ГЕОХИМИЯ ВЫСОКОФОСФОРИСТОГО ЦИРКОНА ИЗ ВЕРХНЕРИФЕЙСКИХ ПЕСЧАНИКОВ ЮЖНОГО ТИМАНА

© 2023 г. О. В. Гракова^{а, *}, С. Г. Скублов^{b, c}, Н. Ю. Никулова^а, О. Л. Галанкина^b

^аИнститут геологии ФИЦ Коми НЦ УрО РАН, ул. Первомайская, 54, Сыктывкар, 167982 Россия ^bИнститут геологии и геохронологии докембрия РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия ^cСанкт-Петербургский горный университет, 21 линия, 2, Санкт-Петербург, 199106 Россия

> *e-mail: ovgrakova@geo.komisc.ru Поступила в редакцию 13.12.2022 г. После доработки 27.03.2023 г. Принята к публикации 05.04.2023 г.

Детальное минералого-геохимическое исследование циркона из песчаников джежимской свиты на Южном Тимане методами электронно-зондового микроанализа (ЕРМА) и масс-спектрометрии вторичных ионов (SIMS) позволило установить в нем аномально высокое содержание фосфора (до 10.21 мас. % Р₂О₅ по данным ЕРМА), коррелирующее с повышенным содержанием других элементов-примесей, основными из которых являются Y, REE, Ca, Fe, Al, Ti, Sr, Ba, Th, U. Особо следует отметить значительное количество летучих компонентов в цирконе (до 0.49 мас. % воды и до 0.26 мас. % фтора, определенных методом SIMS). Суммарное содержание элементов-примесей может превышать 20 мас. %, что является характерной особенностью состава циркона, подвергшегося воздействию флюида, либо образованного в результате гидротермально-метасоматических процессов. Основным механизмом вхождения примесей в состав циркона был гетеровалентный изоморфизм ксенотимового типа, когда присутствие пятивалентного фосфора компенсируется участием трехвалентных Y и REE. Подчиненное значение имела схема изоморфизма, обеспечивающая вхождение водорода (воды). Участки циркона, обогащенные фосфором и другими примесями, приурочены к краю зерен, либо системам трещин и флюидопроницаемым участкам. Возможным источником циркона послужили гранитоиды, а процесс преобразования его состава (перекристаллизации и обогащением локальных участков, реже – целых зерен), вероятно, произошел при метаморфизме и/или гидротермальном процессе в составе пород фундамента Восточно-Европейской платформы, послуживших одним из основных источников обломочного материала при формировании песчаников джежимской свиты.

Ключевые слова: циркон, геохимия редких элементов, геохимия редкоземельных элементов, джежимская свита, Южный Тиман

DOI: 10.31857/S0016752523090054, EDN: WNPSHZ

ВВЕДЕНИЕ

Циркон (ZrSiO₄) – широко распространенный акцессорный минерал, встречающийся почти во всех горных породах (Finch, Hanchar, 2003). Циркон стал самым используемым минералом для определения возраста геологических событий и генезиса вмещающих пород благодаря ряду особенностей: циркон обогащен U и Th и обеднен в отношении Pb, что делает его универсальным минералом-геохронометром (Davis et al., 2003): будучи высокоустойчивым к наложенным эндогенным и экзогенным процессам, циркон позволяет расшифровывать раннюю эволюцию Земли (Hoskin, 2005); сохранность первичных изотопных и геохимических характеристик циркона (например, изотопный состав O, Li и Hf, распределение редких и редкоземельных (REE) элементов) предоставляет информацию о петрогенезисе содержащих его горных пород (Hoskin, Ireland, 2000; Griffin et al., 2000; Mojzsis et al., 2001; Kemp et al., 2007; Trail et al., 2007; Ushikubo et al., 2008; Wang et al., 2012; Румянцева и др., 2022; Skublov et al., 2022; Levashova et al., 2023).

Содержание редких примесных элементов в цирконе может значительно изменяться, как правило, не превышая некоторых эмпирически установленных пороговых значений (Harley, Kelly, 2007). Наибольшим содержанием этих элементов, почти всегда присутствующих в виде изоморфных примесей, отличаются так называемые гидротермально-метасоматические цирконы (Hoskin, Schaltegger, 2003). Если цирконы, обогащенные Hf, U, Th, встречаются часто (например, Xie et al., 2005; Kudryashov et al., 2020), то значительные от-

Рис. 1. Схематическая геологическая карта возвышенности Джежимпарма (по Терешко, Кириллин, 1991 г. с изменениями (Никулова, 2017)). Условные обозначения: *1* – четвертичная система, средний-верхний отделы – пески, глины, алевриты, галечники, суглинки, супеси; *2* – пермская система: известняки, доломиты, гипсы, ангидриты, глины; *3* – каменноугольная система: известняки, доломиты, глины; *4* – девонская система, средний-верхний отделы – пески, средний-верхний отделы: гравелиты, песчаники, конгломераты, алевролиты, аргиллиты; *5* – рифейская эратема, верхняя часть, ышкемесская свита: доломиты, песчаники, алевролиты, аргиллиты сланцы, алевролиты, песчаники, гравелиты, б – средняя часть, джежимская свита: песчаники, алевролиты, гравелиты; *7* – геологические границы: а – достоверные, б – предполагаемые; *8* – изученный разрез (место отбора пробы).

клонения по содержанию Р, Y и REE менее известны (Breiter et al., 2006; Horie et al., 2006; Levskii et al., 2009; Скублов и др., 2009, 2011).

Обогащенный элементами-примесями (в первую очередь, P, Y и REE) циркон был обнаружен при исследовании акцессорных минералов из песчаников джежимской свиты на Южном Тимане. Детальный анализ внутреннего строения и состава циркона, выяснение механизмов их образования и возможных источников являются предметом исследования настоящей работы.

ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ РАЙОНА

На Южном Тимане накопление верхнерифейской алеврито-песчаной толщи джежимской свиты предшествовало глобальной структурно-тектонической перестройке на рубеже рифея-венда, в результате которой терригенные породы стали субстратом коры выветривания на континенте, существовавшем до начала позднего девона (Тиманский ..., 2010). Выходы пород рифейского фундамента в этом равнинном районе с развитым осадочным чехлом крайне редки и вскрываются лишь в нескольких пространственно разобщенных разрезах в ядрах Джежимпарминской, Очпарминской и Вадьявожской антиклинальных структурах, что делает невозможным проследить распространение пород по простиранию и затрудняет сопоставление отдельных частей разреза.

В юго-западной части возвышенности Джежимпарма в разрезе, вскрытом в карьере Асыввож (61°47′11.5″ с.ш., 54°06′35.2″ в.д.), на породах верхнерифейской джежимской свиты с несогласием залегает песчано-гравелитовая толща среднедевонской асыввожской свиты (рис. 1). Досреднедевонская кора выветривания по породам джежимской свиты представляет собой фрагментарно сохранившийся, несогласно залегающий на различных слоях рифейских отложений и выполняющий неровности древнего рельефа, горизонт мощностью несколько метров, сложенный каолинитовой глиной с примесью песчаного материала и мелкой дресвой подстилающих пород. Отложения среднедевонской асыввожской свиты представлены кварцевыми песчаниками с прослоями и линза-

Рис. 2. Фотография исследованной популяции циркона.

ми мелкогалечных конгломератов, гравелитов, алевролитов и глин и перекрыты верхнедевонскими доломитами с прослоями известняков и глин. Песчаники и гравелиты асыввожской свиты являются промежуточным коллектором алмазов, коренным источником которых предполагаются позднедокембрийские кимберлиты Коми-Пермяцкого и Сысольского сводов Восточно-Европейской платформы (Оловянишников, 1998; Щербаков и др., 2001; Гракова, 2011, 2014). Отложения джежимской свиты представлены аркозовыми песчаниками с подчиненными прослоями алевролитов и аргиллитов. Вишнево-коричневые массивные песчаники джежимской свиты состоят преимущественно из кварца (70-90%) и полевого шпата (10-30%). Обломки пород представлены мелкокристаллическими полевошпат-кварцевыми породами, микрокварцитами, кварцитами, кислыми вулканитами, глинистыми сланцами. В тяжелых фракциях протолочных проб постоянно присутствуют циркон, рутил, турмалин, лейкоксен, анатаз, гематит. Реже встречаются титанит, монацит, апатит, магнетит, амфибол. Возраст отложений джежимской свиты определен на основании вышележащих фаунистически охарактеризованных отложений вапольской свиты, содержащей позднерифейские онколиты и строматолиты, и подтвержден датированием детритовых цирконов, определенных U-Pb методом как верхнерифейские (Кузнецов и др., 2010). Проведенное нами литолого-геохимическое изучение песчаников джежимской свиты позволило установить, что постседиментационные преобразования верхнерифейских терригенных пород соответствуют стадии позднего диагенеза-начального катагенеза, а в их формировании принимали участие продукты размыва метаморфических и слабо измененных кислых магматических пород (Никулова, 2017). Актуальность изучения типоморфных особенностей циркона из песчаников джежимской свиты определяется тем, что эти отложения являются одним из источников обломочного материала для вышележащих алмазсодержащих девонских терригенных пород. Кроме того, джежимская свита Южного Тимана является возрастным и фациальным аналогом золотоносной аньюгской свиты Среднего Тимана (Тиманский..., 2010).

ОБЪЕКТ И МЕТОДЫ ИССЛЕДОВАНИЯ

Объектом исследования явилась одна из популяций циркона, присутствующих в песчаниках джежимской свиты в карьере Асыввож на Южном Тимане, которая заметно отличается от прочих яркой желтовато-коричневой окраской зерен циркона (рис. 2). Именно в таких зернах при предварительном исследовании методом SEM-EDS было установлено повышенное содержание P_2O_5 (до 7.56 мас. %).

Минералогическая проба в полевых условиях была раздроблена в ступе и промыта до серого шлиха, после чего разделена на фракции с использованием бромоформа, магнитной и электромагнитной сепарации по стандартной методике. Извлеченная под бинокуляром монофракция циркона была помещена в шайбу, залитую эпоксидной смолой, выведена на поверхность препарата и отполирована для дальнейшего исследования. Морфологические особенности изучены с помощью сканирующего электронного микроскопа JSM-6400. Предварительное исследование внутреннего строения и состава циркона было выполнено методом SEM-EDS на сканирующем

Рис. 3. BSE-изображения зерен циркона с положением кратеров SIMS (белые кружки) и точек ЕРМА (белые точки подписаны курсивом). Здесь и на других рисунках номера точек анализа соответствуют таблицам 1 и 2.

электронном микроскопе TESCAN VEGA 3 LMH с энергодисперсионным спектрометром Oxford Instruments X-MAX 50 mm² при ускоряющем напряжении 20 кВ, размере пучка 180 нм и области возбуждения до 5 мкм с использованием программного обеспечения Aztec в ЦКП "Геонаука" Института геологии Коми НЦ УрО РАН. Измерения содержания главных и малых элементов в цирконе были выполнены в Институте геологии и геохронологии докембрия РАН на электроннозондовом микроанализаторе JEOL-JXA-8230 с тремя волнодисперсионными спектрометрами. Анализы проводились при ускоряющем напряжении 20 кВ, токе зонда на цилиндре Фарадея 20 нА, с диаметром зонда 3 мкм. Для расчета поправок использовался метод ZAF из программного обеспечения JEOL. В качестве стандартных образцов использованы синтетические циркон (ZrLα, SiK α) и гафнон (HfM α), а также чистые металлы и соединения.

Содержание REE и редких элементов в цирконе определено на ионном микрозонде Сатеса IMS-4f (ЯФ ФТИАН) по методике, описанной в работах (Hinton, Upton,1991; Федотова и др., 2008). Методика измерения летучих компонентов (вода, фтор и хлор) приведена в работах (Kudryashov et al., 2020; Скублов и др., 2022). Оценка фонового содержания летучих компонентов проводилась по наименее измененному домену циркона (зерно 2, точка 18). Точность определения составляет 10–15% для элементов с концентрацией >1 ррт и 10–20% для элементов с концентрацией 0.1–1 ррт, предел обнаружения составляет 5–10 ррb. При обработке первичных аналитических данных и расчете концентраций редких элементов использовалось реальное содержание кремнезема в участке анализа. Размер кратера составляет примерно 20 мкм. При построении спектров распределения REE состав циркона нормирован к составу хондрита CI (McDonough, Sun, 1995). Температура кристаллизации циркона рассчитана с помощью термометра Ti-в-цирконе (Watson et al., 2006).

РЕЗУЛЬТАТЫ

Методами EPMA и SIMS детально было исследовано 8 зерен циркона.

Зерно 87 (рис. 3). Изометричной формы (до 100–120 мкм в поперечнике), в значительной степени окатанное. Для циркона характерно наличие трещин различной мощности, в которых, как и в основной массе, установлены микровключения калиевого полевого шпата, кварца, мусковита, монацита и ксенотима (по данным SEM-EDS). Окраска циркона в BSE-изображении неравномерная, в темно-серых тонах. Более темные участки неправильной формы приурочены к краевой части зерна.

Отличительной особенностью состава для данного зерна является крайне низкое содержание кремнезема – 16.02 мас. % (здесь и ниже приводится среднее значение по 4 точкам, табл. 1). Содержание ZrO_2 также пониженное – 45.43 мас. %. Установлено повышенное содержание P_2O_5 (7.63 мас. %) и Y_2O_3 (от 2.20 до 5.25 мас. %, при среднем содержании 3.96 мас. %). Также отмече-

1400000		oorab L	inpiton	а по да			(mao.)	,0)								
Зерно	Точка	SiO ₂	ZrO ₂	HfO ₂	ThO ₂	UO ₂	P_2O_5	Y ₂ O ₃	CaO	FeO	Ce ₂ O ₃	Dy ₂ O ₃	Al_2O_3	Yb ₂ O ₃	Sc ₂ O ₃	Сумма
87	1	16.85	46.18	1.38	1.50	0.35	8.09	5.25	2.92	2.33	0.26	0.56	1.30	0.83	0.39	88.19
	2	15.62	47.54	1.10	1.58	0.19	7.49	2.20	2.19	5.26	0.14	0.43	0.54	0.45	0.36	85.08
	1-1	16.30	44.98	1.50	1.02	0.15	7.21	3.63	2.90	2.97	0.26	0.55	1.45	0.54	0.38	83.83
	1-2	15.33	43.02	1.19	1.61	0.38	7.73	4.76	2.71	3.30	0.27	0.76	1.15	0.69	0.47	83.36
19	4	33.26	65.36	1.22	_	0.03	_	—	_	0.03	_	_	_	0.02	0.02	99.95
	3	24.15	53.60	0.89	0.54	0.16	1.45	2.75	1.02	2.24	0.26	0.43	0.84	0.38	0.17	88.88
	3-1	25.62	56.52	0.85	0.35	0.24	2.37	1.85	1.24	1.53	0.20	0.36	0.88	0.19	0.12	92.32
17	5	21.70	54.85	1.58	0.28	0.22	4.90	3.28	2.45	2.50	0.24	0.48	1.42	0.38	0.22	94.52
	6	25.48	57.28	1.25	0.08	0.14	2.07	1.43	1.15	2.15	0.12	0.24	0.77	0.17	0.09	92.42
	5-1	23.82	54.61	1.48	0.32	0.18	3.35	2.34	1.60	1.45	0.21	0.37	0.97	0.27	0.20	91.16
	6-1	26.45	56.95	1.28	0.05	0.10	1.81	1.28	1.01	1.78	0.08	0.18	0.67	0.14	0.08	91.86
15	9	32.92	64.98	1.37	0.01	0.01	0.02	_	_	0.04	_	_	_	0.01	_	99.36
	7	14.53	44.85	1.26	3.66	0.30	10.21	5.13	3.29	3.13	0.23	0.77	1.04	0.85	0.48	89.71
	8	24.79	55.24	1.75	0.20	0.16	3.02	2.36	1.39	1.48	0.20	0.38	1.12	0.28	0.18	92.56
	7-1	14.54	42.63	1.21	3.44	0.26	9.29	4.85	2.85	3.13	0.26	0.75	0.98	0.63	0.44	85.24
	8-1	24.19	54.83	1.75	0.48	0.13	2.93	2.20	1.43	1.40	0.22	0.40	1.16	0.25	0.19	91.54
14	10-1	33.02	64.97	1.62	0.02	0.08	-	0.04	-	0.03	0.01	0.00	_	0.02	0.01	99.82
	11	26.88	58.42	1.46	0.16	0.15	1.99	1.22	1.08	1.44	0.11	0.20	0.84	0.15	0.08	94.17
	11-1	25.32	55.50	1.34	0.20	0.17	2.29	1.73	1.15	1.48	0.20	0.34	0.89	0.22	0.15	90.95
11	13	21.52	50.56	1.33	0.57	0.18	5.44	5.10	1.92	1.83	0.42	0.76	1.19	0.60	0.47	91.89
	12	26.44	58.51	1.45	0.14	0.15	1.88	1.26	1.02	1.56	0.10	0.21	0.65	0.17	0.10	93.62
	13-1	22.09	51.99	1.35	0.51	0.20	4.77	4.12	1.64	1.37	0.28	0.65	0.98	0.50	0.39	90.83
	12-1	28.53	60.07	1.34	0.09	0.10	1.29	0.80	0.73	1.25	0.07	0.12	0.50	0.12	0.07	95.06
5	14	32.53	65.92	1.21	_	_	0.03	0.08	_	0.05	0.02	0.02	0.01	0.04	0.02	99.93
	15	24.55	55.57	1.33	0.17	0.16	1.45	1.85	1.00	3.04	0.20	0.28	0.73	0.26	0.12	90.71
	16	20.30	45.68	1.18	0.25	0.27	5.54	5.91	1.60	2.14	0.54	0.78	1.01	0.71	0.57	86.48
	15-1	24.93	54.87	1.29	0.21	0.19	2.15	1.75	1.19	1.94	0.17	0.37	0.82	0.25	0.10	90.24
	16-1	18.99	45.05	1.16	0.41	0.17	6.12	5.12	1.90	3.12	0.50	0.75	0.94	0.62	0.54	85.38
2	18	33.11	66.04	1.09	0.01	0.05	0.01	—	—	0.01	0.04	0.03	—	-	0.01	100.40
	17	26.18	58.82	0.90	0.16	0.10	2.39	1.69	1.30	1.50	0.13	0.24	0.60	0.21	0.06	94.27
	17-1	26.89	59.63	0.83	0.18	0.10	1.91	1.44	1.00	0.85	0.08	0.19	0.61	0.14	0.08	93.92

Таблица 1. Состав циркона по данным ЕРМА (мас. %)

Примечания. Прочерком отмечено содержание ниже порога определения.

но повышенное содержание элементов-примесей Ca, Fe и Al (2.68 мас. % CaO, 3.47 мас. % FeO, 1.11 мас. % Al₂O₃). Содержание ThO₂ преобладает над содержанием UO₂ (1.43 и 0.27 мас. %, соответственно). Содержание HfO₂ варьирует от 1.10 до 1.50 мас. % при среднем значении 1.29 мас. %. Суммарное содержание измеренных методом EPMA оксидов составляет всего лишь 85.11 мас. %, что подразумевает существенное присутствие летучих компонентов, включая воду.

Циркон в проанализированных методом SIMS точках (87-1 и 87-2, табл. 2) характеризуется аномально повышенным содержанием REE (в среднем 38412 ppm). Спектры распределения REE идентичны для обеих точек (рис. 4а) и умеренно фракционированы от легких к тяжелым REE (Lu_N/La_N отношение 44.2). Положительная Сеаномалия и отрицательная Eu-аномалия в значительной степени редуцированы. Содержание редких элементов по данным SIMS хорошо согласуется с результатами микрозондового анализа. Установлено повышенное содержание Р (23209 ррт), Y (45384 ррт), Ca (12626 ррт), Hf (14369 ррт). Кроме того, зафиксировано повышенное содержание других неформульных элементов-примесей: Sr (200 ррт), Ba (1842 ррт) и Nb (303 ррт). Содержание Ti аномально велико (876 ррт), поэтому в данном случае использование этого эле-

Mound if is the indication of the indicat		Таблица	2. Coct	ав цирк	д по д	анным	ld) cIMIS	pin)												
Metric1234567899101103731011041013333333333333101010101013103310101010101010101010101010101310 <th></th> <th>Компо-</th> <th>~</th> <th>87</th> <th>-</th> <th>61</th> <th>-</th> <th>-</th> <th></th> <th>15</th> <th></th> <th>17</th> <th>4</th> <th>11</th> <th>_</th> <th></th> <th>5</th> <th></th> <th>7</th> <th></th>		Компо-	~	87	-	61	-	-		15		17	4	11	_		5		7	
		нент	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18
Cc 100 321 100 420 100 420 100 420 100 323 400 324 100 324 100 324 100 324 100 324 100 324 100 324 100 324 100 324 100 324 100 325 100 324 100 325 324 100 325 324 100 325 324 100 325 324 126 324 126 324 126 324 126 326 324 126 326 126 326 324 126 326 324 126 326 126 326 126 326 324 126 326 126 326 126		La	266	242	132	49.5	54.6	57.9	303	53.0	94.8	18.1	111	60.3	158	16.5	78.7	119	34.4	0.47
Prescale445445446447446447446456476476476476476476476Nu758549546546546546546546546546546546547547547547547547547547547547547547547546		Ce	2619	2321	1761	432	590	591	1278	769	1265	218	1693	592	4072	158	1141	3169	552	40.1
Not 373 389 417 646 867 960 973 573 544 573 544 Li 939 560 101 646 967 539 107 537 644 53 Cu 733 646 3346 1393 560 139 137 536 131 533 134 533 134 533 134 533 134 533 134 533 134 533 134 533 134 533 134 533 134 533 134 533 134 533 134 533 134 533 134 533 134 533 134 533 134 533 134		Pr	465	415	296	87.2	107	114	208	126	231	37.3	300	117	333	32.4	202	299	78.8	1.40
Sint 299 C398 G60 Sint C10 C10<		Nd	3721	3389	2417	646	847	869	1406	992	1778	285	2317	913	2593	264	1579	2521	644	8.13
Ev 009 953 623 130 304 305 305 403 576 403 576 130 576 130 576 130 576 130 576 130 576 130		Sm	2939	2598	1660	391	616	593	887	731	1342	202	1712	610	1921	182	1077	2177	433	5.43
Gd408578546946105113173123131100		Eu	1099	953	622	121	218	199	349	309	505	56.5	678	196	689	63.9	413	783	138	2.36
		Gd	4782	4098	2548	546	946	865	1359	1111	2178	312	2433	859	3656	280	1506	4092	727	14.1
The set of the		Dy	7631	6541	3992	750	1364	1194	2028	1623	3396	416	3346	1187	7098	448	2094	7568	1110	36.0
		Er	6838	5864	3405	700	1215	961	1714	1275	2558	429	2634	992	6321	421	1670	6737	1121	63.4
		Yb	9554	8156	4738	1139	1590	1277	2438	1691	3314	695	3359	1307	8309	782	2287	9133	1621	148
		Lu	1233	1100	658	194	215	185	332	237	465	109	464	182	1052	135	326	1124	240	27.0
		Li	0.24	0.17	5.53	21.0	9.11	7.44	3.18	2.76	13.8	6.77	3.84	3.09	6.31	3.64	2.20	9.44	12.9	2.87
		Р	24371	22 048	12074	3047	4070	3890	6366	4586	9978	1439	8386	4383	15169	1481	5870	18444	3151	173
		Ca	13976	11 277	6819	1778	2228	2443	2980	2540	4551	816	5158	2815	6509	878	3926	7745	1811	60.2
Sr22317889.89.93.33.55.03.5.75.03.5.75.03.5.71.082.2.11.083.0Y48.9641.7326.2335.03.5.87.041.5.301.041.5.65.2.39781.933.05N3.52.941.653.52.942.053.12.051.7.82.0301.0352.0311.0353.033.05N3.557.991.473.352.041.3751.013.052.041.3551.1270.013.05Hr14918939991.5702.062.071.1371.662.013.051.1271.0673.05U0.0094157.0708001.7068330.042.0115.552.1002.5151.2442.2111.9353.66U0.04036383691.70783041.7764.731.1371.5662.1062.111.137		Ti	975	776	347	84.7	115	68.3	339	232	295	49.9	294	79.5	587	334	96.4	583	37.0	10.1
Y 4896 4173 26233 510 5704 1230 1034 1356 5337 8193 300 610 8193 300 610 8193 300 610 302 1221 1310 610 8193 300 610 302 1221 1241 312 820 1893 600 8193 600 600 110 487 1103 600 600 600 110 600 600 600 600 8193 600 600 600 810 980 9813 980 9813 980 9813 980 9813 980 9813 980 9813 980		Sr	223	178	89.8	19.8	33.0	33.5	50.6	35.7	62.5	9.6	84.5	38.1	80.3	14.2	55.4	108	22.1	0.96
		Y	48 996	41773	26223	5161	8508	7704	12300	10 348	17798	3022	21 223	7613	48824	2904	13565	52397	8193	396
Bat 2049 1635 799 126 233 206 438 301 520 718 156 607 117 487 1123 101 610 Th 1492 13895 8899 1417 1891 1137 6584 1478 1557 1251 1221 1393 6700 9812 Th 1009 9415 1077 1077 1674 1574 1574 1573 565 234 H 4047 3581 1979 1077 1748 2353 2909 1447 553 2905 244 785 244 788 244 788 244 788 244 788 244 788 244 788 244 788 244 788 244 788 244 788 244 788 244 788 244 788 244 788 244 788 244 788 2493 241 78 244		ЧN	362	245	98.1	44.1	34.2	33.5	37.0	25.4	29.6	10.3	39.7	16.1	59.2	14.7	33.2	82.0	18.9	6.06
Hr $ 442$ $ 3895$ 9899 $ 4147$ $ 1891$ $ 1570$ 4763 $ 1137$ $ 6544$ $ 4771$ $ 1263$ $ 2121$ $ 2193$ 6760 9813 Th 10099 9415 7070 800 1709 893 6289 8444 5523 903 2119 1047 1674 8756 1440 157 H 0 9445 3951 3951 3961 700 800 1703 826 1284 5532 903 2112 12424 1942 2053 566 2334 H 0 94453 3961 738 1040 2213 1244 1942 2053 3236 12847 2033 565 Th/U 2330 1123 348 586 0.70 2330 1445 7172 233 177 2278 3378 067 Th/U 2.50 2330 0.73 1.45 738 1.77 2.75 1.40 2573 357 067 Th/U 2.50 2.60 0.70 0.73 1.77 2.78 1072 667 923 207 1492 2573 2214 1072 Secore 1.40 1.77 2.61 1.77 2.78 1066 273 1172 2267 1293 2203 2233 1267 2233 1267 2233 2217 2218 1277 2218 2217 2216 2233 2217 2216 2233 <td></td> <td>Ba</td> <td>2049</td> <td>1635</td> <td>667</td> <td>126</td> <td>253</td> <td>206</td> <td>438</td> <td>301</td> <td>520</td> <td>71.8</td> <td>726</td> <td>206</td> <td>697</td> <td>117</td> <td>487</td> <td>1122</td> <td>161</td> <td>6.76</td>		Ba	2049	1635	667	126	253	206	438	301	520	71.8	726	206	697	117	487	1122	161	6.76
		Hf	14842	13895	6686	14147	11891	11 570	4763	11 137	16584	14718	15507	11 2 6 3	12515	12424	12221	13 193	6760	9812
		$_{\mathrm{Th}}$	10099	9415	7070	800	1709	893	6289	1844	5532	903	2119	1016	4482	1717	1674	8726	1440	157
		U	4047	3581	1897	1097	1097	1276	853	1040	2011	566	2173	1244	1942	211	1554	2053	565	234
CF260723301712348586546103362810911961090604100627811372278337ndC114995.390.114570818361.578.417819.891.036317625.335.0149241ndM11.500.731.560.731.560.707.381.772.751.600.980.822.318.121.082.43367M1.712.502.633.730.731.560.731.560.731.560.731.560.730.730.730.730.730.730.730.750.67M1.712.511.800.890.890.890.890.890.890.890.890.890.890.732.132.251.600.933632.318.121.950.67M2.551.801.712.151.591.871.772.132.232.032.132.132.132.132.132.132.132.132.132.141.600.980.860.990.800.732.111.971.951.95MC1.712.131.911.712.731.067.122.132.132.141.607.122.167.167.192.160.750.670.75	ГF	H_2O	49425	39 659	36348	9481	17980	23804	22503	17148	24132	7359	33245	21 905	25062	9333	33918	39869	12807	pu
	Ω)	Ц	2607	2330	1712	348	586	546	1033	628	1091	196	1090	604	1006	278	1137	2278	337	pu
$ \begin{array}{ c c c c c c c c c $	ш	C	149	95.3	99.1	145	70.8	183	61.5	78.4	178	19.8	91.0	363	176	25.3	35.0	149	241	pu
$ \begin{array}{ ccccccccccccccccccccccccccccccccccc$	ли	Th/U	2.50	2.63	3.73	0.73	1.56	0.70	7.38	1.77	2.75	1.60	0.98	0.82	2.31	8.12	1.08	4.25	2.55	0.67
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	я	Eu/Eu*	0.89	0.89	0.92	0.80	0.87	0.85	0.97	1.05	0.90	0.69	1.01	0.83	0.79	0.86	0.99	0.80	0.75	0.82
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Т	Ce/Ce*	1.80	1.77	2.15	1.59	1.87	1.76	1.23	2.28	2.07	2.03	2.25	1.70	4.29	1.65	2.19	4.06	2.56	11.99
$ \sum_{\mathbf{v}} \text{ ELREE } 7072 \ 6367 \ 4606 \ 1215 \ 1598 \ 1632 \ 1395 \ 1632 \ 3195 \ 1940 \ 3368 \ 558 \ 4421 \ 1683 \ 7157 \ 470 \ 3000 \ 6108 \ 1309 \ 50 \ 500$	ом	<i>DREE</i>	41 148	35677	22 228	5057	7762	6905	12301	8916	17127	2778	19 047	7015	36 203	2783	12374	37 721	6698	346
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	68	<i>\SUREE</i>	7072	6367	4606	1215	1598	1632	3195	1940	3368	558	4421	1683	7157	470	3000	6108	1309	50
$ \sum_{\sigma} Lu_N/La_N 44.57 43.88 47.96 37.73 38.00 30.75 10.54 43.05 47.25 57.72 40.20 29.05 64.08 78.75 39.94 90.85 67.13 555.47 $		ΣHREE	30 038	25759	15340	3330	5330	4481	7870	5936	11911	1961	12236	4527	26436	2067	7884	28654	4818	288
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	№	Lu _N /La _N	44.57	43.88	47.96	37.73	38.00	30.75	10.54	43.05	47.25	57.72	40.20	29.05	64.08	78.75	39.94	90.85	67.13	555.47
$\sum_{i=1}^{2} \frac{5 m_i / La_N}{10} = 17.66 = 17.22 = 20.11 = 12.64 = 18.06 = 16.40 = 4.69 = 22.09 = 22.68 = 17.87 = 24.67 = 16.18 = 19.45 = 17.67 = 21.90 = 29.24 = 20.13 = 18.56 = 17.07 = 14.14 = 1360 = 1196 = 975 = 1016 = 946 = 1191 = 1124 = 1166 = 908 = 1165 = 966 = 1299 = 1188 = 992 = 1298 = 873 = 744 = 14.04 = 14.$	9	Lu _N /Gd _N	2.09	2.17	2.09	2.87	1.84	1.73	1.97	1.72	1.73	2.82	1.54	1.71	2.33	3.90	1.75	2.22	2.67	15.48
C T(Ti), C 1414 1360 1196 975 1016 946 1191 1124 1166 908 1165 966 1299 1188 992 1298 873 744	2	Sm_N/La_N	17.66	17.22	20.11	12.64	18.06	16.40	4.69	22.09	22.68	17.87	24.67	16.18	19.45	17.67	21.90	29.24	20.13	18.56
	023	T(Ti), °C	1414	1360	1196	975	1016	946	1611	1124	1166	908	1165	996	1299	1188	992	1298	873	744

ГРАКОВА и др.

Рис. 4. Спектры распределения REE, нормированные к хондриту CI, для зерен циркона: а – 87, б – 19, в – 17, г – 15, д – 14, е – 11, ж – 5, з – 2.

мента для оценки температуры кристаллизации циркона лишено геологического смысла. Содержание Th заметно преобладает над U (Th/U отношение составляет 2.56). Содержание воды в цирконе находится на уровне 4—5 мас. % (в среднем 44542 ppm). Кроме этого, было определено значительное количество фтора (2468 ppm) и на порядок меньшее содержание хлора (122 ppm).

Зерно 19 (рис. 3). Четко выраженной удлиненной формы (примерно 100×250 мкм), вершины зерна окатаны (рис. 3). Характеризуется сложным внутренним строением: центральная часть (ядро?) представлена цирконом темно-серого оттенка в BSE-изображении; основная часть серого цвета отличается тонкополосчатой зональностью, напоминающей ростовую осцилляционную зональность; внешняя часть зерна представлена оторочкой переменной мощности (до 20–30 мкм), имеющей светло-серую окраску в BSE. В центральной части зерна установлены включения монацита и кварца, само зерно обрастает ксенотимом вдоль граней призмы.

Циркон центральной части темно-серого оттенка (точки 3 и 3-1, табл. 1) характеризуется пониженным содержанием кремнезема — в среднем 24.89 мас. %, содержание ZrO_2 также пониженное — 55.06 мас. %. Установлено повышенное содержание Y_2O_3 и P_2O_5 (2.30 и 1.91 мас. % соответственно), и других элементов-примесей (1.13 мас. % CaO, 1.88 мас. % FeO, 0.86 мас. % Al_2O_3). Содержание ThO₂ и UO₂ находится на умеренном уровне — 0.44 и 0.20 мас. %, соответственно. Содержание HfO₂ составляет 0.87 мас. %. Для темно-серого в BSE циркона установлен дефицит суммы (90.60 мас. %), который может быть объяснен вхождением в состав летучих компонентов.

ГЕОХИМИЯ том 68 № 9 2023

Состав более светлоокрашенного циркона в краевой зоне (точка 4, табл. 1) отличается стехиометрическим соотношением SiO₂ и ZrO₂ (33.26 и 65.36 мас. %), крайне низким (или ниже порога обнаружения) содержанием Th, U, Y, P, а также элементов-примесей Ca, Fe и Al. Содержание HfO₂, напротив, заметно выше (1.22 мас. %), чем в доменах циркона с темно-серой окраской. Дефицит суммы анализа не установлен, что говорит об отсутствии летучих компонентов в составе данных участков циркона.

На ионном микрозонде был проанализирован состав темно-серого циркона из центральной части (точка 19-3) и тонкополосчатого циркона основной части зерна (точка 19-4, табл. 2). Суммарное содержание REE в этих точках отличается более чем в четыре раза (22228 и 5057 ррт соответственно). Спектры распределения REE в этих точках (рис. 4б), отличаясь по уровню накопления REE, демонстрируют подобие со сходными характеристиками фракционирования от легких к тяжелым REE (Lu_N/La_N отношение 48.0 и 37.7) и редуцированными положительной Се-и отрицательной Еи-аномалиями. По данным SIMS, темно-серый циркон центральной части отличается от серого тонкополосчатого циркона повышенным содержанием У (26223 и 5161 ррт, соответственно), Р (12074 и 3047 ррт) и других элементов-примесей: Sr (90 и 20 ppm), Ва (799 и 126 ppm) и Nb (98 и 44 ppm). Содержание Ті также уменьшается – от 347 до 85 ppm. Содержание Th понижается примерно в 9 раз (с 7070 до 800 ррт), U – почти в два раза (с 1897 до 1097 ррт), при этом Th/U отношение понижается в пять раз (с 3.73 до 0.73). Содержание Hf, напротив, повышается с 9899 до 14147 ррт. Содержание воды, по данным метода SIMS, уменьшается более чем в три раза (с 36348 до 9481 ppm), фтора — примерно в пять раз (1712 и 348 ppm), содержание хлора меняется несущественно.

Зерно 17 (рис. 3). Имеет слабо удлиненную форму (примерно, 100 × 200 мкм), границы зерна участками корродированы. В ВЅЕ-изображении отчетливо прослеживается ростовая зональность, представленная чередованием темно- и светлоокрашенных полос переменной мощности (до 10 мкм).

Методом ЕРМА анализировался состав темноокрашенных полос (4 точки, табл. 1). В них циркон отличается пониженным содержанием главных компонентов Si и Zr (SiO₂ – в среднем 24.36 мас. %, ZrO₂ – 55.92 мас. %). Содержание Y₂O₃ и P₂O₅ повышенное (2.08 и 3.03 мас. % соответственно), при этом может варьировать более чем в два раза от точки к точке. Аналогично ведут себя другие элементы-примеси (1.55 мас. % CaO, 1.97 мас. % FeO, 0.96 мас. % Al₂O₃). Содержание ThO₂ и UO₂ невысокое – 0.19 и 0.16 мас. % соответственно. Содержание HfO₂ составляет 1.40 мас. %. Суммарное содержание измеренных методом ЕРМА оксидов составляет 92.49 мас. %, что говорит о возможном присутствии летучих компонентов.

Результаты анализа данного зерна методом SIMS являются интегральными (с преобладанием вклада темных полос) по причине того, что диаметр кратера превышает ширину проанализированных темных полос. Суммарное содержание REE составляет в среднем 7334 ppm (точки 17-5 и 17-6, табл. 2). Спектры распределения REE демонстрируют умеренное фракционирование от легких к тяжелым REE (Lu_N/La_N отношение 34.4), Се-аномалия и Еи-аномалия проявлены слабо (рис. 4в). Установлено повышенное содержание P (3980 ppm), Y (8106 ppm) и Ca (2336 ppm). Содержание других элементов-примесей существенно ниже: Sr (33.2 ppm), Ва (229 ppm) и Nb (33.9 ррт). Содержание Ті (91.6 ррт) не позволяет его использовать для оценки температуры кристаллизации циркона. Содержание Th и U не обнаруживает закономерностей, поэтому Th/U отношение варьирует для двух точек (1.56 и 0.70). Содержание воды в цирконе находится на уровне 2 мас. % (в среднем 20892 ррт). Содержание фтора составляет 566 ррт, хлора – 127 ррт.

Зерно 15 (рис. 3). Окатанное, имеет слабо удлиненную форму (примерно 100 × 200 мкм). Вдоль граней призмы наблюдается обрастание тонкой (до 5 мкм) полоской ксенотима. Центральная часть зерна (ядро?) имеет темно-серую окраску в BSE-изображении и пятнистую незакономерную внутреннюю структуру. Ядро по периметру окаймлено зоной с чередованием темно- и светлоокрашенных полос переменной мощности. На вершинах зерна наблюдается светло-серая однородная внешняя кайма мощностью до 20 мкм.

Состав темноокрашенного ядра отличается пониженным содержанием главных компонентов: SiO₂ – в среднем 14.54 мас. %, ZrO₂ – 43.74 мас. % (точки 7 и 7-1, табл. 1). В этих точках наблюдается повышенное содержание Y_2O_3 и P_2O_5 (4.99 и 9.75 мас. % соответственно). Содержание других элементов-примесей также повышенное (3.07 мас. % CaO, 3.13 мас. % FeO, 1.01 мас. % Al₂O₃). Содержание ThO₂ существенно преобладает над UO₂ – 3.55 и 0.28 мас. % соответственно. Содержание HfO₂ составляет 1.23 мас. %. Суммарное содержание измеренных методом ЕРМА оксидов составляет 87.48 мас. %, что указывает на присутствие летучих компонентов.

Состав темно-серых полос из участков вокруг ядра с чередованием разноокрашенных полос отличается более высоким содержанием главных компонентов: SiO₂ – в среднем 24.49 мас. %, ZrO₂ – 55.03 мас. % (точки 8 и 8-1). Содержание Y_2O_3 уменьшается до 2.28 мас. %, P_2O_5 – до 2.98 мас. %. Содержание CaO уменьшается до 1.41 мас. %, FeO – до 1.44 мас. %, содержание Al_2O_3 даже несколько увеличивается до 0.34 мас. %, UO_2 – до 0.14 мас. %. Содержание HfO₂ возрастает до 1.75 мас. %. Суммарное содержание измеренных компонентов возрастает до 92.05 мас. %, что указывает на сокращение количества летучих компонентов.

Состав светлоокрашенного циркона в кайме (точка 9, табл. 1) отличается стехиометрическим соотношением SiO₂ и ZrO₂ (32.92 и 64.98 мас. %), низким (или ниже порога обнаружения) содержанием Y, P, Th и U, а также элементов-примесей Ca, Fe и Al. Содержание HfO₂ составляет 1.37 мас. %. Дефицит суммы анализа (99.36 мас. %) незначителен.

Методом SIMS был проанализирован состав ядра (точка 7, табл. 2), темных полос вокруг него (точка 8) и внешней каймы (точка 9). По всей видимости, при анализе каймы в область анализа попало вещество темных полос, потому что по уровню содержания REE и характеру их спектров существенных отличий не наблюдается (рис. 4г). Суммарное содержание REE составляет в среднем 12781 ppm. Спектры REE слабо фракционированы от легких к тяжелым REE, положительная Се-аномалия проявлена слабо, Еи-аномалия практически отсутствует. Зафиксировано повышенное содержание Р (6977 ppm), Y (13482 ppm) и Са (3357 ppm). Среди других элементов-примесей преобладает Ва (420 ррт), ниже содержание Sr (49.6 ppm) и Nb (30.7 ppm). Содержание Ті (289 ppm) не позволяет его использовать для оценки температуры кристаллизации циркона. Содержание Th высокое, но варьирует (от 1844 до 6289 ppm). Содержание U более выдержанное (от 853 до 2011 ppm), соответственно, Th/U отношение варьирует от 1.77 до 7.38. Содержание воды в цирконе находится на уровне 2 мас. % (в среднем 21261 ppm). Содержание фтора составляет 917 ppm, хлора – 106 ppm.

Зерно 14 (рис. 3). Окатанное, имеет слабо удлиненную форму (примерно 100 × 200 мкм). Центральная часть (ядро), составляющая примерно треть от площади сечения зерна, имеет реликты мозаичной зональности, выраженной чередованием участков со светло-серой и темно-серой окраской в BSE-изображении. В краевой зоне переменной мощности (до 30–50 мкм) отмечены реликты неравномерной полосчатости, представленной цирконом темно-серой окраски.

Светлоокрашенный циркон в ядре (точка 10, табл. 1) характеризуется стехиометрическим соотношением SiO₂ и ZrO₂ (33.02 и 64.97 мас. %), низким (или ниже порога обнаружения) содержанием Y, P, Th и U, а также элементов-примесей Ca, Fe и Al. Содержание HfO₂ составляет 1.62 мас. %. Дефицит суммы анализа (99.82 мас. %) практически не наблюдается.

Циркон из полос темно-серого оттенка в краевой зоне отличается пониженным содержанием главных компонентов: SiO₂ – в среднем 26.10 мас. %, ZrO₂ – 56.96 мас. % (точки 11 и 11-1, табл. 1). В этих точках наблюдается повышенное содержание Y₂O₃ и Р₂О₅ (1.48 и 2.14 мас. %, соответственно). Содержание других элементов-примесей также повышенное (1.11 мас. % СаО, 1.46 мас. % FeO, 0.86 мас. % Al₂O₃). Содержание ThO₂ и UO₂ близкое и находится в интервале 0.15-0.20 мас. %. Содержание HfO₂ несущественно понижается, по сравнению со светло-серым цирконом, и составляет 1.40 мас. %. Суммарное содержание измеренных методом ЕРМА компонентов составляет 92.56 мас. %, что указывает на возможное присутствие летучих компонентов.

Светло-серый и темно-серый циркон контрастно различается по уровню суммарного содержания REE (табл. 2): в светло-сером содержится 2778 ррт (точка 10), в темно-сером — 19047 ppm (точка 11). В обеих разновидностях положительная Се-аномалия сильно редуцирована, но в светло-сером цирконе наблюдается отрицательная Eu-аномалия, в темно-сером цирконе Еи-аномалия отсутствует (рис. 4д). Темно-серый циркон отличается от светло-серого повышенным содержанием Р (8386 и 1439 ррт. соответственно), Y (21223 и 3022 ррт) и Ca (5158 и 816 ppm). Содержание других элементов-примесей (Sr, Ba и Nb) также закономерно выше в темно-сером цирконе. Содержание Ті составляет 294 и 50 ррт, что приводит к завышенным оценкам температуры по Ті-в цирконе термометру. Соотношение Th и U не обнаруживает закономерностей, поэтому Th/U отношение ва-

ГЕОХИМИЯ том 68 № 9 2023

рьирует для двух точек (1.60 и 0.98). Темно-серый циркон отличается повышенным содержанием воды (33245 ppm), в светло-сером цирконе воды гораздо меньше (7359 ppm). Содержание фтора и хлора в темно-сером цирконе также примерно в пять раз выше, чем в светло-сером (1090 и 196 ppm для F, 91 и 20 ppm для Cl).

Зерно 11 (рис. 3). Окатанное, форма ближе к округлой (примерно 100 × 120 мкм). Во внутреннем строении наблюдается незакономерное чередование темных и более светлых полос и участков различной мощности. Краевая часть зерна в основном имеет темно-серый оттенок. В целом циркон темно-серого цвета составляет примерно 70–80% от площади сечения зерна.

Методом ЕРМА были проанализированы 4 точки из участков с темно-серым оттенком (табл. 1): точки 12 и 12-1 относятся к центральной части зерна, точки 13 и 13-1 – к краевой зоне. Во всех точках циркон отличается пониженным содержанием главных компонентов Si и Zr, но в краевой зоне этот дефицит заметней, чем в центре зерна (SiO₂ – в среднем 21.81 и 27.48 мас. %, соответственно, ZrO₂ – 51.28 и 59.29 мас. %). Аналогичным образом соотносится в целом повышенное содержание P₂O₅ и Y₂O₃: 5.11 и 1.59 мас. % для Р₂О₅, 4.61 и 1.03 мас. % для Y₂O₃. Похоже ведут себя другие элементы-примеси: содержание СаО и Al₂O₃отличается примерно в два раза, но содержание FeO изменяется незначительно. Краевая зона отличается от центра зерна повышенным содержанием ThO₂ (0.54 и 0.11 мас. %, соответственно),при этом содержание UO₂ меняется незначительно (0.19 и 0.12 мас. %). Содержание HfO₂ достаточно выдержанное для проанализированных участков циркона и составляет в среднем 1.36 мас. %. Суммарное содержание оксидов составляет 94.34 мас. % для центральной части зерна и 91.36 мас. % для краевой, что свидетельствует о большем вкладе летучих компонентов в состав циркона в краевой зоне.

Методом SIMS были проанализированы участки преимущественно с темно-серой окраской в центральной и краевой зоне зерна циркона. Краевая зона отличается от центральной части повышенным содержанием REE (точка 13 – 36204 ppm, точка 12 – 7015 ppm, табл. 2). В обеих точках проявлена слабо выраженная отрицательная Еи-аномалия, в краевой зоне – положительная Се-аномалия, которая практически отсутствует в центральной части (рис. 4е). Спектры распределения REE демонстрируют умеренное фракционирование от легких к тяжелым REE (Lu_N/La_N отношение 64.1 и 29.1 для края и центра, соответственно). Содержание ряда элементов существенно повышается от центра к краю зерна: P (4383 и 15169 ppm, соответственно), Y (7613 и 48824 ppm), Са (2815 и 6509 ppm) и Ті (79.5 и 587 ppm).

Аналогично изменяется содержание и других элементов-примесей (Sr, Ba и Nb). Содержание Th возрастает к краю более чем в четыре раза, содержание U — только в полтора раза, Th/U отношение увеличивается от 0.82 до 2.31. Примечательно, что содержание воды в различных участках зерна отличается незначительно (21905 ppm в центральной части, 25062 ppm — в краевой зоне). Содержание фтора повышается в краевой зоне (от 604 до 1006 ppm), содержание хлора, напротив, понижается — от 363 до 176 ppm.

Зерно 5 (рис. 3). Удлиненной формы (примерно 150 × 250 мкм), вершины зерна окатаны, границы частично корродированны. В центральной части присутствует ядро (примерно 50 × 100 мкм), очертания которого повторяют внешние границы зерна. Ядро отличается светло-серой окраской в BSE-изображении. Основная часть зерна в основном темно-серого оттенка, за исключением редких полос и участков, окраска которых идентична ядру. Окраска краевой зоны зерна участками является более темной, при этом четких границ между зонами с разной интенсивностью темно-серой окраски не наблюдается.

Светлоокрашенный циркон в ядре (точка 14, табл. 1) характеризуется стехиометрическим соотношением SiO₂ и ZrO₂ (32.53 и 65.92 мас. %), низким (или ниже порога обнаружения) содержанием Y, P, Th и U, а также элементов-примесей Ca, Fe и Al. Содержание HfO₂ составляет 1.21 мас. %. Дефицит суммы анализа (99.93 мас. %) отсутствует.

Циркон темно-серого оттенка из основной части зерна отличается пониженным содержанием главных компонентов: SiO₂ – в среднем 24.74 мас. %, ZrO₂ – 55.22 мас. % (точки 15 и 15-1, табл. 1). В этих точках наблюдается повышенное содержание Y₂O₃ и P₂O₅ (1.80 и 1.80 мас. %, соответственно). Содержание других элементов-примесей также повышенное (1.09 мас. % CaO, 2.49 мас. % FeO, 0.78 мас. % Al₂O₃). Содержание ThO₂ и UO₂ близкое и находится в интервале 0.16-0.21 мас. %. Содержание HfO₂ практически не меняется и составляет 1.31 мас. %. Суммарное содержание измеренных методом EPMA компонентов составляет 90.48 мас. %, что указывает на возможное присутствие летучих компонентов.

Циркон более темного оттенка из краевой части зерна отличается еще более пониженным содержанием главных компонентов: SiO_2 – в среднем 19.65 мас. %, ZrO_2 – 45.36 мас. % (точки 16 и 16-1, табл. 1). В этих точках наблюдается заметно повышенное содержание Y_2O_3 и P_2O_5 (5.52 и 5.83 мас. %, соответственно). Содержание других элементов-примесей также возрастает (1.75 мас. % CaO, 2.63 мас. % FeO, 0.97 мас. % Al₂O₃). Содержание ThO₂ и UO₂ принципиально не меняется (находится в интервале 0.17–0.41 мас. %). Содержание HfO₂ незначительно понижается и составляет 1.17 мас. %. Дефицит суммы измеренных компонентов (85.93 мас. %) возрастает.

Методом SIMS были проанализированы ядро светло-серого оттенка (точка 14), темно-серая основная часть зерна (точка 15) и более темная краевая часть зерна (точка 16, табл. 2). В этом ряду закономерно возрастает суммарное содержание REE: от 2783 до 12374 и, далее, до 37721 ppm. Положительная Се-аномалия проявлена только в краевой зоне (рис. 4ж). Во всех трех точках наблюлается слабопроявленная отрицательная Ецаномалия. Спектры распределения REE демонстрируют умеренное фракционирование от легких к тяжелым REE (Lu_N/La_N отношение составляет в среднем 69.9). Содержание ряда релких элементов существенно повышается от ядра к основной части зерна и, далее, к краевой зоне (в этом же ряду возрастает интенсивность темно-серой окраски): Р (1481, 5870 и 18444 ppm, соответственно), Ү (2904, 13565 и 52397 ррт), Са (878, 3926 и 7745 ррт). Аналогично изменяется содержание и других элементов-примесей (Sr, Ba и Nb). Содержание Ті в целом большое (от 96.4 до 583 ppm), но без тренда увеличения от светлоокрашенного ядра к темносерой основной зоне зерна. Содержание Th возрастает только в краевой зоне (от 1674 до 8726 ppm), содержание U минимальное в ядре (211 ppm), в основной части зерна по мере интенсивности темной окраски возрастает от 1554 до 2053 ppm, Th/U отношение варьирует от 8.12 (ядро) до 1.08 (основная часть) и 4.25 (краевая темная зона). Содержание воды минимальное в ядре (9333 ppm), в основной части зерна — 33918 ррт, в краевой зоне еще выше — 39869 ррт. Аналогичным образом повышается содержание фтора (276-1137-2278 ррт) и хлоpa (25–35–149 ppm).

Зерно 2 (рис. 3). Имеет окатанную изометричную форму, сильно трещиноватое и частично обломано, первоначальный размер не менее 100 × 150 мкм. Циркон в основном демонстрирует светло-серую окраску и минимально затронут наложенными изменениями. Наблюдаются участки, приуроченные к трещинам с более темным оттенком в BSEизображении. Края циркона обрастают вытянутыми агрегатами зерен ксенотима микронной толщины.

Светлоокрашенный циркон (точка 18, табл. 1) характеризуется стехиометрическим соотношением SiO₂ и ZrO₂ (33.11 и 66.04 мас. %), низким (или ниже порога обнаружения) содержанием Y, P, Th и U, а также элементов-примесей Ca, Fe и Al. Содержание HfO₂ составляет 1.09 мас. %. Дефицит суммы анализа (100.40 мас. %) отсутствует.

Циркон из доменов темно-серого оттенка отличается пониженным содержанием главных компонентов: SiO₂ – в среднем 26.53 мас. %, ZrO₂ – 59.22 мас. % (точки 17 и 17-1, табл. 1). В этих точках наблюдается повышенное содержание Y_2O_3 и P_2O_5 (1.56 и 2.15 мас. %, соответственно). Содержание других элементов-примесей также повышенное (1.15 мас. % CaO, 1.18 мас. % FeO, 0.60 мас. % Al_2O_3). Содержание ThO₂ и UO₂ близкое и находится в интервале 0.10–0.18 мас. %. Содержание HfO₂ несущественно понижается, по сравнению со светло-серым цирконом, и составляет 0.86 мас. %. Дефицит суммы анализа (94.10 мас. %) возрастает, что предполагает присутствие летучих компонентов.

Светлоокрашенный циркон имеет минимальное содержание REE (346 ppm, точка 18, табл. 2) среди всех проанализированных зерен. Спектр распределения REE дифференцирован от легких к тяжелым REE (Lu_N/La_N отношение составляет 555), четко выражена положительная Се-аномалия, отрицательная Eu-аномалия проявлена слабо (рис. 43). Содержание элементов-примесей в светлоокрашенном также минимальное, например, содержание Р составляет всего 173 ррт, Y – 396 ррт. Содержание Th и U составляет 157 и 234 ppm, соответственно. Th/U отношение равняется 0.67 и является типичным для циркона магматического генезиса (Möller et al., 2003; Kirkland et al., 2015; Yakymchuk et al., 2018). Содержание Ті составляет 10.1 ppm, что соответствует реалистичной оценке температуры кристаллизации циркона – 744°С. Содержание летучих (воды, фтора и хлора) в светлоокрашенном цирконе не измерялось, поскольку он был использован в качестве оценки фонового содержания летучих компонентов.

Циркон с более темным оттенком в BSE-изображении характеризуется более высоким содержанием REE (6698 ppm, точка 17, табл. 2). Положительная Се-аномалия в значительной степени редуцирована, отрицательная Eu-аномалия остается на таком же уровне, как для светлоокрашенного циркона. Спектр распределения REE демонстрирует умеренное фракционирование от легких к тяжелым REE (Lu_N/La_N отношение составляет 67.1). Содержание элементов-примесей существенно возрастает, по сравнению с точкой 18, - содержание Р составляет 3151 ррт, У – 8193 ррт, также возрастает содержание Са (от 60 до 1811 ррт). Аналогично изменяется содержание и других элементов-примесей (Sr. Ba и Nb). Содержание Ті возрастает до 37 ppm, что не позволяет использовать этот элемент для расчетов температуры кристаллизации. Содержание Th возрастает почти на порядок, до 1440 ppm, содержание U — до 565 ppm. Th/U отношение возрастает до 2.55. Содержание летучих компонентов довольно значительное: воды установлено 12807 ppm, фтора — 337 ppm, хлора — 241 ppm.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ И ВЫВОДЫ

Исследованные цирконы демонстрируют сильную положительную связь между содержа-

ГЕОХИМИЯ том 68 № 9 2023

нием Р (по данным метода SIMS) и всех других редких элементов, за исключением Li и Hf. Из летучих компонентов с содержанием Р положительно коррелирует содержание воды и фтора, корреляция с содержанием хлора отсутствует. Так, на бинарных графиках соотношения содержания Р и других компонентов фигуративные точки циркона образуют единый прямолинейный тренд при сопоставлении с содержанием Y, HREE, Ca (рис. 5а–5в). На этих графиках обособленное нижнее положение занимает фигуративная точка 18, относящаяся к циркону светло-серого оттенка в BSE-изображении с минимальным (по сравнению с другими проанализированными точками) содержанием элементов-примесей. Для Ті также фиксируется сильная положительная корреляция, но прямолинейной зависимость становится только с содержаний Р выше 10000 ррт (рис. 5г). Для воды, у которой характер распределения содержания отвечает нормальному закону (в отличие от других элементов), установлен более сложный тренд (рис. 5д). Фигуративные точки циркона отчетливо распадаются на две группы, в зависимости от уровня содержания воды. Циркон с содержанием воды менее 3 мас. % образует свой собственный тренд, как и циркон с содержанием воды более 3 мас. %.

Th и U по отдельности положительно коррелируют с P (r = 0.92 и 0.93, соответственно), но положительная корреляция между этими элементами слабее (r = 0.80, рис. 5е). Данная зависимость отражает значительные вариации в цирконе Th/U отношения (табл. 2). Повышенное содержание фосфора в цирконе впервые было отмечено в 30-х годах прошлого века для циркона из гранитных пегматитов — 4.23 мас. % P_2O_5 (Kimura, Hironaka, 1936); 5.3 мас. % Р₂О₅ (Hata, 1938). Как было установлено позднее, повышенное содержание фосфора в цирконе сопровождается повышенным содержанием Y и HREE (Deer et al., 1997; Hoskin, Schaltegger, 2003). Одновременное обогащение циркона фосфором и тяжелыми редкоземельными элементами обозначает, что эти элементы входят в структуру циркона в соответствии со схемой гетеровалентного изоморфизма $(Y + REE)^{3+} + P^{5+} =$ $= Zr^{4+} + Si^{4+}$, которая получила название "замещение ксенотимового типа" (Speer, 1980; Finch et al., 2001; Finch, Hanchar, 2003). Циркон и ксенотим оба имеют тетрагональную сингонию и изоструктурны, однако непрерывный ряд твердых растворов, промежуточных по составу между конечными членами серии циркон-ксенотим, в природе отсутствует (Förster, 2006).

Ксенотимовая схема изоморфизма предполагает пропорциональное увеличение содержания У и REE с одной стороны, и P с другой. При этом корреляция этих элементов фиксируется на микроуровне, в масштабах тонких полосок ростовой осцилляционной зональности. Было установле-

Рис. 5. Соотношение содержания элементов (ppm) в цирконе: фосфора и Y (a), HREE (б), Ca (в), Ti (г), H₂O (д); Th и U (е).

но, что именно фосфор определяет количество присутствующих в цирконе Y и REE, поскольку находящийся в магматическом расплаве P характеризуется меньшей скоростью диффузии, по сравнению с Zr, что и приводит к флуктуациям содержания этого элемента вдоль поверхности кристаллизующегося циркона (Yang et al., 2016).

Действительно, совместный рост содержания P, Y и REE, вплоть до аномально высоких значений, был установлен для целого ряда объектов. Так, это отмечено для циркона из рудопроявления Ичетъю (Средний Тиман), в котором содержание P достигает 41830 ppm при росте содержания Y и REE до 96240 и 104578 ppm соответственно (Макеев, Скублов, 2016). Случаи, когда богатый фосфором циркон не демонстрирует повышенное содержание Y и REE, являются более редкими и имеют отношение к фракционированным, перглиноземистым, богатым P (0.5–1.0 мас. % P_2O_5) гранитам и пегматитам (Raimbault, 1998; Raimbault, Burnol, 1998; Huang et al., 2000).

Также существуют примеры, общим для которых является воздействие на породы флюидов, обогащенных несовместимыми элементами (HFSE и REE), обычно немобильными при магматических и метаморфических процессах, когда увеличение содержания Р в цирконе значительно отстает от роста содержания Y и REE (ссылки в Skublov et al., 2020). Возможно предположить, что в рассмотренных случаях замещение ксенотимового типа имеет подчиненное значение, а преобладающим является механизм вхождения водорода Н⁺ + $+ (REE, Y)^{3+} = Zr^{4+}$ (De Hoog et al., 2014). Для высокофосфористого циркона из песчаников джежимской свиты, напротив, ксенотимовая схема изоморфизма имеет основное значение (Yang et al., 2016), поскольку содержание Р сопоставимо с суммарным содержанием У и REE – фигуративные точки циркона тяготеют к диагональной линии равного содержания этих компонентов (рис. 6). Однако в области высоких значений содержания Р тренд точек состава начинает отклоняться в сторону превышения Y+REE над Р. Помимо вхождения водорода (что фиксируется по повышенному содержанию воды в высокофосфористом цирконе), компенсация изоморфного вхождения трехвалентных Y и REE также может осуществляться по схемам (Mg, Fe)²⁺ + $3(REE, Y)^{3+} + P^{5+} =$ $= 3Zr^{4+} + Si^{4+} u$ (Al, Fe)³⁺ + 4(REE, Y)³⁺ + P⁵⁺ = = 4Zr⁴⁺ + Si⁴⁺ (Hoskin, 2000). Подтверждением такого изоморфизма является установленное повышенное содержание Al (до 1.45 мас. % Al₂O₃) и Fe (до 5.26 мас. % FeO, без разделения железа по валентности) по данным ЕРМА (табл. 1), положительно коррелирующее с содержанием Р₂O₅ в цирконе (r = 0.69 и 0.77 соответственно). Альтернативная схема гетеровалентного изоморфизма,

предполагающая вхождение одновалентного лития – Li⁺ + 2(REE, Y)³⁺ + P⁵⁺ = 2Zr⁴⁺ + Si⁴⁺ (Hanchar et al., 2001; Ushikubo et al., 2008), вряд ли реализовывалась, поскольку содержание Li в исследованном цирконе не превышало 21 ppm (табл. 2), а сам Li демонстрирует отрицательную корреляцию с P (r = -0.23).

Индикатором флюидного воздействия на циркон является повышенное содержание в нем неформульных элементов – Ca, Sr, Ba (Geisler, Schleicher, 2000; Geisler et al., 2007). Содержание Са около 100 ррт можно считать условным порогом для установления факта воздействия флюидов на циркон (Geisler, Schleicher, 2000). Уровень содержания Sr в цирконе, как правило, на порялок меньше, чем уровень содержания Са. В исследуемом цирконе из песчаников содержание Са ниже 100 ррт было установлено только в одном зерне (точка 18 – Са 60 ppm и Sr 0.96 ppm), в котором содержание всех неформульных элементов-примесей минимальное. В остальных проанализированных точках содержание Са варьирует от 816 до 13975 ppm, содержание Sr – от 9.6 до 223 ррт. Содержание Са положительно коррелирует с содержанием Ti (r = 0.92). Считается, что в земном цирконе содержание Ті, как правило, не превышает 20 ppm (Fu et al., 2008). Именно на этот диапазон содержания Ті от 0 до 20 ррт был откалиброван Ті-в цирконе термометр (Watson et al., 2006). В данный интервал содержания Ті попадает только вышеотмеченная точка 18, в остальных точках содержание Ті варьирует от 37 до 975 ррт (табл. 2), что отражает привнос Ті фюидом и не позволяет его использовать для количественной оценки температуры кристаллизации минерала.

На диаграмме соотношения содержания La и $(Sm/La)_N$ отношения в цирконе, характеризующего степень фракционирования LREE, основная популяция высокофосфористого циркона из песчаников джежимской свиты тяготеет к полям гидротермального и "пористого" циркона, образованного в результате интенсивной флюидной переработки (рис. 7а). В область пересечения полей неизмененного магматического и "пористого" циркона попадает только точка наименее измененного циркона (точка 18), в которой содержание фосфора минимальное (173 ppm, табл. 2).

На диаграмме соотношения содержания U и Ca (рис. 76) — предназначенной для разграничения неизмененного циркона от измененного и "пористого", подвергшихся интенсивной флюидной переработке, фигуративные точки образуют единый тренд, параллельный полю "пористого" циркона, но отличающийся бо́льшим содержанием Ca.

Этот тренд начинается от границ поля неизмененного циркона и заканчивается в пределах поля измененного циркона. Непосредственно в по-

Рис. 6. Соотношение содержания фосфора в цирконе с суммарным содержанием Y и REE. Содержание элементов приведено в ppm.

ле измененного циркона попадают точки 1 и 2, характеризующиеся максимальным содержанием не только U и Ca, но и P (24371 и 22048 ppm P по данным SIMS, 8.09 и 7.49 мас. % P_2O_5 по данным EPMA, соответственно, табл. 2 и 1).

На дискриминационной диаграмме соотношения U и Y фигуративные точки циркона расположены в поле циркона из гранитоидов (рис. 8). В пользу этой материнской породы для высокофосфористого циркона также свидетельствует значительное количество монацита (минерала, характерного для гранитоидов), присутствующего во вмещающих его песчаников.

Отдельным является вопрос, в результате каких процессов произошло обогащение исследованного циркона фосфором и другими неформульными элементами-примесями. Возможны два варианта ответа: либо это результат кристаллизации циркона из насыщенного фосфором перглиноземистого гранитного расплава, либо циркон своим составом зафиксировал наложенное флюидное воздействие. Учитывая то, что в рассмотренном цирконе ростовая осцилляционная зональность в основном нарушена темными в BSE-изображении зонами изменения, а в цирконе с максимальным содержанием фосфора и ряда других элементовпримесей (зерно 87, рис. 3) магматическая осцилляционная зональность вообше отсутствует, то более правдоподобным представляется вариант наложенного процесса обогащения фосфором. Локация доменов циркона с повышенным содержанием фосфора различна – это могут быть как краевые зоны циркона, так и участки ядер, и центральная часть зерна, контактирующая с ядром, и даже зерно целиком (зерно 87). Общим является

Рис. 7. Дискриминационные диаграммы для определения генезиса циркона. Поля составов приведены по: (a) (Hoskin, 2005; Grimes et al., 2009; Bouvier et al., 2012); (б) (Rayner et al., 2005; Bouvier et al., 2012).

то, что все обогащенные фосфором участки либо расположены на краю зерна, либо сообщаются с внешней средой системой трещин, что и обеспечивало взаимодействие с флюидом/гидротермальным раствором, который выступил транспортом неформульных элементов-примесей, вошедших в состав циркона. В пользу данного предположения свидетельствует высокое и коррелирующее с фосфором содержание элементовпримесей, являющихся индикаторами флюидного воздействия – Ca, Sr, Ba и ряда других, а также самих летучих компонентов в составе циркона (воды – до 0.49 мас. %, фтора – до 0.26 мас. %). Для сходного по соотношению элементов-примесей (Р – более 4 мас. %, Ү – более 9.6 мас. %, REE – более 7 мас. %, вода – более 8 мас. %) высокофосфористого-Y-REE циркона из полиминерального алмаз-золото-редкометалльно-редкоземельно-титанового проявления Ичетью на Среднем Тимане ранее был установлен гидротермальный генезис (Макеев, Скублов, 2016), а предположительный источник поступления этого циркона был определен как палеопротерозойские образования фундамента Среднего Тимана. Само присутствие аномального по содержанию элементов-примесей циркона может выступать индикатором целого ряда рудопроявлений и месторождений (включая титановые, редкометалльные и алмазные), уже установленных и предполагаемых.

В случае с высокофосфористым цирконом из песчаников джежимской свиты сделать одно-

Рис. 8. Дискриминационная диаграмма для определения материнской породы для циркона. Приведены поля по (Belousova et al., 2002): 1 – карбонатиты; 2 – кимберлиты; 3 – сиениты; 4 – основные породы; 5 – сиенитовые пегматиты; 6 – гранитоиды; 7 – нефелиновые сиениты и сиенитовые пегматиты.

значный вывод об их генезисе, с учетом отсутствия геохронологического исследования циркона и сосуществующих минералов-геохронометров (например, монацита), на данный момент не представляется возможным.

Таким образом, проведенное детальное минералого-геохимическое исследование циркона из песчаников джежимской свиты на Южном Тимане позволило установить в нем аномально высокое содержание фосфора (до 10.21 мас. % Р₂О₅ по данным ЕРМА), коррелирующее с повышенным содержанием элементов-примесей, основными из которых являются Y, REE, Ca, Fe, Al, Ti, Sr, Ba, Th, U. Особо следует отметить значительное количество летучих компонентов в цирконе (до 0.49 мас. % воды и до 0.26 мас. % фтора, определенных методом SIMS). Суммарное содержание элементов-примесей может превышать 20 мас. %, что является характерной особенностью состава циркона, подвергшегося воздействию флюида, либо образованного в результате гидротермально-метасоматических процессов (Скублов и др., 2011). Основным механизмом вхождения примесей в состав циркона был гетеровалентный изоморфизм ксенотимового типа, когда вхождение пятивалентного фосфора компенсируется участием трехвалентных Y и REE. Подчиненное значение имела схема изоморфизма, обеспечивающая вхождение водорода (воды). Участки циркона, обогащенные фосфором и другими примесями, приурочены к краю зерен, либо системам трещин и флюидопроницаемым участкам. На основании датирования цирконов джежимской свиты Н.Б. Кузнецовым с соавторами сделан вывод о преобладании в составе песчаников продуктов разрушения древних кристаллических комплексов фундамента Восточно-европейской платформы (Кузнецов и др., 2010). Одним из источников цирконов в составе метаморфических пород фундамента ВЕП могли быть щелочные гранитоиды Фенноскандинавского щита. Последующее геохронологическое исследование высокофосфористой популяции циркона, возможно, позволит конкретизировать его источник и время флюидного воздействия.

Авторы благодарят С.Г. Симакина, Е.В. Потапова (ЯФ ФТИАН), А.С. Шуйского, Е.М. Тропникова (ЦКП "Геонаука" ИГ Коми НЦ УрО РАН) за проведение аналитических исследований, научного редактора журнала "Геохимия" О.А. Луканина, Н.В. Сорохтину и рецензентов за помощь в работе над текстом статьи

Работа выполнена в рамках тем государственного задания ИГ ФИЦ Коми НЦ УрО РАН (122040600013-9 и 122040600012-2) и ИГГД РАН (FMUW-2022-0002).

СПИСОК ЛИТЕРАТУРЫ

Гракова О.В. (2011) Акцессорный ильменорутил алмазсодержащих среднедевонских пород Южного Тимана. Вестник Института геологии Коми научного центра Уральского отделения РАН. **10**(202), 11-13.

Гракова О.В. (2014) Видовой состав, химические и типоморфные особенности акцессорных минералов девонских алмазсодержащих отложений Южного и Среднего Тимана. Вестник Института геологии Коми научного центра Уральского отделения РАН. **3**(231), 3-9.

Кузнецов Н.Б., Натапов Л.М., Белоусова Е.А., Гриффин У.Л., О'Рейлли С., Куликова К.В., Соболева А.А., Удоратина О.В. (2010) Первые результаты U/Pb-датирования и изотопно-геохимического изучения детрит-

ных цирконов из позднедокембрийских песчаников Южного Тимана (увал Джежим-Парма). ДАН. **435**(6), 798-805.

Макеев А.Б., Скублов С.Г. (2016) Иттриево-редкоземельные цирконы Тимана: геохимия и промышленное значение. *Геохимия*. (9), 821-828.

Makeyev A.B., Skublov S.G. (2016) Y-REE-RICH zircons of the Timan region: geochemistry and economic significance. *Geochem. Int.* **54**(9), 788-794.

Никулова Н.Ю. (2017) Состав и условия образования терригенных пород верхнего рифея (возвышенность Джежимпарма, Южный Тиман). Известия высших учебных заведений. Геология и разведка. (4), 27-35.

Оловянишников В.Г. (1998) *Верхний докембрий Тимана* и полуострова Канин. Екатеринбург: УрО РАН, 163 с.

Румянцева Н.А., Скублов С.Г., Ванштейн Б.Г., Ли С.-Х., Ли Ч.-Л. (2022) Циркон из габброидов хребта Шака (Южная Атлантика): U-Pb возраст, соотношение изотопов кислорода и редкоэлементный состав. Записки РМО. **151**(1), 44-73.

Скублов С.Г., Гаврильчик А.К., Березин А.В. (2022) Геохимия разновидностей берилла: сравнительный анализ и визуализация аналитических данных методами главных компонент (PCA) и стохастического вложения соседей с t-распределением (t-SNE). Записки Горного института. 255, 455-469.

Скублов С.Г., Лобач-Жученко С.Б., Гусева Н.С., Гембицкая И.М., Толмачева Е.В. (2009) Распределение редкоземельных и редких элементов в цирконах из миаскитовых лампроитов Панозерского комплекса Центральной Карелии. *Геохимия*. (9), 958-971.

Skublov S.G., Lobach-Zhuchenko S.B., Guseva N.S., Gembitskaya I.M., Tolmacheva E.V. (2009) Rare earth and trace element distribution in zircons from miaskite lamproites of the Panozero complex, Central Karelia. *Geochem. Int.* **47**(9), 901-913.

Скублов С.Г., Марин Ю.Б., Галанкина О.Л., Симакин С.Г., Мыскова Т.А., Астафьев Б.Ю. (2011) Первая находка аномально (Y+REE)-обогащенных цирконов в породах Балтийского щита. *ДАН*. **441**(6), 792-799.

Тиманский кряж. Литология и стратиграфия, геофизическая характеристика Земной коры, тектоника, минерально-сырьевые ресурсы (2010) Т. 2. Ухта: УГТУ, 437 с.

Федотова А.А., Бибикова Е.В., Симакин С.Г. (2008) Геохимия циркона (данные ионного микрозонда) как индикатор генезиса минерала при геохронологических исследованиях. *Геохимия* (9), 980-997.

Fedotova A.A., Bibikova E.V., Simakin S.G. (2008) Ionmicroprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies. *Geochem. Int.* **46**(9), 912-927.

Щербаков Э.С., Плякин А.М., Битков П.П. (2001) Условия образования среднедевонских алмазоносных отложений Тимана. Алмазы и алмазоносность Тимано-Уральского региона: Материалы Всероссийского совещания. Сыктывкар: Геопринт, 39-40.

Belousova E.A., Griffin W.L., O'Reilly S.Y., Fisher N.L. (2002) Igneous zircon: trace element composition as an indicator of source rock type. *Contrib. Mineral. Petrol.* **143**(5), 602-622.

Bouvier A.S., Ushikubo T., Kita N.T., Cavosie A.J., Kozdon R., Valley J.W. (2012) Li isotopes and trace elements as a petrogenetic tracer in zircon: insights from Archean TTGs and sanukitoids. *Contrib. Mineral. Petrol.* **163**(5), 745-768.

Breiter K., Förster H.J., Škoda R. (2006) Extreme P-, Bi-, Nb-, Sc-, U-and F-rich zircon from fractionated perphosphorous granites: The peraluminous Podlesí granite system, Czech Republic. *Lithos.* **88**(1–4), 15-34.

Davis D.W., Krogh T.E., Williams I.S. (2003) Historical development of zircon geochronology. *Rev. Mineral. Geochem.* **53**(1), 145-181.

De Hoog J.C.M., Lissenberg C.J., Brooker R.A., Hinton R., Trail D., Hellebrand E. (2014) Hydrogen incorporation and charge balance in natural zircon. *Geochim. Cosmochim. Acta.* **141**, 472-486.

Deer W.A., Howie R.A., Zussman J. (1997) Rock-forming minerals. Orthosilicates, vol. 1A. *Geol. Soc. London*. 418-442.

Finch R.J., Hanchar J.M. (2003) Structure and chemistry of zircon and zircon-group minerals. *Rev. Mineral. Geochem.* **53**(1), 1-25.

Finch R.J., Hanchar J.M., Hoskin P.W., Burns P.C. (2001) Rare-earth elements in synthetic zircon: Part 2. A singlecrystal X-ray study of xenotime substitution. *Amer. Mineral.* **86**(5–6), 681-689.

Förster H.J. (2006) Composition and origin of intermediate solid solutions in the system thorite-xenotime-zircon-coffinite. *Lithos.* **88**(1–4), 35-55.

Fu B., Page F.Z., Cavosie A.J., Fournelle J., Kita N.T., Lackey J.S., Wilde S.A., Valley J.W. (2008) Ti-in-zircon thermometry: Applications and limitations. *Contrib. Mineral. Petrol.* **156**, 197-215.

Geisler T., Schaltegger U., Tomaschek F. (2007) Re-equilibration of zircon in aqueous fluids and melts. *Elements.* **3**, 43-50.

Geisler T., Schleicher H. (2000) Improved U–Th–total Pb dating of zircons by electron microprobe using a simple new background modeling procedure and Ca as a chemical criterion of fluid-induced U-Th-Pb discordance in zircon. *Chem. Geol.* **163**, 269-285.

Griffin W.L., Pearson N.J., Belousova E., Jackson S.V., Van Achterbergh E., O'Reilly S.Y., Shee S.R. (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. *Geochim. Cosmochim. Acta.* **64**(1), 133-147.

Grimes C.B., John B.E., Cheadle M.J., Mazdab F.K., Wooden J.L., Swapp S., Schwartz J.J. (2009) On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. *Contrib. Mineral. Petrol.* **158**(6), 757-783.

Hanchar J.M., Finch R.J., Hoskin P.W., Watson E.B., Cherniak D.J., Mariano A.N. (2001) Rare earth elements in synthetic zircon: Part 1. Synthesis, and rare earth element and phosphorus doping. *Amer. Mineral.* **86**(5–6), 667-680. Harley S.L., Kelly N.M. (2007) Zircon tiny but timely. *Ele*-

ments. 3(1), 13-18.

Hata S. (1938) Xenotime and a variety of zircon from Iisaka. *Sc. P. of the Inst. of Phys. Chem. Res.* **34**, 619-622.

Hinton R.W., Upton B.G.J. (1991) The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths. *Geochim. Cosmochim. Acta*. **55**, 3287-3302.

Horie K., Hidaka H., Gauthier-Lafaye F. (2006) Elemental distribution in zircon: alteration and radiation-damage effects. *Phys. Chem. of the Earth. Parts A/B/C.* **31**(10–14), 587-592.

Hoskin P.W. (2000) Patterns of chaos: fractal statistics and the oscillatory chemistry of zircon. *Geochim. Cosmochim. Acta*. **64**(11), 1905-1923.

Hoskin P.W. (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. *Geochim. Cosmochim. Acta.* **69**(3), 637-648.

Hoskin P.W., Ireland T.R. (2000) Rare earth element chemistry of zircon and its use as a provenance indicator. *Geology*. **28**(7), 627-630.

Hoskin P.W., Schaltegger U. (2003) The composition of zircon and igneous and metamorphic petrogenesis. *Rev. Mineral. Geochem.* **53**(1), 27-62.

Huang X.L., Wang R.C., Chen X.M., Liu C.S. (2000) Study on phosphorus-rich zircon from Yashan topaz–lepidolite granite, Jiangxi province, South China. *Acta Miner. Sinica*. **20**, 22-27.

Kemp A.I.S., Hawkesworth C.J., Foster G.L., Paterson B.A., Woodhead J.D., Hergt J.M., Gray C.M., Whitehouse M.J. (2007) Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. *Science*. **315**(5814), 980-983.

Kimura K., Hironaka Y. (1936) Chemical investigations of Japanese minerals containing rarer elements: XXIII. Yama-gutilite, a phosphorus-bearing variety of zircon, found at Yamaguli Village, Nagano Prefecture. *J. Chem. Soc. Japan.* **57**, 1195-1199.

Kirkland C.L., Smithies R.H., Taylor R.J.M., Evans N., McDonald B. (2015) Zircon Th/U ratios in magmatic environs. *Lithos.* **212**, 397-414.

Kudryashov N.M., Skublov S.G., Galankina O.L., Udoratina O.V., Voloshin A.V. (2020) Abnormally high-hafnium zircon from rare-metal pegmatites of the Vasin-Mylk deposit (the northeastern part of the Kola Peninsula). *Geochem. Int.* **80**(3), 125489.

Levashova E.V., Mamykina M.E., Skublov S.G., Li Q.-L., Li X.-H. (2023) Geochemistry of zircons (TE, REE, Oxygen isotope system) from leucogranites of Belokurikha massif, Gorny Altai. *Geochem. Int.*

Levskii L.K., Skublov S.G., Gembitskaya I.M. (2009) Isotopic-geochemical study of zircons from metabasites of the Kontokki dike complex: Age of regional metamorphism in the Kostomuksha structure. *Petrology.* **17**(7), 669-683.

McDonough W.F., Sun S.S. (1995) The composition of the Earth. *Chem. Geol.* **120**, 223-253.

Mojzsis S.J., Harrison T.M., Pidgeon R.T. (2001) Oxygenisotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago. *Nature*. **409**(6817), 178-181. Möller A., O'Brien P.J., Kennedy A., Kröner A. (2003) The use and abuse of Th-U ratios in the interpretation of zircon. *EGS-AGU-EUG Joint Assembly.* 12113.

Raimbault L. (1998) Composition of complex lepidolitetype granitic pegmatites and of constituent columbite-tantalite, Chedeville, Massif Central, France. *Can. Mineral.* **36**(2), 563-583.

Raimbault L., Burnol L. (1998) The Richemont rhyolite dyke, Massif Central, France; a subvolcanic equivalent of rare-metal granites. *Can. Mineral.* **36**(2), 265-282.

Rayner N., Stern R.A., Carr S.D. (2005) Grain-scale variations in trace element composition of fluid-altered zircon, Acasta Gneiss Complex, northwestern Canada. *Contrib. Mineral. Petrol.* **148**(6), 721-734.

Skublov S.G., Berezin A.V., Li X.-H., Li Q.-L., Salimgaraeva L.I., Travin V.V., Rezvukhin D.I. (2020) Zircons from a pegmatite cutting eclogite (Gridino, Belomorian Mobile Belt): U-Pb-O and trace element constraints on eclogite metamorphism and fluid activity. *Geosciences*. **10**(5), 197.

Skublov S.G., Rumyantseva N.A., Li Q., Vanshtein B.G., Rezvukhin D.I., Li X. (2022) Zircon xenocrysts from the Shaka Ridge record ancient continental crust: New U-Pb geochronological and oxygen isotopic data. *J. Earth Sci.* **33**(1), 5-16.

Speer J.A. (1980) Zircon. Rev. Mineral. Geochem. 5(1), 67-112.

Trail D., Mojzsis S.J., Harrison T.M., Schmitt A.K., Watson E.B., Young E.D. (2007) Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements. *Geochem., Geoph., Geosyst.* **8**, Q06014.

Ushikubo T., Kita N.T., Cavosie A.J., Wilde S.A., Rudnick R.L., Valley J.W. (2008) Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust. *Earth and Planet. Sci. Lett.* **272**(3–4), 666-676.

Wang S.J., Li S.G., An S.C., Hou Z.H. (2012) A granulite record of multistage metamorphism and REE behavior in the Dabie orogen: constraints from zircon and rock-forming minerals. *Lithos.* **136**, 109-125.

Watson E.B., Wark D.A., Thomas J.B. (2006) Crystallization thermometers for zircon and rutile. *Contrib. Mineral. Petrol.* **151**, 413-433.

Xie L., Wang R., Chen X., Qiu J., Wang D. (2005) Th-rich zircon from peralka line A-type granite: Mineralogical features and petrological implications. *Chin. Sci. Bull.* **50**(8), 809-817.

Yakymchuk C., Kirkland C.L., Clark C. (2018) Th/U ratios in metamorphic zircon. J. Metamorph. Geol. 36(6), 715-737.

Yang W., Lin Y., Hao J., Zhang J., Hu S., Ni H. (2016) Phosphorus-controlled trace element distribution in zircon revealed by NanoSIMS. *Contrib. Mineral. Petrol.* **171**(3), 28.