ОСОБЕННОСТИ РАСПРЕДЕЛЕНИЯ СН₄ И СО₂ В ОСАДКАХ АРКТИЧЕСКИХ МОРЕЙ

© 2023 г. В. С. Севастьянов^{*a*, *}, В. Ю. Федулова^{*a*}, О. В. Кузнецова^{*a*}, С. Г. Наймушин^{*a*}, Н. В. Душенко^{*a*}, В. С. Федулов^{*a*}, А. П. Кривенко^{*a*}, А. И. Малова^{*a*}, Е. А. Ткаченко^{*a*}

^аИнститут геохимии и аналитической химии им. В.И. Вернадского РАН, ул. Косыгина, 19, Москва, 119991 Россия *e-mail: vsev@geokhi.ru

Поступила в редакцию 01.04.2022 г. После доработки 08.08.2022 г. Принята к публикации 24.08.2022 г.

Проведено исследование распределения концентраций CH_4 и CO_2 и других газов в осадках Карского, Лаптевых и Восточно-Сибирского морей. Установлено, что существует корреляция между CH_4 и CO_2 в большинстве колонок морских осадков. Коэффициент корреляции *R* для осадков Карского моря варьируется в диапазоне от 0.58 до 0.97 и не зависит от характера распределения газов по глубине осадка. Предположительно, в морских осадках метаногенез, сопряженный с сульфатредукцией, и гидрогенотрофный метаногенез приводят к росту концентрации CH_4 на фоне высокой концентрации CO_2 . Наличие большой концентрации диметилсульфида в осадках свидетельствует о параллельном образовании CH_4 и CO_2 в результате метилотрофного метаногенеза с участием CH_3SCH_3 . В верхних слоях осадка могут наблюдаться противоположные закономерности распределения концентраций газов CH_4 и CO_2 . То, что коэффициенты корреляции газов CH_4 и CO_2 для осадков моря Лаптевых могут иметь отрицательные и положительные значения, вероятно, обусловлено тем, что в верхних слоях осадка, захваченного короткими колонками, процессы газообразования идут иначе, по сравнению с глубокими слоями.

Ключевые слова: морские осадки, море Лаптевых, Карское море, метан, сиповые поля, углерод, изотопный состав

DOI: 10.31857/S0016752523020085, EDN: CKYTGR

ВВЕДЕНИЕ

Несмотря на многочисленные исследования органического вещества (OB) и газов осадков арктических морей (Галимов и др., 2006; Галимов, Кодина, 1982; Леин и др., 2007; Леин и др., 2012; Coffin et al., 2013; Semenov et al., 2020; Stein et al., 2003), до сих пор процессы образования газов в морских осадках остаются малоизученными. Известно, что в верхних горизонтах донных осадков протекают аэробные процессы, в нижних анаэробные. CH_4 и CO_2 являются конечными продуктами разложения органических веществ.

В зависимости от геохимических условий, процессы сульфат-редукции и метаногенеза могут идти как параллельно, так и замедлять друг друга. Например, при образовании CH₄ путем ферментации ацетата процессы сульфат-редукции и метаногенеза идут параллельно. Конкуренция возникает, если единственным процессом, контролирующим метаногенез, является восстановление CO₂ водородом, а количество сульфатионов достаточно для образования сероводорода (Федоров и др., 2007). Известно, что в анаэробных условиях может происходить окисление метана консорциумом метанотрофных архей и сульфатредуцирующих бактерий (Каллистова и др., 2017; Knittel, Boetius, 2009; Hoehler et al., 1994; Boetius et al., 2000), но метаболизм данного процесса и факторы, контролирующие скорость окисления не до конца понятны.

В работе (Whelan, 1974) было показано, что распределение концентраций CH_4 и CO_2 в прибрежных болотных осадках южной Луизианы зависело от происходящих микробиологических процессов. На севере болот торфяные осадки покрыты пресной водой. На юге болотные осадки покрыты солоноватой водой, которая образуется в результате смешения пресной и морской воды. Наблюдалось схожее распределение концентраций CH_4 и CO_2 по колонке осадков на севере болот.

В ходе южнокорейской экспедиции ARA09C в 2018 г. была получена положительная корреляция концентраций CH_4 и CO_2 по колонке осадка станции AM01 в Чукотском море (Kim et al., 2020).

Рис. 1. Станции пробоотбора донных осадков 69-го, 72-го, 76-го и 81-го рейсов НИС "Академик Мстислав Келдыш" в 2017–2020 г. в Карском море. (Масштаб 1 : 10000000).

Целью данной работы являлось изучение закономерностей и зависимостей вертикального распределения концентраций газов CH₄ и CO₂ по колонкам осадков Карского, Лаптевых и Восточно-Сибирского морей и выявление процессов, приводящих к особенностям их распределения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В 2017–2020 гг. в рейсах 69, 72, 76 и 81 НИС "Академик Мстислав Келдыш" был осуществлен пробоотбор донных осадков в Карском, Лаптевых и Восточно-Сибирских морях. Положение станций показано на рис. 1 и 2. Станция 5602-2 находилась в Восточно-Сибирском море (рейс 69, более подробное изучение осадков Восточно-Сибирского моря приведено в работе Севастьянов и др., 2019). В табл. 1 отображена дополнительная информация по исследованным станциям.

Районы исследований описаны в работах (Севастьянов и др., 2021; Флинт и др., 2018; Богоявленский и др., 2021; Панова и др., 2017; Baranov et al., 2020, Вержбицкий и др., 2012). Карское, Лаптевых и Восточно-Сибирское моря – это мелководные шельфовые моря арктического бассейна, находящиеся под влиянием речного стока. Наибольший объем речного стока в Карском, наименьший – в Восточно-Сибирском море. Влияние речного стока в море Лаптевых наиболее ощутимо прослеживается в восточной части моря. В отличие от Карского моря, в море Лаптевых и Восточно-Сибирском море широко распространены многолетнемерзлые породы, деградация которых приводит к локальным выбросам метана в водную толщу (метановые сипы). Кроме того, численность бактерий в водах Карского моря на порядок ниже, чем в море Лаптевых, но заметно возрастает в южной части Карского моря вблизи устьев Оби и Енисея (Саввичев и др., 2010).

Морские осадки отбирали с помощью бокскорера (БК) и гравитационной трубы большого диаметра (ТБД). На каждой станции отбирали только одну колонку осадков. Длина колонок осадков, отобранных БК, не превышала 50 см, отобранных ТБД, не превышала 5 м. Колонки донных осадков в море Лаптевых отбирали только с помощью бокс-корера, поэтому длина колонок была небольшой. Мокрые морские осадки (300 мл) помещали в бутылки (0.5 л) с насыщенным раствором NaCl, создавали в них гелиевый пузырь объемом 10 мл. в который извлекали находящиеся в осадке газы. Для этого бутылки помещали в ультразвуковую ванну на 20 мин, затем в сушильный шкаф, нагретый до температуры 50-60°С, на 12 ч. Гелиевый пузырь с извлеченными газами с помощью шприца переносили в герметичный пенициллиновый флакон объемом 20 мл, предварительно заполненный солевым раство-

Рис. 2. Станции пробоотбора морских осадков 72-го и 69-го рейсов НИС "Академик Мстислав Келдыш" в 2018 г. в море Лаптевых. (Масштаб 1 : 10000000).

ром. Концентрацию газов измеряли при помощи газового хроматографа "КристалЛюкс-4000М" (Йошкар-Ола, Россия) с капиллярными колонками HP-Plot Q (30 м × 0.53 мм × 40 мкм) и ZB-5 (30 м × 0.53 мм × 5 мкм). Поток газа-носителя гелия марки 6.0 составлял 10 мл/мин, температура термостата 120°С. Для анализа углеводородных газов использовали пламенно-ионизационный детектор, серосодержащих газов — пламенно-фотометрический, CO_2 — детектор по теплопроводности. Среднее значение концентраций газов рассчитывали по трем измерениям.

Изотопный состав углерода СО₂, выделенного из осадков, измеряли методом CF-IRMS (массспектрометрия изотопных отношений при постоянном потоке), используя газовый хроматограф HP 6890 (Hewllett Packard) с капиллярной колонкой PoraPlot Q ($30 \text{ м} \times 0.32 \text{ мм} \times 0.25 \text{ мкм}$), соединенный с масс-спектрометром изотопных отношений Delta Plus (Thermo Fisher Scientific, Бремен, Германия). Концентрация остальных газов была ниже предела количественного обнаружения. Поток газа-носителя гелия марки 6.0 составлял 2 мл/мин, температура термостата 40°С. В качестве стандарта использовали СО₂, аттестованный по международному стандарту ТЕХ-843С (OZTech), имеющему значение $\delta^{13}C = -40.79 \%$. Стандартное отклонение составило <±0.2‰.

РЕЗУЛЬТАТЫ И ИНТЕРПРЕТАЦИЯ

Коэффициенты корреляции R концентраций газов CH₄ и CO₂ по колонкам осадков в морях Российской Арктики представлены в табл. 1. Коэффициент корреляции рассчитывали для имеющихся горизонтов осадка, исключая горизонты с

ГЕОХИМИЯ том 68 № 2 2023

аномальной концентрацией, поскольку механизм газообразования в тонком поверхностном слое осадка может отличаться от механизмов в остальном осадке.

Колонки морских осадков в море Лаптевых отбирали с помощью бокс-корера, поэтому длина колонок была небольшой. Первые исследования выделенных из осадков моря Лаптевых газов представлены в работе (Севастьянов и др., 2021). Коэффициенты корреляции концентраций газов СН₄ и СО₂ по колонкам осадков моря Лаптевых могут быть отрицательными: R = -0.79 (станция 5960). R = -0.31 (станция 5963); положительными: R == 0.70 (станция 5950), *R* = 0.59 (станция 5954), *R* = = 0.58 (станция 5958), R = 0.68 (станция 5962); либо иметь значение близкое к нулю R = 0.05(станция 5949). Коэффициенты корреляции концентраций газов CH₄ и CO₂ в области сипов (станции 5947, 5953-1, 5953-3) варьировались в диапазоне от 0.01 до 0.58. Значения коэффициентов корреляции представлены в табл. 2.

Поэтому кривые распределения концентраций газов CH_4 и CO_2 по колонкам осадков иногда различаются, особенно в поверхностном слое (0– 15 см), т. к. процессы газообразования в морских осадках, связанные с трансформацией OB, могут иметь разную природу. На рис. 3 для станций 5960, 5963 видно, что в поверхностном слое колонки осадка для станции 5960 наблюдается положительная корреляция между газами CH_4 и CO_2 , а для колонки станции 5963 она отрицательная.

На рис. 4 представлены кривые распределения газов CH_4 и CO_2 в колонке осадка станции 5602-2, расположенной примерно в 250 км от устья р. Индигирка. Можно сделать вывод, что до горизонта 66.5 см концентрации газов коррелируют между

Станция	Расположение		Глубина моря, м	Длина колонки, см	
5602-2	Восточно-Сибирское м.		27	177	
5636	прол. Вилькицкого		225	419	
5644	зал. Благополучия Нов. Земли	69	120	454	
5943	Карское м.	72	31,5	32	
5947	м. Лаптевых, поле сипов С15	72	72,5	22	
5949	м. Лаптевых, Восточный разрез	72	467	44	
5950	м. Лаптевых, Восточный разрез	72	1074	34	
5953-1	м. Лаптевых, поле сипов Оден	72	64	28	
5953-3	м. Лаптевых, поле сипов Оден	72	63	24	
5954	м. Лаптевых, Восточный разрез	72	1545	42	
5956-2	м. Лаптевых, Восточный разрез	72	2348	44	
5958	м. Лаптевых, Восточный разрез	72	2987	43	
5960	м. Лаптевых, Хатангский разрез	72	354	34	
5962	м. Лаптевых, Хатангский разрез	72	1090	24	
5963	м. Лаптевых, Хатангский разрез	72	1485	42	
5966	прол. Вилькицкого	72	415	32	
5967	прол. Вилькицкого	72	425,2	47	
6239	Карское м., вблизи п-ова Ямал	76	180	362	
6245	Карское м., эстуарий реки Оби	76	28	213	
6259	Карское м.	76	90	223	
6261	Карское м., Новоземельская вп.	76	330	260	
6879	Карское м., склон желоба Святой Анны	81	170	408	
6883	Карское м., склон желоба Святой Анны	81	180	278	
6887	Карское м., желоб Святой Анны	81	520	334	
6907	залив Благополучия Новой Земли	81	170	292	
6912	Карское м., Новоземельская вп.	81	310	319	
6916	Карское м., Новоземельская вп.	81	350	274	
6919	Карское м., залив Русанова	81	230	265	
6928	Карское м., Новоземельская вп.	81	260	367	

Таблица 1. Пробоотбор донных осадков на станциях в Карском, Лаптевых и Восточно-Сибирском морях

собой, а для более глубоких горизонтов наблюдается обратная корреляция.

Средние концентрации газов в колонках осадков Карского моря приведены в табл. 3, для моря Лаптевых в (Севастьянов и др., 2021). Видно, что средние концентрации газов в колонке осадков в эстуарии р. Оби (станции 5943 и 6245) превышают концентрации газов в колонках осадков на других станциях. Концентрации непредельных углеводородных газов в морском осадке обычно превышают концентрации предельных углеводородных газов. При этом обычно средняя концентрация CO_2 превышает среднюю концентрацию CH_4 в 10^2-10^3 раз, а средняя концентрация CH_4 может превышать среднюю концентрация CH_3SCH_3 в 2-10 раз. CH_3SCH_3 образуется при разложении водорослей и цианобактерий (Zhuang et al., 2017). В зоне сульфатредукции соединение CS_2 окисляется с образованием COS (Bodenbender et al., 1999). Также в табл. 3 представлены сернистые газы с высокой концентрацией, которые свидетельствуют о бактериальной активности в морских осадках.

В эстуарии р. Оби морские осадки содержат повышенную концентрацию CH_4 и органического вещества (Леин, Иванов, 2009; Саввичев и др., 2010). Коэффициент корреляции концентраций газов CH_4 и CO_2 для колонок станций 5943 и 6245 имеет значение 0.67 и 0.95, соответственно.

На рис. 5 видно распределение газов по колонке осадка станции 6245, расположенной в эстуарии р. Оби. Характер распределения CH_4 в осадке соответствует распределению CO_2 . Концентрации CH_4 и CO_2 синхронно возрастают вглубь осадка. На горизонте 170—190 см были обнаружены макси-

Таблица 2. Значения коэффициентов корреляции (*R*) концентраций газов CH₄ и CO₂ по колонкам осадков в морях Российской Арктики

Станция	<i>R</i> (без учета ВСО*, см)	Станция	<i>R</i> (без учета ВСО*, см)		
5602-2	0.45 (0-12)	5966	0.40		
5636	0.97 (0-12)	5967	0.57		
5644	0.44 (0-64)	6239	0.13 (0-2)		
5943	0.67 (0-1)	6245	0.95		
5947	0.58	6259	0.58		
5949	0.05	6261	0.80 (0-30)		
5950	0.70 (0-1)	6879	0.97 (0-4)		
5953-1	0.01	6883	0.93 (0-8)		
5953-3	0.39	6887	0.84 (0-8)		
5954	0.59	6907	0.97 (0-24)		
5956-2	0.16	6912	0.94 (0-20)		
5958	0.58	6916	0.81 (0-12)		
5960	-0.79	6919	0.49 (0-4)		
5962	0.68	6928	0.93 (0-5)		
5963	-0.31				

* ВСО – верхний слой осадка.

мальные концентрации CH₄ и CO₂. Следует отметить, что от поверхности осадка до горизонта 80 см наблюдается обратная корреляция CH₄ и CO₂, а затем корреляция становится положительной. Величина δ^{13} C(CO₂) изменяется с глубиной осадка станции 6245 от –17 до –27‰ (рис. 5б). Коэффициент корреляции концентрации CO₂ и δ^{13} C(CO₂) имеет отрицательное значение R = -0.76. Это озна-

чает, что при увеличении содержания CO_2 в осадке величина $\delta^{13}C(CO_2)$ убывает. Концентрация CH_3SCH_3 в колонке остается постоянной, за исключением первых 10 см колонки.

На границе эстуария р. Оби расположена станция 5943. Длина колонки отобранного осадка составила 32 см. коэффициент корреляции R = 0.67. Для этой колонки также наблюдается обратная корреляция между концентрациями газов СН₄ и СО₂ до горизонта 23 см, а затем корреляция становится положительной. Высокие коэффициенты корреляции получены для осадков в Новоземельской впадине R = 0.80 (ст. 6261), R = 0.81(ст. 6916), *R* = 0.93 (ст. 6928), *R* = 0.94 (ст. 6912) и в желобе Святой Анны R = 0.84 (ст. 6887). R = 0.93(ст. 6883), *R* = 0.97 (ст. 6879). Для осадков в заливе Благополучия Новой Земли коэффициент корреляции R равен 0.97 (ст. 6907) и 0.44 (ст. 5644). Только для колонок осадков станции в заливе Русанова (ст. 6919), станции 6259 вблизи полуострова Ямал и станции 6239 коэффициент корреляции газов равен 0.49, 0.58, 0.13, соответственно.

ОБСУЖДЕНИЕ

Основные реакции генерации CH_4 и CO_2 происходят в результате сульфат-редукции, ацетогенного метаногенеза и метилотрофного метаногенеза с участием диметилсульфида (Каллистова и др., 2017).

1. Сульфат-редукция.

$$2[CH_2O] + SO_4^{2-} \to S^{2-} + 2CO_2 + 2H_2O, \quad (1)$$

$$CO_2 + 2H_2O + S^{2-} \rightarrow CH_4 + SO_4^{2-}$$
. (2)

Таблица 3. Средняя концентрация газов в осадках Карского моря

Станции	Газы, мкг/л							
Станции	CO ₂	CH_4	C_2H_4	C_2H_6	C_3H_6	C_4H_8	COS	CH ₃ SCH ₃
6239	199.6	0.548	3.93×10^{-2}	н.о.	н.о.	0.230	1.15×10^{-2}	7.883
6245	517.6	1.896	5.03×10^{-2}	»	»	н.о.	1.09×10^{-2}	9.347
6259	384.9	2.066	5.61×10^{-2}	»	»	»	1.81×10^{-2}	6.932
6879	559.2	2.423	4.49×10^{-2}	5.36×10^{-2}	»	1.406	5.30×10^{-3}	2.186
6883	639.5	2.715	4.45×10^{-1}	4.32×10^{-2}	»	1.404	5.18×10^{-3}	1.729
6887	638.9	2.253	4.38×10^{-1}	4.26×10^{-2}	»	1.399	7.58×10^{-3}	1.535
6907	188.4	2.207	3.50×10^{-1}	1.16×10^{-2}	»	1.408	1.49×10^{-3}	0.624
6912	262.8	1.827	4.53×10^{-1}	2.66×10^{-2}	»	1.260	1.25×10^{-3}	0.359
6916	663.7	1.872	4.61×10^{-1}	4.18×10^{-2}	»	1.441	1.09×10^{-2}	0.539
6919	347.6	3.305	н.о.	2.63×10^{-2}	*	н.о.	4.54×10^{-2}	0.238
6928	1389.9	2.798	4.76×10^{-1}	4.13×10^{-2}	9.42×10^{-1}	1.431	5.87×10^{-2}	0.364

Примечания. н.о. — не определено (ниже предела обнаружения).

ГЕОХИМИЯ том 68 № 2 2023

СЕВАСТЬЯНОВ и др.

Рис. 3. Распределение концентрации газов СН₄ и СО₂ по колонкам осадков станций 5960 (а) и 5963 (б) в море Лаптевых.

Для того чтобы реакция (2) могла осуществиться, реакции (1) и (2) должны быть химически последовательны, чтобы энергетический выход первой мог обеспечить энергетический выход второй. В ходе процесса метанообразования баланс серы остается неизменным. Метаболизм серы в микробиологическом процессе метанообразования играет роль катализатора. Если бы CH_4 образовывался исключительно за счет CO_2 , то рост его концентрации сопровождался бы уменьшением CO_2 (Галимов, Кодина, 1982).

2. Ацетогенный метаногенез.

Метаногенные археи не используют в качестве источников питания и энергии органические соединения сложнее ацетата. Однако, они могут находиться в синтрофной ассоциации с неметаногенными микроорганизмами, способными превращать в ацетат более сложные соединения (Федоров и др., 2007).

$$CH_3COOH \to CH_4 + CO_2. \tag{3}$$

3. Метаногенез с участием диметилсульфида.

В процессе диагенеза морских осадков может происходить расщепление бактериями рода Реlagibacterales диметилсульфониопропианата, который входит в состав водорослей и цианобактерий, а также образование в большом количестве CH_3SCH_3 (Keller et al., 1989). Помимо этого, CH_3SCH_3 может образовываться в осадке путем метилирования H_2S в анаэробных условиях. Например, метоксилированные ароматические соединения (в частности, мономеры лигнина) под действием микробов в присутствии H_2S преобразуются в метантиол:

$$R-OCH_3 + H_2S \rightarrow CH_3SH + R-OH,$$
 (4)

где R обозначает Н или ароматическую группу.

Затем, под влиянием ферментов бактерий происходит фиксация бикарбоната и метилирование метантиола с образованием CH₃SCH₃:

$$\begin{array}{l} \text{HCO}_{3}^{-} + \text{H}^{+} + 3\text{H}_{2} + \text{CH}_{3}\text{SH} \rightarrow \\ \rightarrow \text{CH}_{3}\text{SCH}_{2} + 3\text{H}_{2}\text{O}. \end{array}$$

$$(5)$$

В дальнейшем, при анаэробных условиях в морском осадке CH_3SCH_3 преобразуется в метан в соотношении 1 : 1.5:

$$2(CH_3)_2S + 3H_2O \rightarrow$$

$$\rightarrow 3CH_4 + HCO_3^- + 2H_2S + H^+.$$
(6)

Таким образом, CH₃SCH₃ является неотъемлемым метаногенным соединением в морских осадках для сульфат-редукции (Zhuang et al., 2017).

Следует отметить, что коэффициент корреляции концентраций газов CH₄ и CO₂ для колонок длиной 200–400 см существенно больше, чем для колонок длиной до 50 см, что можно видеть в табл. 2. Например, для колонки осадка станции 5636, длиной 419 см, отобранной в проливе Вилькицкого, R = 0.97, для коротких колонок (до 45 см) станций 5966 и 5967 R равен 0.40 и 0.57 соответственно.

Коэффициенты корреляции концентраций газов CH_4 и CO_2 в колонках морских осадках в области сипов (станции 5947, 5953-1, 5953-3) имели небольшое значение. Это объясняется тем, что в области сипов по системам активных разломов и субвертикальных трещин (Богоявленский и др., 2021) происходит просачивание термогенных газов из глубинных источников в приповерхностные отложения и смешение их с бактериальным газом. Такая миграция газов приводит к нарушению корреляции концентраций CH_4 и CO_2 . Вертикальные профили распределения газов для станций 5947, 5953-1, 5053-3 приведены в работе (Севастьянов, 2021).

То, что коэффициенты корреляции концентраций газов CH₄ и CO₂ для осадков моря Лаптевых могут иметь отрицательные и положительные значения, обусловлено небольшой длиной колонок осадков и более высокой микробной активностью по сравнению с осадками Карского моря (Саввичев и др., 2010). О микробной активности в морских осадках можно судить по их повышенной газовой насыщенности (табл. 2 в Севастьянов и др., 2021). В верхней части морского осадка (до 50 см) может происходить изменение характера зависимости между концентрациями СН₄ и СО₂ (рис. 3 в Севастьянов и др., 2021), свидетельствующее об изменении доминирующих микробиологических процессов в верхних горизонтах осадка. С увеличением глубины осадка микробиологическая активность уменьшается, а корреляция концентраций газов увеличивается.

Низкое значение коэффициента корреляции R = 0.45 для колонки осадка станции 5602-2 в Восточно-Сибирском море связано с тем, что биологические процессы, происходящие на разных горизонтах осадка, различаются (рис. 4). Для верхних горизонтов осадка (до 66.5 см) наблюдалась положительная корреляция между концентрациями газов СН₄ и CO₂ в результате протекания процессов (2) и (3), а на нижних горизонтах отрицательная корреляция связана с доминирующим процессом анаэробного окисления метана за счет восстановления сульфатов (Федоров и др., 2007). Поэтому, при уменьшении концентрации СН₄ концентрация CO₂ возрастает. Подобное

ГЕОХИМИЯ том 68 № 2 2023

Рис. 4. Распределение концентраций газов CH₄ и CO₂ по колонке осадков станции 5602-2 в Восточно-Си-бирском море.

распределение концентраций газов CH_4 и CO_2 по колонке можно видеть на рис. 3 для станции 5960, для станции 5963 (рис. 4) показано прямо противоположное распределение концентраций газов CH_4 и CO_2 : положительная корреляция для верхних горизонтов осадка и отрицательная корреляция для нижних горизонтов. Подобное также наблюдается для станции 6245 (рис. 5) в Карском море.

Проведенные исследования показали, что в осадках Карского моря в большинстве случаев наблюдается синхронный рост и убыль концентрации газов CH₄ и CO₂. Значение коэффициента корреляции R варьируется от 0.58 до 0.97 и не зависит от характера распределения концентрации газов в морском осадке. Обнаруженный в осадках СН₃SCH₃ (табл. 2) доказывает, что в морских осадках происходит образование СН₄ и СО₂ в результате метилотрофного метаногенеза с участием CH₃SCH₃. Еще одним способом образования СО₂ и СН₄, являются сопряженные процессы сульфатредукции и метанообразования. Эти два процесса являются метаболически неразрывно сопряженными (Галимов, Кодина, 1982). Так как по термодинамическим расчетам сульфатредуцирующие бактерии подавляют скорость метаноге-

Рис. 5. Распределение концентрации газов (а) и $\delta^{13}C(CO_2)$ (б) по колонке осадка станции 6245.

неза (Федоров и др., 2007), концентрация CO_2 в осадке существенно выше концентрации CH_4 (табл. 3). Вероятнее всего реакции (1), (2), а также гидрогенотрофный метаногенез идут параллельно, приводя к росту концентрации метана на фоне высокой концентрации CO_2 . Реакции (3) и (6) имеют меньшее значение, так как не приводят к образованию значительной концентрации CO_2 .

В некоторых случаях, корреляция отсутствовала, например, для осадков станций 6239 и 6919, что связано с особенностями литогенеза и притоком глубинных газов в местах пробоотбора. Станция 6919 расположена в заливе Русанова, в которой зафиксирована разломная структура в ходе 81 рейса, а станция 6239 расположена вблизи Известинской моноклинали, под которой, как предполагается, находится крупное скопление газов (Вербжицкий и др., 2012). Средняя концентрация СН₄ в колонке станции 6919 равна 3.305 мкг/л и превышает среднюю концентрацию СН₄ в других колонках осадков Карского моря и моря Лаптевых (Севастьянов и др., 2021). Незначительная концентрация СН₃SCH₃ указывает на слабую микробиологическую активности в осадке станции. В колонке станции 6239 средние значения

концентраций газов (CH₄, CO₂, C₂H₄, C₄H₈) значительно меньше по сравнению с осадками других станций Карского моря. Также на этой станции наблюдается обратная ситуация для CH₃SCH₃ (табл. 3). Высокая концентрация CH₃SCH₃ свидетельствует о высокой микробиальной активности в этом осадке (Zhuang et al., 2017).

Лля станний 5644 и 6907 в заливе Благополучия архипелага Новая Земля коэффициенты корреляции R сильно различаются (табл. 2). Это обусловлено расположением залива Благополучия в зоне субвертикальных трещин разломной структуры. Вероятно, станция 5644 находится в зоне разлома. Поэтому в осадок поступают термогенные газы из глубинных источников, которые смешиваются с биогенными газами, образованными в верхней части осадочного разреза. Вероятно, следствием этого является низкий коэффициент корреляции. Доказательством глубинного происхождения СО2 служит высокое среднее значение изотопного состава углерода CO₂ δ^{13} C = $-10.46 \pm 0.89\%$. Для станции 6907, которая, вероятно, не имеет подобных особенностей расположения, изотопный состав углерода СО2 имеет низкое значение $\delta^{13}\mathrm{C}=-21.08\pm1.49\%$, которое свидетельствует о

биогенном происхождении CO_2 (Dai et al., 1996; Meister, Reyes, 2019).

В некоторых колонках (станции 5949, 5950, 6261, 6912, 6916) в поверхностном слое (0–15 см) осадков наблюдались повышенная в несколько раз концентрация CO₂ по сравнению с более глубокими горизонтами. Это связано с аэробным окислением метана метанотрофами или с анаэробным окислением метана в результате восстановления сульфатов. При этом в поверхностных слоях морских осадков фиксируются значения $\delta^{13}C(CO_2) = -16...-14\%$. В результате диффузии CO₂ из осадка в водную среду происходит возрастание величины $\delta^{13}C(CO_2)$ в приповерхностных слоях осадка.

В эстуарии р. Оби морские осадки содержат повышенную концентрацию СН₄ и органического вещества. Известно (Федоров и др., 2007), что наиболее высокие концентрации СН₄ фиксируются в зонах смешения речных и морских вод, где наблюдается активное осаждение тонких взвешенных частиц, происходит флокуляции и коагуляции взвешенных веществ. Отрицательная корреляция концентраций газов, которая наблюдется в верхних слоях осадка станции 6245 (рис. 5), говорит об анаэробном окислении СН₄ за счет сульфатов или за счет анаэробных метанотрофов (Федоров и др., 2007). В более глубоких слоях осадка наблюдается положительная корреляция, которая, возможно, является следствием процесса ацетогенного метаногенеза или метаногенеза с использованием СН₃SCH₃.

Неравномерное распределение газов по глубине осадка станции 6245 свидетельствует о неравномерности микробиологической активности в различных слоях. Наибольший разброс значений концентраций по глубине осадка станции имеют непредельные углеводороды (C_2H_4 , C_4H_8). На данной станции не были обнаружены такие газы, как C_3H_6 и C_3H_8 , а C_2H_6 был обнаружен не на всех горизонтах (табл. 3).

ЗАКЛЮЧЕНИЕ

В результате проведенных исследований распределения концентраций газов CH_4 и CO_2 по колонкам осадков Карского моря выявлено, что существует положительная корреляция между этими газами. Коэффициент корреляции варьирует от 0.58 до 0.97 и не зависит от характера вертикального распределения CH_4 и CO_2 в осадке. Предположительно, метаногенез, сопряженный с сулфатредукцией, и гидрогенотрофный метаногенез приводят к росту концентрации CH_4 на фоне высокой концентрации CO_2 . Ацетогенный метаногенез и метилотрофный метаногенез с участием CH_3SCH_3 имеют меньшее значение, так

как не приводят к образованию значительной концентрации CO₂. Наличие в осадках CH₃SCH₃ является доказательством протекания метило-трофного метаногенеза.

В некоторых случаях в поверхностном слое (0-15 см) осадков наблюдалась повышенная в несколько раз концентрация CO₂ по сравнению с более глубокими горизонтами. Это объясняется аэробным окислением СН₄ метанотрофами или анаэробным окислением СН₄ в результате восстановления сульфатов. Основываясь на особенностях распределения концентрации газов CH₄ и СО₂ в морских осадках и содержании биогенных газов, можно прелположить протекание микробиальных процессов, приводящих к образованию газов. При поступлении в осадок термогенных газов из разломов в осадочных породах происходит их смешение с биогенными газами, образованными в верхней части осадка. Это ухудшает корреляцию между концентрациями газов.

В верхних слоях осадка могут наблюдаться противоположные закономерности распределения концентраций газов CH_4 и CO_2 . Поэтому коэффициенты корреляции газов CH_4 и CO_2 для осадков моря Лаптевых имели отрицательные и положительные значения, что, вероятно, обусловлено более высокой микробной активностью в верхних горизонтах осадков и тем, что в верхних слоях осадка, захваченного короткими колонками, процессы газообразования идут иначе, по сравнению с глубокими слоями.

СПИСОК ЛИТЕРАТУРЫ

Богоявленский В.И., Казанин А.Г., Кишанков А.В., Казанин Г.А. (2021) Дегазация Земли в Арктике: комплексный анализ факторов мощной эмиссии газа в море Лаптевых. *Арктика: экология и экономика*. **11**(2), 178-194.

Вержбицкий В.Е., Косенкова Н.Н., Ананьев В.В., Малышева С.В., Васильев В.Е., Мурзин Р.Р., Комиссаров Д.К., Рослов Ю.В. (2012) Геология и углеводородный потенциал Карского моря. *Oil & Gas J. Russia*. (1–2), 48-54.

Галимов Э.М., Кодина Л.А. (1982) Исследование органического вещества и газов в донных толщах дна Мирового океана. М.: Наука, 228 с.

Галимов Э.М., Кодина Л.А., Степанец О.В., Коробейник Г.С. (2006) Биогеохимия Российской Арктики. Карское море. Результаты исследований по проекту SIRRO 1995–2003 гг. *Геохимия*. (11), 1139-1191.

Galimov E.M., Kodina L.A., Stepanets O.V., Korobeinik G.S. (2006) Biogeochemistry of the Russian Arctic. Kara sea: research results under the SIRRO project, 1995–2003. *Geochem. Int.* **44**(11), 1053-1104.

Каллистова А.Ю., Меркель А.Ю., Тарновецкий И.Ю., Пименов Н.В. (2017) Образование и окисление метана прокариотами. *Микробиология*. **86**(6), 661-683.

Леин А. Ю., Саввичев А.С., Русанов И.И., Павлова Г.А., Беляев Н.А., Крейн К., Пименов Н.В., Иванов М.В.

(2007) Биогеохимические процессы в Чукотском море. Литология и полезные ископаемые. (3), 247-266.

Леин А.Ю., Иванов М.В. (2009) Биогеохимический цикл метана в океане. М.: Наука, 576 с.

Леин А.Ю., Кравчишина М.Д., Политова Н.В., Саввичев А.С., Веслополова Е.Ф., Мицкевич И.Н., Ульянова Н.В., Шевченко В.П., Иванов М.В. (2012) Трансформация взвешенного органического вещества на границе вода-дно в морях Российской Арктики (по изотопным и радиоизотопным данным). Литология и полезные ископаемые. (2), 115-145.

Панова Е.В., Рубан А.С., Дударев О.В., Тези Т., Бредер Л., Густафссон О., Гринько А.А., Шахова Н.Е., Гончаров И.В., Мазуров А.К., Семилетов И.П. (2017) Литологические особенности донных осадков и их влияние на распределение органического материала на территории Восточно-Сибирского шельфа. Известия Томского политехнического ун-та. Инжиниринг георесурсов. **328**(8), 94-105.

