Receiver function seismology

Cover Page

Cite item

Full Text

Abstract

The application results of the receiver function technique are briefly outlined. The topography of the main seismic boundaries in the mantle transition zone is evaluated with resolution of about 3 km in depth and about 200 km laterally. The maximal amplitudes of depth variations of the main boundaries reach tens of kilometers. The mantle transition zone thinning in the hot spots and the respective increase in temperature by ~100 °C is established. In several regions, two low-velocity layers are revealed in the mantle transition zone, one directly above the 410-km seismic discontinuity and another at a depth of 450 to 500 km. The origin of the first layer is associated with dehydration in the mantle plumes during olivine – walesite phase transformation. The increase in the S-wave velocity at the base of the second layer can explain the observations of the so-called 520-km boundary. The traditional approach to studying the structure of the crust and upper mantle is from surface waves. Receiver functions can provide higher resolution at the same depths when a combination of P- and S-wave receiver functions is used. This type of results was obtained for Fennoscandia, Kaapvaal craton, Indian shield, Central Tien Shan, Baikal rift zone, the Azores, Cape Verde Islands, and the western Mediterranean. S-receiver functions were used in the studies of the lunar crust. The joint P- and S-receiver function inversion provides robust estimates of the parameters of seismic boundaries including weak discontinuities such as the lithosphere – asthenosphere interface of cratons. The parameters determined from receiver functions include the P- to S-wave velocity ratio. In a few regions, a very high (> 2.0) velocity ratio is observed in the lower crust, probably indicating the presence of a fluid with high pore pressure. Receiver functions allow estimating the parameters of azimuthal anisotropy as a function of depth. The changes of the parameters with depth make it possible to distinguish the active anisotropy associated with recent deformations from the frozen anisotropy – the effect of the past tectonic processes.

About the authors

L. P. Vinnik

Institute of the Earth Physics of the Russian Academy of Sciences

Author for correspondence.
Email: vinnik@ifz.ru
Russian Federation, Bolshaya Gruzinskaya str., 10-1, Moscow 123242, Russia

