaker-Levy 9 and plume-forming collisions on Earth. Near-Earth Objects / Remo J.L. (ed.). New York: N.Y. Academy of Sciences. 1997. P. 236–282.
- Boslough M.B.E., Crawford D.A. Low-altitude airbursts and the impact threat // International Journal of Impact Engineering. 2008.V. 35. № 12. P. 1441–1448.
- Chyba C.F., Thomas P.J., Zahnle K.J. The 1908 Tunguska explosion: atmospheric disruption of a stony asteroid // Nature. 1993. V. 361. № 6407. P. 40–44.
- Crawford D.A., Boslough M.B., Trucano T.G., Robinson A.C. The impact of Comet Shoemaker-Levy 9 on Jupiter // Shock Waves. 1994. V. 4. № 1. P. 47–50.
- Hills J.H., Goda M.H. The fragmentation of small asteroids in the atmosphere // Astronomical J. 1993. V. 105. № 3. P. 1114–1144.
- Korycansky D.G., Zahnle K.J., Mac Low M.-M. High-resolution simulations of the impacts of asteroids into the Venusian atmosphere II: 3D models // Icarus. 2002. V. 157. P. 1–23.
- Shuvalov V.V. Multi-dimensional hydrodynamic code SOVA for interfacial flows: Application to thermal layer effect // Shock Waves. 1999. V. 9. № 6. P. 381–390.
- Shuvalov V.V., Artem’eva N.A., Kosarev I.B. 3D hydrodynamic code SOVA for multimaterial flows, application to Shoemaker-Levy 9 comet impact problem // Int. J. Impact Engineering. 1999. V. 23. P. 847–858.
- Shuvalov V.V., Artemieva N.A. Numerical modeling of Tunguska-like impacts // Planetary and Space Science. 2002. V. 50. P. 181–192.
- Shuvalov V.V., Ivanov B.A. Impact Structures on Venus as a Result of Asteroid. Destruction in the Atmosphere // Solar System Research. 2024. V. 58. № 2. P. 220–230.
- Svetsov V.V., Nemtchinov I.V., Teterev A.V. Disintegration of Large Meteoroids in Earth’s atmosphere: Theoretical models // Icarus. 1995. V. 116. № 1. P. 131–153.
- Shuvalov V.V., Trubetskaya I.A. Аerial bursts in the terrestrial atmosphere // Solar System Research. 2007. V. 41. № 3. P. 220–230.
- Thompson S.L., Lauson H.S. Improvements in the Chart-D radiation hydrodynamic code III: Revised analytical equation of state. Rep. SC-RR-71 0714. Albuquerque, NM: Sandia Laboratories. 1972. 119 p.
- Zahnle K.J., Mac-Low M.M. The Collision of Jupiter and Comet Shoemaker-Levy 9 // Icarus. 1994. V. 108. № 1. P. 1–17.
- Zahnle K.J. Airburst origin of dark shadows on Venus // J. Geophysical Research. 1992. V. 97. № E6. P. 10243–10255.
Supplementary files