Саввичев А.С., Захарова Е.Е., Веслополова Е.Ф., Русанов И.И., Леин А.Ю., Иванов М.В. (2010) Микробные процессы циклов углерода и серы в Карском море. *Океанология*. **50**(6), 942-957.

Севастьянов В.С., Федулова В.Ю., Стенников А.В., Кузнецова О.В., Наймушин С.Г., Душенко Н.В., Кривенко А.П. (2021) Особенности распределения газов в верхнем слое осадков в системе континентальный шельф моря Лаптевых – Ледовитый океан. Океанолоеия. **61**(4), 472-487.

Федоров Ю.А., Тамбиева Н.С., Гарькуша Д.Н., Хорошевская В.О. (2007) *Метан в водных экосистемах*. Ростов на Дону: Ростиздат, 330 с.

Флинт М.В. Арашкевич Е.Г., Артемьев В.А., Баранов Б.В., Беззубова Е.М., Белевич Т.А., Веденин А.А., Галкин С.В., Гончаренко И.В., Демидов А.Б., Дриц А.В., Дроздова А.Н., Казеннов А.Ю., Косолапов Д.Б., Кравчишина М.Д., Лобус Н.В., Маккавеев П.Н., Мирошников А.Ю., Мишин А.В., Осадчиев А.А., Полухин А.А., Поярков С.Г., Пронин А.А., Римский-Корсаков Н.А., Романова Н.Д., Саввичев А.С., Суханова И.Н., Чернецкий А.Д., Шатравин А.В., Щука С.А. (2018) Экосистемы морей Сибирской Арктики. Материалы экспедиционных исследований 2015 и 2017 гг. М.: АПР, 232 с.

Baranov B., Galkin S., Vedenin A., Dozorova K., Gebruk A., Flint M. (2020) Methane seeps on the outer shelf of the Laptev Sea: characteristic, features, structural control, and benthic fauna *Geo-Marine Letters*. **40**, 541-557.

Bodenbender J., Wassmann R., Papen H., Rennenberg H. (1999) Temporal and spatial variation of sulfur-gas-transfer between coastal marine sediments and the atmosphere. *Atmospheric Environment.* **33**, 3487-3502.

Boetius A., Ravenschlag K., Schubert C.J., Rickert D., Widdel F., Gieseke A., Amann R., Jùrgensen B.B., Witte U., Pfannkuche O. (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. *Nature*. **407**, 623-626.

Coffin R.B., Smith J.P., Plummer R.E., Yoza B., Larsen R.K., Millholland L.C., Montgomery M.T. (2013) Spatial variation in shallow sediment methane sources and cycling on the Alaskan Beaufort Sea Shelf/Slope. *Marine and Petroleum Geology.* **45**, 186-197.

Dai J.-X., Song Y., Dai C.-S., Wang D.-R. (1996) Geochemistry and accumulation of carbon dioxide gases in China. *AAPG Bulletin.* **80**(10), 1615-1626.

Hoehler T.M., Alperin M.J., Albert D.B., Martens C.S. (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogensulfate reducer consortium. *Global Biogeochem Cycles*. **8**(4), 451-463.

Keller M.D, Bellows W.K., Guillard R.R. (1989) Dimethyl sulfide production in marine phytoplankton In *Biogenic sulfur in the environment*. (Eds. Saltzman E.S., Cooper W.J.). Washington, D.C.: American Chemical Society, 167-182.

Kim J.-H., Hachikubo A., Kida M., Minami H., Lee D.-H., Jin Y.K., Ryu J.-S., Lee Y.M., Hur J., Park M.-H., Kim Y.-G., Kang M.-H., Park S., Chen M., Kang S.-G., Kim S. (2020) Upwarding gas source and postgenetic processes in the shallow sediments from the ARAON Mounds, Chukchi Sea. *J. Natural gas Science and Engineering*. **76**, 103223.

Knittel K., Boetius A. (2009) Anaerobic Oxidation of Methane: Progress with an Unknown Process. *Annual Review of Microbiology*. **63**, 311-334.

Meister P., Reyes C. (2019) The Carbon-Isotope Record of the Sub-Seafloor Biosphere. *Geosciences*. 9(12). 507, 1-25.

Semenov P., Portnov A., Krylov A., Egorov A., Vanshtain B. (2020) Geochemical evidence for seabed fluid flow linked to the subsea permafrost outer border in the South Kara Sea. *Geochemistry*. **80**(3), 125509.

Stein R., Fahl K., Futterer D., Galimov E.M., Stepanets O.V. (2003) *Siberian river run-off in the Kara Sea. Characterisation, quantification, variability and environmental signification.* Amsterdam: Elsevier, 2003. 488 p.

Whelan T. (1974) Methane and carbon dioxide in coastal marsh sediments. In *Natural gases in marine sediments* (Ed. Kaplan I.R.), N.Y.: Plenum Press, 47-61.

Zhuang G.-C., Lin Yu-S., Bowles M.W., Heuer V.B., Lever M.A., Elvert M., Hinrichs K.-U. (2017) Distribution and isotopic composition of trimethylamine, dimethylsulfide and dimethylsulfonniopropionate in marine sediments. *Marine Chemistry*. **196**, 35-46.