References

  1. Винник Л.П., Косарев Г.Л., Макеева Л.И. Анизотропия литосферы по наблюдениям волн SKS и SKKS // Докл. АН СССР. 1984. Т. 278. № 6. С. 1335–1339.
  2. Винник Л.П., Орешин С.И., Цыдыпова Л.Р., Мордвинова В.В., Кобелев М.М., Хритова М.А., Тубанов Ц.А. Кора и мантия Байкальской рифтовой зоны по данным приемных функций продольных и поперечных волн // Геодинамика и тектонофизика. 2017. Т. 8. № 4. С. 695–709.
  3. Винник Л.П., Эрдуран М., Орешин С.И., Косарев Г.Л., Кутлу Ю.А., Чакир О., Киселев С.Г. Совместное обращение P- и S-приемных функций и дисперсионных кривых волн Рэлея: результаты для Центрального Анатолийского Плато // Физика Земли. 2014. № 5. С. 33–43.
  4. Хu W., Lithgow-Bertelloni C., Stixrude L., Ritsema J. The effect of bulk composition and temperature on mantle seismic structure // Earth Planet. Sci. Lett. 2008. V. 275. P. 70–79.
  5. Berkhout A.J. Least-squares inverse filtering and wavelet deconvolution // Geophysics. 1977. V. 42. P. 1369–1383.
  6. Chevrot S., Vinnik L., Montagner J.-P. Clobal-scale analysis of the mantle Pds phases // J. Geoph. Res. 1999. V.104 (B9). P. 20, 203–20,219.
  7. Deverchere J., Petit C., Gileva N., Radziminovitch N., Melnikova V. Depth distribution of earthquakes in the Baikal rift system and its implications for the rheology of the lithosphere // Geophys.J. Int. 2001. V. 146 (3). P. 714–730.
  8. Du Z., Vinnik L.P., Foulger G.R. Evidence from P-to-S mantle converted waves for a flat “660-km” discontinuity beneath Iceland // Earth Planet. Sci. Lett. 2006. V. 241 (1). P. 271–280.
  9. Dziewonski A.M., Anderson D.L. Preliminary reference Earth model // Phys. Earth Planet Int. 1981. V. 25 (4). P. 297–356.
  10. Epov M.I., Pospeeva E.V., Vitte L.V. Crust structure and composition in the southern Siberian craton (influence zone of Baikal rifting) // Russian Geology and Geophysics. 2012. V. 53 (3). P. 293–306.
  11. Farra V., Vinnik L. Upper mantle stratification by P and S receiver functions // Geophys.J. Int. 2000. V. 141 (3). P. 699–712.
  12. Gaherty J.B., Jordan T.H. Lehmann discontinuity as the base of an anisotropic layer beneath continents // Science. 1995. V. 268 (5216). P. 1468–1471.
  13. Hier-Majumder S., Courtier A. Seismic signature of small melt fraction atop the transition zone // Earth Planet. Sci. Lett. 2011. V. 308 (3). P. 334–342.
  14. Jordan T.H. Composition and development of the continental tectosphere // Nature. 1978. V. 274. P. 544–548.
  15. Karato S.-I., Bercovici D., Leahy G., Richard G., Jing Zh. The transition-zone water filter model for global material circulation: where do we stand? Earth’s Deep Water Cycle. Geophysical Monograph Series. AGU / Eds Jakobsen S.D., Van Der Lee S., Washington D.C.V.168. 2006. P. 289–313.
  16. Katsura T., Ito E. The system Mg2SiO4–Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel //
  17. J. Geophys. Res. 1989. V. 94. P. 15, 663–15, 670. doi: 10.1029/JB094 iB11 p15663
  18. Keshav S., Gudfinnsson G.H., Presnall D.C. Melting phase relations of simplified carbonated peridotite at 12–26 GPa in the systems CaO–MgO–SiO2–CO2 and CaO–MgO–Al2 O3–SiO2–CO2: highly calcic magmas in the transition zone of the Earth // Journal of Petrology. 2011. V. 52 (11). P. 2265–2291.
  19. Kosarev G.L., Oreshin S.I., Vinnik l.P., Makeyeva L.I. Mantle transition zone beneath the central Tien Shan: Lithospheric delamination and mantle plumes // Tectonophysics. 2018. V. 723. P. 172–177.
  20. Kraft H., Vinnik L., Thybo H. Mantle transition zone beneath central-eastern Greenland: Possible evidence for a deep tectosphere from receiver functions // Tectonophysics. 2018. V. 728–729. P. 34–40.
  21. Lehmann I. S and structure of the upper mantle // Geophys. J.R. Astr. Soc. 1961. V. 4. P. 124–138.
  22. Morais I., Vinnik L., Silveira G., Kiselev S., Matias L. Mantle beneath the Gibraltar Arc from receiver func¬tions // Geophys. J. Int. 2015. V. 200 (2). P. 1155–1171.
  23. Mosegaard K., Vestergaard P.D. A Simulated Annealing Approach to Seismic Model Optimization with Sparse Prior Informaion // Geophysical Prospecting. 1991. V. 39 (5). P. 599–611.
  24. Phinney R.A. Structure of the Earth’s crust from spectral behavior of long‐period body waves // J. Geophys. Res. 1964. V. 69 (14). P. 2997–3017.
  25. Silveira G., Vinnik L., Stutzmann E., Farra V., Kiselev S., Morais I. Stratification of the Earth beneath the Azores from P and S receiver functions // Earth Planet. Sci. Lett. 2010. V. 299. P. 91–103.
  26. Vinnik L.P., Green R.W.E., Nicolaysen L.O. Recent deformation of the deep continental root beneath southern Africa // Nature. 1995. V. 375. P. 50–52. doi: 10.1038/375050 a0.
  27. Vinnik L., Chenet H., Gagnepain-Beyneix J., Lognonne Ph. First seismic receiver functions on the Moon // Geophys. Res. Lett. 2001. V. 28 (15). P. 3031–3034.
  28. Vinnik L., Farra V. Low S velocity atop the 410-km discontinuity and mantle plumes // Earth Planet. Sci. Lett. 2007. V. 262. P. 398–412. doi: 10.1016/j.epsl.2007.07.051
  29. Vinnik L., Kiselev S., Weber M., Oreshin S., Makeyeva L. Frozen and active seismic anisotropy beneath southern Africa // Geoph. Res. Lett. 2012b. V. 39. L08301. doi: 10.1029/2012 GL051326
  30. Vinnik L., Kozlovskaya E., Oreshin S., Kosarev G., Piiponen K., Silvennoinen H. The lithosphere, LAB, LVZ and Lehmann discontinuity under central Fennoscandia from receiver functions // Tectonophysics. 2016. V. 667. P. 189–198.
  31. Vinnik L., Kurnik E., Farra V. Lehmann discontinuity beneath North America: no role for seismic anisotropy // Geoph. Res. Lett. 2005. V. 32. L09306. doi: 10.1029/2004 GL022333
  32. Vinnik L., Silveira G., Kiselev S., Farra V., Weber M., Stutzmann E. Cape Verde hotspot from the upper crust to the top of the lower mantle // Earth Planet. Sci. Lett. 2012a. V. 319. P. 259–268.
  33. Vinnik L., Singh A., Kiselev S., Ravi Kumar M. Upper mantle beneath foothills of the western Himalaya: subducted lithospheric slab or a keel of the Indian shield? // Geophys. J. Int. 2007. V. 171 (3). P. 1162–1171.
  34. Vinnik L.P. Detection of waves converted from P to SV in the mantle // Phys. Earth Planet. Inter. 1977. V. 15 (1). P. 39–45.
  35. Vinnik L.P., Green R.W.E., Nicolaysen L.O. Seismic constraints on dynamics of the mantle of the Kaap¬vaal craton // Phys. Earth Planet. Inter. 1996a. V. 95 (3). P. 139–151.
  36. Vinnik L.P., Green R.W.E., Nicolaysen L.O., Kosarev G.L., Petersen N.V. Deep seismic structure of the Kaapvaal craton // Tectonophysics. 1996b. V. 262 (1). P. 67–75.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies