Subpollen particles as atmospheric cloud condensation nuclei

Cover Page

Cite item

Full Text

Abstract

Bioparticles represent a significant fraction of the total atmospheric aerosol. Their size range varies from nanometers (macromolecules) to hundreds of micrometers (plant pollen, vegetation residues) and like other atmospheric aerosol particles, the degree of involvement of bioaerosols in atmospheric processes largely de- pends on their hygroscopic and cloud condensation nuclei properties. In this paper the ability of the pine, birch and rape subpollen particles to act as cloud condensation nuclei are considered. Submicron particles were obtained by aqueous extraction of biological material from pollen grains and subsequent solidification of the atomized liquid droplets. The parameters of cloud activation are determined in the size range of 20-270 nm in the range of water vapor supersaturations 0.1-1.1%. Based on experimental results, the hygroscopicity parameter, characterizing the effect of the chemical composition of the subparticles on their con- densation properties, is determined. The range of the hygroscopic parameter changes was 0.12-0.13. In general, the results of measurements showed that the condensation activity of the subpollen particles is comparable with the condensation activity of secondary organic aerosols and weakly depends on the type of the primary pollen.

About the authors

E. F. Mikhailov

Saint Petersburg State University

Author for correspondence.
Email: eugene.mikhailov@spbu.ru
Russian Federation, Universitetskaya nab., 7/9, Saint Petersburg, 199034

O. A. Ivanova

Saint Petersburg State University

Email: eugene.mikhailov@spbu.ru
Russian Federation, Universitetskaya nab., 7/9, Saint Petersburg, 199034

E. Yu. Nebosko

Saint Petersburg State University

Email: eugene.mikhailov@spbu.ru
Russian Federation, Universitetskaya nab., 7/9, Saint Petersburg, 199034

S. S. Vlasenko

Saint Petersburg State University

Email: eugene.mikhailov@spbu.ru
Russian Federation, Universitetskaya nab., 7/9, Saint Petersburg, 199034

T. I. Ryshkevich

Saint Petersburg State University

Email: eugene.mikhailov@spbu.ru
Russian Federation, Universitetskaya nab., 7/9, Saint Petersburg, 199034

References

  1. Jaenicke R. Abundance of cellular material and proteins in the atmosphere // Science. 2005. V. 308. P. 73.
  2. Borodulin A.I., Safatov A.S., Belan B.D., Panchenko M.V. The height distribution and seasonal variations of the tropospheric aerosol biogenic component concentration on the south of western Siberia // J. Aerosol Sci. 2003. V. 34. Suppl.1. P. 681.
  3. Manninen H.Е., Back J., Sinto-Nissila S.-L. et al. Patterns in airborne pollen and other primary biological aerosol particles (PBAP), and their contribution to aerosol mass and number in a boreal forest // Boreal Environ. Research. 2014. V. 19 (suppl. B). P. 383–405.
  4. Sofiev M, Siljamo P., Ranta P., et al. Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study // Int. J. Biometeorol. 2006. V. 50. P. 392–402.
  5. Möhler O., DeMott P.J., Vali G., et al. Microbiology and atmospheric processes: the role of biological particles in cloud physics // Biogeosciences. 2007. V. 4. P. 1059–1071.
  6. Pöschl U., Martin S.T., Sinha B., et al. Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon // Science. 2010. V. 329. P. 1513–1515.
  7. DeMott P.J., Möhler O., Stetzer O., et al. Resurgence in ice nuclei measurement research. Bull. Am. Meteorol. Soc. // 2011. V. 92. P. 1623–1635.
  8. Morris C.E., Conen F., Huffman J.A. Bioprecipitation: a feedback cycle linking Earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere // Global Change Biology. 2014. V. 20. P. 341–351.
  9. Pope F.D. Pollen grains are efficient cloud condensation nuclei // Environ. Res. Lett. 2010. V. 5. 044015.
  10. Hoose C.O., Möhler O. Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments // Atmos. Chem. Phys. 2012. V. 12. P. 9817–9854.
  11. Hoose C., Kristjansson J.E., Burrows S.M. How important is biological ice nucleation in clouds on a global scale? // Environ. Res. Lett. 2010. V. 5. 024009.
  12. Spracklen D.V., Carslaw K.S., Merikanto J., et al. Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation // Atmos. Chem. Phys. 2010. V. 10. P. 4775–4793.
  13. Sesartic A., Lohmann U., Storelvmo T. Modelling the impact of fungal spore ice nuclei on clouds and precipitation // Environ. Res. Lett. 2013. V. 8. 014029.
  14. Solomon W.R. Airborne pollen: A brief life // J Allergy Clin. Immunol. 2002. V. 109. P. 895–900.
  15. Grote M., Vrtala S., Niederberger V., et al. Release of allergen-bearing cytoplasm from hydrated pollen: A mechanism common to a variety of grass (Poaceae) species revealed by electron microscopy // J. Allerg. Clin. Immunol., 2001. V. 108. P. 109–115.
  16. Taylor P.E., Flagan R.C., Miguel A.G., et al. Birch pollen rupture and the release of aerosols of respirable allergens // Clin. Exp. Allergy, 2004. V. 34. P. 1591–1596.
  17. Pummer B.G., Bauer H., Bernardi J., et al. Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen // Atmos. Chem. Phys., 2012, V. 12. P. 2541–2550.
  18. Augistin S., Wex H., Niedermeier D., et al. Immersion freezing of birch pollen washing water // Atmos. Chem. Phys. 2013. V. 13. P. 10989–11003.
  19. O´Sullivan D., Murray B.J., Ross J.F., et al. The relevance of nanoscale biological fragments for ice nucleation in clouds // Scientific reports. 2015. V. 5. 8082.
  20. Steiner A.L., Brooks S.D., Deng C., et al. Pollen as atmospheric cloud condensation nuclei // Geophys. Res. Lett., 2015. V. 42. P. 3596–3602.
  21. Roberts G.C., Nenes A. A Continuous-Flow Streamwise Thermal-Gradient CCN Chamber for Atmospheric Measurements // Aerosol Sci. Technol. 2005. V. 39. P. 206–221.
  22. Rose D., Gunthe S.S., Mikhailov E., et al. Calibration and measurement of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment // Atmos. Chem. Phys. 2008. V. 8. P. 1153–1179.
  23. Михайлов Е.Ф., Иванова О.А., Власенко С.С. и др. тИзмерения конденсационной активности ядер Айткена в пригороде Санкт-Петербурга // Известия РАН. Физика атмосферы и океана. 2017. T. 53. № 3. С. 326–333.
  24. Frank G.P., Dusek U., Andreae M.O. Technical note: A method for measuring size-resolved CCN in the atmosphere // Atmos. Chem. Phys. Discuss. 2006. V. 6. № 3. 4879–4895.
  25. Rose D., Nowak A., Achtert P., et al. Cloud condensation nuclei in polluted air and biomass burning smoke near the megacity Guangzhou, China — Part 1: Sizeresolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity // Atmos. Chem. Phys. 2010. V. 10. P. 3365–3383.
  26. Petters M.D., Kreidenweis S.M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity // Atmos. Chem. Phys. 2007. V. 7. P. 1961–1971.
  27. Andreae M.O., Rosenfeld D. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloudactive aerosols // Earth-Sci. Rev. 2008. V. 89. P. 13–41.
  28. Levin E.J.T., Prenni A.J., Petters M.D., et al. An annual cycle of size-resolved aerosol hygroscopicity at a forested site in Colorado // J. Gephys. Res. 2012. V. 117. D06201, doi: 10.1029/2011JD016854
  29. Mikhailov E.F., Mironov G.N., Pöhlker C., et al. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign // Atmos. Chem. Phys. 2015. V. 15. P. 8847–8869.
  30. Pöhlker M., Pöhlker C., Ditas F., et al. Long-term observations of cloud condensation nuclei in the Amazon rain forest — Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction // Atmos. Chem. Phys. 2016. V. 16. P. 15709–15740.
  31. Pringle K.J. Tost H., Pozzer A., et al. Global distribution of the effective aerosol hygroscopicity parameter for CCN activation // Atmos. Chem. Phys. 2010. V. 10. P. 5241–5255.
  32. Franchi G.G., Bellani L., Nepi M., et al. Types of carbohydrate reserves in pollen: localization, systematic distribution and ecophysiological significance // Flora. 1996. V. 191. P. 143–159.
  33. Pacini E., Guarnieri M., Nepi M. Pollen carbohydrates and water content during development, presentation, and dispersal: a short review // Protoplasma. 2006.ьV. 228. P. 73–77.
  34. Suphioglu C., Singh M.B., Taylor P., et al. Mechanism of grass-pollen-induced asthma // The Lancet. 1992. V. 339. P. 569–572.
  35. Pöhlker C., Huffman J.A., Förster J.-D. et al. Autofluorescence of atmospheric bioaerosols: spectral fingerprints and taxonomic trends of pollen // Atmos. Meas. Tech., 2013. V. 6. P. 3369–3392.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies