ВЕРХНЕРИФЕЙСКИЕ И НИЖНЕПАЛЕОЗОЙСКИЕ КВАРЦИТОПЕСЧАНИКИ ПРИПОЛЯРНОГО УРАЛА: ГЕОХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ, ИСТОЧНИКИ СНОСА И УСЛОВИЯ ФОРМИРОВАНИЯ

© 2023 г. Н. Ю. Никулова*

Институт геологии ФИЦ Коми НЦ УрО РАН, ул. Первомайская, 54, Сыктывкар, 167982 Россия

*e-mail: Nikulova@geo.komisc.ru Поступила в редакцию 25.04.2023 г. После доработки 02.06.2023 г. Принята к публикации 16.06.2023 г.

Приведены результаты изучения и сравнения геохимических характеристик кварцитопесчаников верхнерифейской хобеинской и нижнепалеозойской обеизской свит Приполярного Урала. Установлено, что вещественный состав кварцитопесчаников обеих свит сформирован преимущественно за счет рециклированного материала древних метатерригенных образований, при участии продуктов разрушения магматических пород кислого (обеизская свита), основного (хобеинская свита) состава и материала кор выветривания. Установлена постепенная смена источников обломочного материала и увеличение влияния гранитоидной кластики за время накопления псаммитов нижнепалеозойской обеизской обеизской свиты.

Ключевые слова: кварцитопесчаник, химический состав, обломочный материал, источники сноса, область образования, условия осадконакопления

DOI: 10.31857/S0016752523110080, EDN: ZWKGRM

введение

В геологическом строении Приполярного Урала принимают участие сходные по литологическим характеристикам толщи кварцитопесчаников, относящиеся к различным структурным этажам, соответствующим байкальскому (доуралиды) и герцинскому (уралиды) этапам тектонического развития – к верхнерифейской хобеинской и нижнеордовикской обеизской свитам. Породы и хобеинской, и обеизской свит с размывом залегают на подстилающих образованиях, а в основании нижнепалеозойского разреза, на участках, где были расположены палеодепрессии допалеозойского рельефа, сохранились фрагменты кембрийской коры выветривания. Кембрийская кора выветривания является источником россыпного золота в ряде рудопрооявлений Приполярного и Полярного Урала, локализованных, в том числе. в кварцитопесчаниках обеизской свиты (Никулова, 2013). Хобеинская свита также залегает в основании крупного седиментационного цикла, в котором в "... предхобеинское время.... (происходило) установление континентальных условий осадконакопления и, возможно, - процессов корообразования" (Государственная ..., 2013). В обоих случаях толщи кварцитопесчаников сложены зрелым кварцевым обломочным материалом. Вверх по разрезу происходит их смена карбонатно-сланцевыми толщами.

Обоснование возраста хобеинской свиты, проведенное на основе анализа взаимоотношения с подстилающими и перекрывающими толшами (Львов, 1959; Белякова, 1972), в последнее время дополнено результатами U-Pb датирования зерен детритового циркона (Соболева и др., 2022; Пыстин и др., 2022). В то же время остается актуальным определение геохимических особенностей слагающих свиту пород, позволяющее охарактеризовать источники и способы поступления обломочного материала, проведение реконструкций условий и обстановок седиментации и выявление критериев, необходимых для корреляции палеонтологически немых толщ, геологического картирования и металлогенического прогнозирования.

Сопоставление геохимических характеристик, сходных по составу и строению верхнерифейских и нижнеордовикских кварцитопесчаников, вероятно, позволит установить закономерности и особенности осадконакопления и развития, обусловленные перестройкой структурно-тектонического плана региона, установить критерии диа-

Рис. 1. Схема геологического строения долины р. Балбанью (по: Государственная..., 2013): *1* – саледская свита: песчаники, алевролиты, сланцы; *2* – алькесвожская толща и обеизская свита: метаконгломераты, метагравелиты, метапесчаники, кварцитопесчаники, кварциты, сланцы; *3* – саблегорская свита: риолиты, туфы и лавобрекчии кислого состава; *4* – мороинская свита: сланцы, алевросланцы, метаалевролиты, линзы доломитов и мраморов; *5* – хобеинская свита: кварциты, кварцитопесчаники, метаалевролиты, сланцы; *6* – пуйвинская свита: сланцы, крислалло-сланцы, линзы доломитов, прослои кварцитов; *7* – сальнерско-маньхамбовский комплекс: лейкограниты, гранит-порфиры; *8* – геологические границы: а – согласные; 6 – несогласные; *9* – разрывные нарушения; *10* – место расположения изученного разреза и его номер.

гностики и разбраковки верхнедокембрийских и нижнепалеозойских метатерригенных образований Приполярного Урала.

ГЕОЛОГИЧЕСКОЕ ПОЛОЖЕНИЕ КВАРЦИТОПЕСЧАНИКОВЫХ ТОЛЩ

В геологическом строении Приполярного Урала принимают участие породы двух структурных этажей: рифей-вендского (доуралиды) и палеозойского (уралиды). Структурные этажи разделены угловым, азимутальным и стратиграфическим несогласиями, местами с сохранившимися метаморфизованными корами выветривания или продуктами их ближнего переотложения. На водоразделе реки Балбанью и ручья Пеленгичей, где расположены изученные разрезы кварцитопесчаников, образования фундамента представлены пуйвинской, хобеинской, мороинской и саблегорской свитами (рис. 1).

Пуйвинская свита (RF₂ pv) сложена хлорит-(серицит)-мусковит-альбит-кварцевыми, биотит-мусковит-альбит-кварцевыми сланцами с прослоями аповулканитовых сланцев альбитэпидот-хлорит-актинолитового состава. В подчиненном количестве присутствуют слюдяно-кварцевые и известковистые слюдяно-альбит-кварцевые сланцы, линзы мраморов и мраморизованных доломитов, в том числе водорослевых, кварциты.

ГЕОХИМИЯ том 68 № 12 2023

Хобеинская свита (RF_3 hb) представлена светло-серыми кварцитами и кварцитопесчаниками, слагающими пластовые и линзовидные тела мощностью до 100 м. В подчиненных количествах присутствуют сланцы мусковит-хлорит-кварцевого и мусковит-альбит-хлоритового состава, часто с примесью тонкораспыленного графитистого вещества. Кварцитопесчаники в шлифах характеризуются массивной или полосчатой текстурой, лепидогранобластовой или мозаичной структурой. Кварц составляет около 90%, полевые шпаты — 5—10%. Акцессорные минералы представлены цирконом, турмалином, апатитом, ильменитом и рутилом.

Мороинская свита (RF₃ mr) в основании сложена кварц-хлорит-мусковитовыми и хлорит-мусковит-кварцевыми сланцами и алевросланцами, известковыми сланцами с прослоями и линзами мраморов и мраморизованных доломитов. Верхняя часть разреза свиты представлена алевритистыми сланцами хлорит-мусковит-альбит-кварцевого состава с прослоями метаалевролитов и известковистых слюдисто-альбит-кварцевых сланцев.

Саблегорская свита (RF_3-V_1 sb) разделена на две подсвиты. Нижняя подсвита, мощностью до 500 м, сложена лавами, кластолавами базальтов, реже андезитов, с пачками переслаивания лавовых потоков и туфов основного состава. Верхняя подсвита (до 700 м) представлена толщей кислых эффузивов и их туфов. Вулканогенные образования саблегорской свиты (RF_3-V_1 sb) прорваны гранитами сальнерско-маньхамбовского ($\gamma V_2-\varepsilon_1$ sm) комплекса.

В основании палеозойского разреза фрагментарно распространены глиноземистые и железистые образования метаморфизованной кембрийской коры выветривания, на которых в пределах палеодепрессий допалеозойского рельефа залегает метатерригенная золотоносная алькесвожская толща. Алькесвожская толща сложена переслаивающимися метаморфизованными песчаниками, гравелитами, конгломератами и сланцами хлорит-мусковит-кварцевого, кварц-гематит-мусковитового, гематит-пиррофиллитового состава.

Обеизская свита (O₁ ob) согласно залегает на алькесвожской толще или, чаще, с размывом и угловым несогласием на образованиях структурного комплекса доуралид. Основание обеизской свиты слагают конгломераты, вверх по разрезу переходящие в кварцитопесчаники. Мощность базальной пачки конгломератов варьирует от 900 м на хребте Малдынырд и до 10-15 м на правом берегу долины реки Балабанью. Здесь в разрезе обеизской свиты преобладают кварцитопесчаники и кварциты с подчиненным количеством серициткварцевых сланцев. Кварцитопесчаники характеризуются гранобластовой структурой и массивной текстурой. Кварцевые зерна имеют зубчатые ограничения, иногда – регенерационные каймы, сложенные мельчайшими зернами кварца. Акцессорные минералы представлены цирконом, рутилом, турмалином, лейкоксеном, магнетитом, гематитом, хлоритом.

Саледская свита (O_1 sl) представлена ритмичным чередованием серых, зеленовато-серых мелкозернистых песчаников, алевролитов и сланцев с прослоями известковистых разностей.

ОБЪЕКТ И МЕТОДЫ ИССЛЕДОВАНИЯ

Объектом исследования являются кварцитопесчаники хобеинской и обеизской свит из разрезов, расположенных на склонах горного массива на правом борту долины реки Балбанью (рис. 1). Для геохимического изучения были выбраны наиболее полные разрезы с ненарушенным залеганием пород.

Петрографический состав песчаников изучен в прозрачных шлифах. Содержания породообразующих оксидов в породах определены традиционным весовым химическим методом в лаборатории химии минерального сырья. Определение содержаний редких и редкоземельных элементов происходило на масс-спектрометре с индуктивносвязанной плазмой Agilent 7700х. Для перевода пробы в раствор использован метод многокислотного разложения (смесь кислот в соотношении HNO₃: HF: HCl = 1:5:2) в условиях микроволнового нагрева. Разложение проведено в микроволновой системе пробоподготовки Sineo MDS-10. Все аналитические работы осуществлены в ЦКП "Геонаука" Института геологии Коми НЦ УрО РАН (г. Сыктывкар).

ГЕОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА КВАРЦИТОПЕСЧАНИКОВ

Содержания главных породообразующих оксидов, литохимические модули и индикаторные соотношения, использованные для характеристики отложений и реконструкции условий образования кварцитопесчаников хобеинской и обеизской свит, приведены в табл. 1.

Кварцитопесчаники обеизской и хобеинской свит содержат незначительное количество оксидов шелочных металлов и на диаграмме К₂O-N₂O (Петтиджон, 1976) все фигуративные точки, за исключением точки обр. Е 5, попадают в поле аркозов (рис. 2а). На диаграмме $\log(Fe_2O_{306iii}/K_2O)$ log(SiO₂/Al₂O₃) (Herron, 1988) точки кварцитопесчаников обеизской свиты попали в поле наиболее зрелых осадочных пород – кварцевых аренитов, а хобеинской свиты – в поле субаркозов (рис. 2б). На треугольной диаграмме SiO_2 -(Al₂O + CaO + + $Na_2O + K_2O$)-(Fe₂O₃ + FeO + $MgO + MnO + TiO_2$) (Коссовская, Тучкова, 1988) все точки обеизской свиты расположены в области кварцевых песчаников, а хобеинской – в области вулканокластических песчаников близи с границей области олигомиктовых (рис. 2в).

На диаграммах А–F и А–М (Коссовская, Тучкова, 1988), показывающих степень зрелости псаммитов и участие в их составе магматических пород, все фигуративные точки кварцитопесчаников расположены вне выделенных полей (рис. 3).

По значениям гидролизатного модуля ГМ (Юдович, Кетрис, 2000) кварцитопесчаники относятся к силитам — аквагенным существенно кварцевым породам от пониженно- до нормально-гидролизатных (табл. 1, рис. 4а), что отражает степень седиментационной зрелости пород.

Для всех кварцитопесчаников хобеинской свиты и половины образцов обеизской свиты значения нормированной щелочности НКМ превышают пороговую величину 0.3 (рис. 46), указывающую, по мнению Я.Э. Юдовича и М.П. Кетрис (Юдович, Кетрис, 2000), на присутствие в породе неизмененного калиевого полевого шпата. По величине титанового модуля (ТМ) кварцитопесчаники обеизской свиты относятся к гипо- и нормотитанистому типам (Юдович, Кетрис, 2000), кварцитопесчаник хобеинской свиты – к гипотитанистому, а значения ТМ для них близки к нулю, что свидетельствует о присутствии в породах кислой вулканомиктовой примеси (табл. 1). Наименее гидролизатные кварцитопесчаники обеиз-

	стина ред.
ия, коэффициенты и модули	тнадох
Содержание породообразующих оксидов (мас. %), индикаторные соотношени	Οζωτατά τατάτα
Таблица 1.	

ГЕС	Компонент					O6e.	изская се	ита								Xofet	инская св	ита			
ЭХИ		524	525	526	527	529	538	539	540	541	542	543	E 1	E 2	E 3	E 4	E 5	E 6	E 7	E 8	E 9
M	SiO ₂	98.78	98.52	98.64	98.84	98.24	97.44	98.12	97.54	95.84	97.88	98.04	91.44	89.28	87.9	83.74	90.3	88.9	91.89	86.94	90.41
1Я	TiO ₂	0.06	0.06	0.04	0.05	0.04	0.06	0.06	0.05	0.19	0.07	0.10	0.04	0.01	0.13	0.18	0.03	0.02	0.06	0.04	0.024
Т	Al_2O_3	0.11	0.12	0.10	0.10	0.10	0.35	0.33	0.36	0.90	0.20	0.38	3.95	5.71	6.25	7.64	5.53	3.68	3.89	5.18	4.52
юм	$\mathrm{Fe_2O_3}$	0.15	0.18	0.16	0.13	0.20	0.30	0.32	0.27	0.71	0.30	0.47	0.07	0.21	0.19	0.3	0.1	0.16	0.14	0.15	0.42
68	FeO	0.48	0.59	0.60	0.56	0.74	0.41	0.41	0.51	0.47	0.33	0.49	0.65	0.6	0.72	0.75	0.85	1.01	0.73	0.68	1.22
	MnO	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.05	0.01	0.06	0.02
№	MgO	0.02	0.02	0.01	0.02	0.01	0.04	0.04	0.05	0.04	0.05	0.06	0.32	0.31	0.31	0.71	0.32	0.69	0.04	0.61	0.39
12	CaO	0.01	0.08	0.03	0.02	0.02	0.15	0.12	0.17	0.15	0.13	0.17	0.56	0.45	0.34	1.43	0.22	1.34	0.34	1.34	0.45
	Na_2O	0.01	0.01	0.02	0.02	0.01	0.05	0.05	0.05	0.08	0.03	0.03	0.63	0.87	1.05	0.55	1.67	0.62	0.63	1.26	0.44
202	K ₂ O	0.12	0.06	0.04	0.04	0.06	0.08	0.08	0.07	0.27	0.08	0.06	1.02	2.02	2.47	2.59	0.78	1.14	0.96	1.77	1.58
3	P_2O_5	0.01	0.01	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.02	0.03	0.03	0.4	0.02	0.02	0.01	0.03	0.03
	ШШ	0.10	0.10	0.10	0.10	0.17	0.14	0.14	0.02	0.14	0.19	0.14	0.77	0.79	0.66	2.34	0.57	2.04	0.48	1.87	0.87
	Сумма	99.86	99.76	99.75	99.89	99.61	99.05	69.69	99.10	98.83	99.29	96.66	99.48	100.30	100.07	100.60	100.4	99.67	99.17	99.92	100.37
	Log(Na ₂ O/K ₂ O)	-1.08	-0.78	-0.30	-0.30	-0.78	-0.20	-0.20	-0.15	-0.53	-0.43	-0.30	1.65	2.89	3.52	3.14	2.45	1.76	1.59	3.03	2.02
	$Log(SiO_2/Al_2O_3)$	2.95	2.91	2.99	2.99	2.99	2.44	2.47	2.43	2.03	2.99	2.41	0.06	0.07	0.08	0.10	0.07	0.06	0.05	0.07	0.07
	$Log(Fe_2O_{306ul}/K_2O)$	0.10	0.48	0.60	0.51	0.52	0.57	0.60	0.59	0.42	0.57	0.89	0.01	0.001	0.02	0.024	0.005	0.007	0.015	0.008	0.005
	A	0.001	0.001	0.001	0.001	0.001	0.004	0.003	0.004	0.009	0.001	0.004	0.043	0.064	0.071	0.091	0.061	0.041	0.042	0.060	0.050
	Ц	0.72	0.86	0.82	0.77	1.00	0.82	0.84	1.34	1.42	0.77	1.13	1.09	1.14	1.36	1.96	1.30	1.93	0.97	1.54	2.08
	M	0.14	0.15	0.09	0.08	0.09	0.28	0.25	0.29	0.50	0.24	0.26	2.21	3.34	3.86	4.57	2.67	3.10	1.93	4.37	2.47
	F1	-4.05	-4.02	-4.04	-4.06	-3.97	-3.96	-4.01	-4.37	-4.01	-4.02	-4.06	-2.96	-2.69	-2.60	0.17	-2.12	-2.74	-3.15	-2.27	-3.05
	F2	1.07	1.03	0.98	1.01	0.91	1.52	1.25	2.20	1.57	1.66	1.15	-0.04	-1.85	-2.21	0.69	-0.19	-0.02	-0.35	-0.67	-1.82
	F3	-26.15	-57.88 -	-80.92	-67.09 -	-101.38	-17.65	-19.25	16.42	-5.02	-31.99 -	-23.92	3.44	6.92	9.27	6.77	1.29	5.87	2.65	8.10	6.07
	F4	-23.08	-40.63 -	-65.13 -	-47.69 -	-85.22	-12.27	-14.09	54.64	-2.54	-11.65	-11.57	-0.65	-0.32	1.12	2.72	-3.21	2.79	-2.77	1.25	0.80
	$Na_2O + K_2O$	0.13	0.07	0.06	0.06	0.07	0.13	0.13	0.12	0.35	0.11	0.09	1.65	2.89	3.52	3.14	2.45	1.76	1.59	3.03	2.02
	ΓM	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.05	0.07	0.08	0.11	0.07	0.06	0.05	0.07	0.07
	TM	0.55	0.5	0.40	0.50	0.40	0.17	0.18	0.14	0.21	0.37	0.26	0.01	0.001	0.02	0.02	0.01	0.01	0.02	0.01	0.01
	НКМ	1.18	0.58	0.60	0.60	0.70	0.37	0.39	0.33	0.39	0.55	0.24	0.42	0.51	0.56	0.41	0.44	0.48	0.41	0.58	0.45
	K ₂ O/Na ₂ O	12.0	6.0	2.0	2.0	6.0	1.6	1.6	1.4	3.4	2.7	2	1.6	2.3	2.4	4.7	0.5	1.8	1.5	1.4	3.6
	SiO ₂ /Al ₂ O ₃	898	321	986	988	982	278	297	271	106	979	258	23	16	14	11	16	24	23	17	20
	Al ₂ O ₃ /SiO ₂	0.001	0.001	0.001	0.001	0.001	0.004	0.003	0.004	0.009	0.001	0.004	0.043	0.064	0.071	0.091	0.061	0.041	0.0423	0.0595	0.050
	K ₂ O/Al ₂ O ₃	1.09	0.50	0.40	0.40	0.60	0.23	0.24	0.19	0.3	0.8	0.16	0.26	0.35	0.40	0.34	0.14	0.31	0.25	0.34	0.35
	Примечания. А = + 0 000 1 О 0 24	$= \text{Al}_2 \text{O}_3/$	SiO ₂ ; F	$T = TiO_2$	$+ Fe_2$	$D_3 + Fe^+$	IW + O	M + Or	gO; M =	= CaO -	$+ Na_2O$	$+ K_2 0$ + 750	(Koccol	вская, Т Е2 — 42	Jyukoba,	, 1988);	FI = 0.	303-0.0	0447SiO	2-0.972	102 +
	$+ 0.008A1_2O_3 - 0.20$	$_{1}^{0.1}$ He ₂ U ₃ + (+ 0.208 1.881 Mg	O = 0.90	7CaO-0	+ 0.14N	1gO + 0	K20 +	$7.244P_{2}$	Or (Bh	-0.052K2	0 + /.) 83): F3	= 30.6	F2 = 43 38TiO ₂	.4.0–/c. –20-14/	215102 12 54Fe	1.9881 † 002_5_/	Al,O,	+ 7329		0; -; -; 0; -; -; -; -; -; -; -; -; -; -; -; -; -;
	+ 12.031 NaO/Al ₂ C	$0_3 + 35.4$	02K,0/	A1,0,1,0	6.382; F	4 = 56.5	TiO2/A	1,03-10	.897Fe ₂ (10^{-1} $10^{$	0.875Mg	0/Al ₂ O	3-5.404	Na,0/A	12.03 + 1003 +	$11.112K_{300m}$	0/A1,0	(3-3.89)	Rozer, K	orsch,
	1986); $\Gamma M = (Al_2^2)$	$J_3 + TiC$	$P_2 + Fe_2$	0, -5, -5, -5	O + M	nO)/Sit	O_2 ; HKM	$\tilde{\mathbf{A}} = (\mathbf{N}_2)$	$O + K_2^{\tilde{c}}$	$O)/\overline{M_2C}$) ₃ ; TM =	= TiO_2/\overline{F}	M ₂ O ₃ ; ¢	$\breve{\mathbf{p}}\mathbf{M} = (\mathbf{I}$	$e_2\hat{O}_3 +$	FeO +	MnO +	MgO)/	ŠiO2; Ж	$M = (F_{e})$	2 ₂ 0 ₃ +
	+ FeO + MnO)/ $(i$	$41_{2}O_{3} + 0$	ΓĨΟ ₂) (Ĥ	Одович.	, Кетрис	c, 2000).	ı		1	1	5	ì	1		1				ì) 1

Рис. 2. Положение фигуративных точек составов кварцитопесчаников на классификационных диаграммах: $a - K_2O - N_2O$ (Петтиджон, 1976); $6 - \log(Fe_2O_{306III}/K_2O) - \log(SiO_2/Al_2O_3)$ (Herron, 1988); $B - SiO_2 - (Al_2O + CaO + Na_2O + K_2O) - (Fe_2O_3 + FeO + MgO + MnO + TiO_2)$ (Коссовская, Тучкова, 1988). Условные обозначения: 1 – обеизская свита; 2 – хобеинская свита; I - IV – песчаники: I – кварцевые; II – олигомиктовые; III – полимиктовые; IV – вулканомиктовые.

Рис. 3. Положение фигуративных точек составов кварцитопесчаников на диаграммах: (a) -A-F; (б) -A-M (Коссовская, Тучкова, 1988), где: $A = Al_2O_3/SiO_2$; $F = TiO_2 + Fe_2O_3 + FeO + MnO + MgO$; $M = CaO + Na_2O + K_2O$; I - липа-ритодациты; II – граниты; III – гранодиориты; IV – андезитобазальты. Условные обозначения на рис. 2.

Рис. 4. Модульные диаграммы: а – ГМ–Na₂O + K₂O; б – ГМ–НКМ; в – НКМ–ТМ (Юдович, Кетрис, 2000). Условные обозначения на рис. 2.

ГЕОХИМИЯ том 68 № 12 2023

Рис. 5. Положение фигуративных точек составов кварцитопесчаников на диаграммах: $a - SiO_2 - K_2O/Na_2O$ (Roser, Korsch, 1988); 6 - F1 - F2 (Bhatia, 1983); $B - K_2O/Na_2O - SiO_2/Al_2O_3$ (Maynard et al., 1982). Условные обозначения на рис. 2.

ской свиты являются наиболее титанистыми (рис. 4в), что может быть обусловлено как особенностями петрофонда, так и концентрацией естественного шлиха. На диаграммах, используемых для реконструкции палеогеодинамических условий, фигуративные точки кварцитопесчаников хобеинской и обеизской свит попали в области пород, образованных в условиях пассивной континентальной окраины (рис. 5).

Содержания РЗЭ, малых и редких элементов, рассчитанные индикаторные соотношения, используемые при реконструкции состава материнских пород и условий формирования для метапесчаников алькесвожской толщи, приведены в табл. 2.

Для кварцитопесчаников хобеинской и обеизской свит характерны низкие значения Σ REE + Y от 19.4 до 48.9 г/т (табл. 2). Графики распределения REE в кварцитопесчаниках хобеинской и обеизской свит отличаются по характеру наклона кривых и значению Eu/Eu*. Спектры распределения REE в кварцитопесчаниках обеизской свиты характеризуются относительно крутым наклоном в области LREE и интенсивным европиевым минимумом (рис. 6).

Для большинства кварцитопесчаников хобеинской свиты значения отношения легких лантаноидов к тяжелым – $\Sigma Ce/\Sigma Y 3.01-3.75$ (табл. 2) соответствуют породам, образованным в семигумидно-семиаридном климате. Для кварцитопесчаников хобеинской свиты и двух образцов хобеинской свиты это отношение превышает 4, что может указывать на образование отложений в условиях гумидного климата (Шатров, 2004). Отношение Ce/Ce* 0.78–0.84 в кварцитопесчаниках соответствует значениям, характерным для эпиконтинентальных обстановок (Murray et al., 1991).

Для кварцитопесчаников обеизской свиты характерен ярко проявленный европиевый мини-

ГЕОХИМИЯ том 68 № 12 2023

мум. Значения Eu/Eu* для них составляют 0.51– 0.57, т.е. близки к показателям осадочных пород фанерозоя (Балашов, 1976). Для кварцитопесчаниов хобеинской свиты характерна положительная европиевая аномалия (Eu/Eu* 1.0–1.4). Это является, по-видимому, отражением того, что европий может находиться в составе плагиоклаза, заменяя кальций (Weill, Drake, 1973).

На диаграмме Gd_N/Yb_N —Eu/Eu* (Taylor, 1995) точки кварцитопесчаников хобеинской свиты попали в область архейских, а обеизской — постархейских образований (рис. 7а). На диаграмме La/Sc—Th/Co (Cullers, 2002) фигуративные точки кварцитопесчаников обеизской свиты расположены вне выделенных полей, вблизи точек средних составов архейских и протерозойских гранитов (Condie, 1993), а точки кварцитопесчаников хобеинской свиты расположены в поле отложений, образованных за счет разрушения магматических пород кислого состава или рядом с ним (рис. 76). На диаграмме Zr/Sc—Th/Sc (McLennan et.,

Рис. 6. Нормированные на хондрит (Sun, McDonough, 1989) спектры распределения содержаний REE в кварцитопесчаниках. Условные обозначения: *1* – обеизская свита; *2* – хобеинская свита; *3* – хобеинская свита, обр. Е 2.

		E 9	0.48	2.8	7.6	2.5	7.2	6.6	4.3	3.1	41	15	3	15	0.51	0.58	0.3	4.9	8.7	1.2	4.7	0.98	0.39	-	0.13	9.0	0.11	0.32	
		E 8	0.46	2.4	13	0.5	2.8	0	4.6	3.3	32	46	3.8	23	0.81	1.1	0.17	5.3	8.7	1.3	4.8	36.0	0.48	1.1	0.14	0.74	0.13	0.42	00
		E 7	0.71	4.2	16	1	3.8	7.3	4.7	3.1	29	6.1	3.4	31	1.4	1.4	0.25	5.1	6	1.3	5.2	1	0.33	1	0.13	0.67	0.13	0.43	0 50
	свита	E 6	0.28	2.5	6.8	0.72	3.7	1.9	6.8	2.4	24	36	2.4	16	0.38	0.2	0.14	3.6	6.4	0.88	3.3	0.65	0.3	0.73	0.085	0.45	0.076	0.26	
	інская (E 5	0.68	2.3	16	0.47	2.9	3	4.3	3.5	21	10	2.1	19	0.58	0.46	0.17	4.9	8.2	1.2	4.4	0.82	0.32	0.84	0.11	0.42	0.07	0.22	1000
	Хобег	E 4	2.2	10	17	1	2.9	2.6	11	6.8	72	39	4.4	70	2.9	0.73	0.78	6.8	14	1.9	7.2	1.4	0.65	1.4	0.17	0.87	0.17	0.54	0.078
		E 3	1.5	6.9	10	1.2	4.9	3.6	6.3	4.7	48	20	5.8	60	2.5	0.23	0.31	7.7	14	1.9	7.4	1.5	0.61	1.6	0.22	1.1	0.2	0.64	0.084
		E 2	1.2	6.1	6.7	1.7	3.5	4.8	4.7	4.4	4	12	2.4	35	1.6	0.037	0.1	9	11	1.5	5.9	1.1	0.46	1.1	0.12	0.52	0.082	0.27	0.071
		E 1	0.61	3.20	6	1	3.5	5	7.3	ю	, 6	11	3.6	17	0.89	0.17	0.22	4.8	8	1.1	4.4	0.89	0.35	1	0.13	0.72	0.13	0.41	0.049
-		543	0.16	1.7	[0.59	8.6	2.5	1.2	0.45	2.1	6.4	1.5	7	0.85	8.4	0.09	4.0	6.5	0.98	3.6	0.70	0.13	0.77	0.072	0.31	0.059	0.17	0.076
		542	0.24	5.1	7	0.44	4.5	1.8	1.1	0.46	2.7	2.6	1.8		0.98	3.3	0.07	7.4		1.8	6.9	1.2	0.20	1.1	0.10	0.41	0.076	0.23	0.033
(Γ/T)		541	.69	8.1	9 3).57	~	6.7	8.1		3.0		2.8	1	5.0	~).15			2.6	9.6	8.1).34	8.1).14	.61).12	.40	000
CHTOB (40	.050 (35 8	14	.62	9		,	.46	۲.	.6 22	0.	4	.79	31	.06	.3 1(18	4.	0.	96:	.17	0.	. H.	.48	.086	.25 (034 (
х элем	а	5 6	13 0	0	116	42 0	2 12	2 26	73 11	50 0	3	8	5 2	12	0	4 15	07 0	1 5	10	5 1	7 5	1 0	21 0	3 1	16 0	77 0	15 0	42 0	0.56 0
редки	я свита	53	8 0.	т	55	.0. 0.	0	5	.0 .0	7 0.		2.	3	15	2 1.	é.	6 0.	6.	12		5.		2 0.		3 0.	.0	99 0.	0.0	40 0
лых и	еизска	538	0.1	2.7	99	0.3	6.7	2.2	0.8	0.4	2.9	2.1	2.3	14	0.0	7.7	0.0	7.8	14	2.0	7.4	1.3	0.2	1.3	4 0.1	. 0.5	0.0 6	0.2	00 10
ых, ма	00	529	0.33	1.8	80	0.61	13	8.3	1.4	0.51	3.3	2.5	2.0	9.4	0.66	9.2	0.10	4.1	7.6	1.1	4.0	0.76	0.15	0.80	0.09	0.44	0.07	0.23	0.03
мельн		527	0.17	1.7	58	0.46	7.0	4.5	1.01	0.36	1.8	2.2	1.5	12	0.57	6.5	0.06	3.7	6.2	0.92	3.4	0.64	0.11	0.64	0.068	0.32	0.063	0.18	0 076
едкозе		526	0.28	2.4	78	0.49	9.0	4.2	1.3	0.47	2.4	2.1	2.9	13	0.71	8.8	0.06	5.4	10	1.5	5.5	1.1	0.19	1.1	0.14	0.66	0.12	0.35	0.048
сания р		525	0.29	1.5	80	0.41	7.8	3.4	5.4	0.46	2.4	2.6	1.9	21	0.86	8.1	0.07	6.8	13	1.9	7.2	1.4	0.23	1.3	0.12	0.46	0.080	0.23	0 032
Содерж		524	0.40	1.7	50	0.37	5.1	3.6	1.9	0.57	4.1	2.3	3.0	14	1.0	5.1	0.11	5.5	10	1.4	5.3	1.1	0.21	1.1	0.14	0.67	0.13	0.37	0.048
Таблица 2.	Компо-	нент	Sc	>	Cr	Co	Ņ	Cu	Zn	Ga	Rb	Sr	Y	Zr	Nb	Мо	Cs	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	E

1290

•	Компо-					Обеи	зская сн	вита								Хобеи	нская с	вита			
	нент	524	525	526	527	529	538	539	540	541	542	543	E 1	E 2	E 3	E 4	E5	E 6	E 7	E 8	E9
	Yb	0.32	0.22	0.29	0.18	0.21	0.25	0.37	0.23	0.41	0.21	0.18	0.4	0.32	0.68	0.61	0.22	0.22	0.43	0.39	0.31
	Lu	0.051	0.035	0.046	0.030	0.031	0.040	0.055	0.035	0.065	0.032	0.028	0.052	0.045	0.11	0.099	0.03	0.026	0.06	0.055	0.05
	Hf	0.46	69.0	0.43	0.40	0.33	0.45	0.47	0.40	1.4	0.40	0.57	0.49	1	1.7	2.1	0.56	0.48	0.89	0.68	0.46
- ·	M	0.18	0.16	0.18	0.22	0.28	0.10	0.16	0.20	06.0	0.73	3.4	0.17	0.17	0.22	0.54	0.22	0.65	0.3	0.14	0.22
	Pb	0.30	0.25	0.42	0.16	0.34	0.20	0.22	16	1.5	0.36	0.58	7.7	8.4	20	0.71	4	4.2	7.3	12	8.7
•	Тћ	1.7	2.8	1.7	1.4	1.3	0.94	0.49	0.41	7.8	1.4	2.5	0.61	1.2	1.6	2	0.61	0.61	0.95	0.77	0.8
	U	0.26	0.48	0.22	0.20	0.20	0.27	0.27	0.22	0.52	0.27	0.26	0.12	0.27	0.46	0.42	0.16	0.16	0.2	0.23	0.26
•	Th/Co	4.49	6.71	3.37	3.08	2.16	2.86	1.16	0.67	13.63	3.11	4.30	0.61	0.71	1.33	2.0	1.30	0.85	0.95	1.54	0.32
	La/Sc	13.52	23.56	19.17	21.78	12.24	43.36	47.55	06.30	14.65	31.22	24.44	7.87	5.0	5.13	3.09	7.21	12.86	7.18	11.52	10.21
	$La_{N/}Yb_{N}$	11.44	20.48	12.70	14.31	13.21	21.56	11.21	15.89	16.73	23.63	14.98	8.15	12.74	7.69	7.57	15.13	11.12	8.06	9.23	10.74
	Eu/Eu*	0.57	0.52	0.54	0.53	0.57	0.50	0.54	0.51	0.57	0.52	0.52	1.13	1.27	1.20	1.40	1.17	1.33	1.00	1.41	1.19
-	Gd _N /Yb _N	1.51	1.66	1.66	1.71	1.51	1.87	1.63	1.70	1.82	1.78	1.78	0.84	1.14	0.89	0.83	0.78	0.65	0.92	0.78	0.90
	La/Th	3.28	2.44	3.25	2.66	3.07	8.35	12.49	12.78	1.31	5.39	1.56	7.87	5.00	4.81	3.40	8.03	5.90	5.37	6.88	6.13
•	Th/Sc	4.12	9.67	5.89	8.19	3.99	5.19	3.81	8.32	11.18	5.79	15.71	1.00	1.00	1.07	0.91	06.0	2.18	1.34	1.67	1.67
	Zr/Sc	35.57	74.52	47.16	68.99	28.08	78.17	15.42	33.27	60.65	53.59 1	05.30	27.87	29.17	40.00	31.82	27.94	57.14	43.66	50.00	31.25
	LREE	23.7	30.6	23.7	15.0	17.6	32.7	26.3	23.0	42.5	30.3	15.9	19.5	26.0	33.1	32.0	19.8	15.1	21.9	21.6	20.9
	HREE + Y	5.8	4.3	5.7	3.0	3.9	5.0	6.8	4.3	6.4	4.0	3.1	6.5	4.9	10.4	8.4	4.0	4.3	6.3	6.8	5.6
	Σ REE + Y	29.5	34.9	29.4	18.0	21.5	37.7	33.1	27.2	48.9	34.2	19.0	26.03	30.9	43.5	40.3	23.9	19.4	28.2	28.4	26.4
	ΣCe/ΣY	4.1	7.1	4.2	5.0	4.5	6.5	3.8	5.4	6.7	7.6	5.2	3.0	5.3	3.2	3.8	4.9	3.6	3.5	3.2	3.8
,	V/(V + Ni)	0.25	0.16	0.21	0.20	0.12	0.29	0.38	0.07	0.38	0.53	0.17	0.48	0.64	0.58	0.78	0.44	0.40	0.53	0.46	0.28
	Mo/Mn	0.253	0.299	0.336	0.272	0.373	0.410	0.319	0.572	0.795	0.226	0.303	0.001	0.001	0.002	0.004	0.007	0.001	0.016	0.002	0.002
-	Ce/Ce*	0.87	0.86	0.84	0.78	0.85	0.83	0.89	0.88	0.83	0.81	0.78	0.82	0.86	0.86	06.0	0.79	0.84	0.82	0.78	0.84
. – –	Примечани: McDonough	я. Ce/Ct , 1989).	e* = (C	e _N /La _N	+ Pr _N),	/2, норм	ирован	ок гли	нам пла	тформ	(Балашс	ов, 1976); Eu/E	u* = EI	^I W/(Sm ^I	4 + Gd	_N)/2, нс	ормирон	зано на	ладнох	r (Sun,

Таблица 2. Окончание

ВЕРХНЕРИФЕЙСКИЕ И НИЖНЕПАЛЕОЗОЙСКИЕ КВАРЦИТОПЕСЧАНИКИ

1291

Рис. 7. Положение фигуративных точек кварцитопесчаников на диаграммах: а – Gd_N/Yb_N–Eu/Eu* (Taylor, 1995); б – La/Sc–Th/Co (Cullers, 2002); в – Zr/Sc–Th/Sc (McLennan et al., 1993). Условные обозначения: *1* – обеизская свита; *2* – хобеинская свита; *3* – средний архейский гранит (Condie, 1993); *4* – средний протерозойский гранит (Condie, 1993).

Рис. 8. Нормированное на состав верхней континентальной коры (Тейлор, МакЛеннан, 1988) содержание элементовпримесей в кварцитопесчаниках: а – хобеинская свита; б – обеизская свита.

1993) точки кварцитопесчаников хобеинской и обеизской свит разделяются на две группы, попадающие в области, выделенные для отложений, в формировании состава которых принимали участие основные и кислые магматические породы (рис. 7в).

Кварцитопесчаники хобеинской и обеизской свит различаются по форме нормированных на состав верхней континентальной коры (Тейлор, МакЛеннан, 1988) спектров распределения элементов-примесей (рис. 8).

В большинстве проанализированных образцов хобеинские кварцитопесчаники имеют близкое или пониженное, по сравнению верхней континентальной корой (Тейлор, МакЛеннан, 1988) содержание элементов-примесей. Исключение составляют несколько образцов с повышенным содержанием Zr, Cr и Pb (рис. 8а). Для кварцитопесчаников обеизской свиты характерны низкие, по сравнению с верхней континентальной корой, содержания V, Zn, Sr, Cs, Pb, и повышенные Cr, Zr и Mo (рис. 86). Кварцитопесчаники верхней части разреза обеизской свиты отличаются повышенным содержанием REE и Pb, что может отражать изменение состава пород в области питания, выведение на уровень эрозионного среза массивов кислых магматических пород.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Распределение петрогенных, редких и редкоземельных элементов, их соотношения, характер спектров распределения элементов-примесей, положение фигуративных точек составов на дискриминантных диаграммах демонстрируют различия, прежде всего, источников обломочного материала, принимавшего участие в формировании состава метапсаммитов. Кварцитопесчаники нижнепалеозойской обеизской свиты отличаются бо́льшей степенью седиментационной зрелости, и на диаграмммах, для определения состава источников обломочного материала (рис. 2), их фигуративные точки образуют обособленные группы вне выделенных полей, что обусловлено практически монокварцевым составом кварцитопесчаников, образованных рециклированным материалом с незначительной примесью обломков кремнекислых магматических пород.

Состав принимавших участие в формировании кварцитопесчаников магматических образований отражают диаграммы, при построении которых использованы отношения редкоземельных элементов. На этих диаграммах фигуративные точки кварцитопесчаников верхнерифейской хобеинской свиты тяготеют к полям отложений, образованных за счет разрушения основных, а обеизской – кислых магматических пород. Наличие европиевого максимума в спектре распределения редкоземельных элементов в кварцитопесчаниках хобеинской свиты указывает на присутствие в породе обогащенных европием кальциевых плагиоклазов, характерных для основных магматических пород. Это могут быть сабегорские долериты, габбродолериты и монцогаббро-порфириты первой фазы раннепалеозойского континентального рифтогенеза, с которыми связывают (Соболева и др., 2022) наиболее молодые цирконы из хобеинской свиты.

Широкий диапазон значений калиевого модуля (K_2O/Al_2O_3) в кварцитопесчаниках обеих свит свидетельствует о присутствии в этих кварцитопесчаниках материала различной степени выветрелости, периодическом поступлении материала слабо выветрелых (значение модуля превышает 0.3) и измененных в коре выветривания (значения модуля в интервале 0.14–0.25) пород (табл. 1).

Расположение фигуративных точек кварцитопесчаников хобеинской и обеизской свит на геодинамических диаграммах и величины Ce/Ce* (Миггау et al., 1990) соответствуют осадочным образованиям, сформированным в условиях пассивной континентальной окраины (рис. 4, табл. 2). Изменение с течением времени источников питания, за счет накопления продуктов размыва которых были сформированы кварцитопесчаники обеизской свиты, отражено в значениях отношений редких и редкоземельных элементов (табл. 2, рис. 6) и в различиях в спектрах распределения элементов-примесей.

выводы

Петрохимические особенности рифейских и нижнепалеозойских кварцитопесчаников при их очевидном макроскопическом сходстве, существенно кварцевом составе и близости структурно-текстурных характеристик, различаются по

ГЕОХИМИЯ том 68 № 12 2023

соотношению породообразующих элементов, содержанию и соотношению элементов-примесей, в том числе REE. Кварцитопесчаники обеих свит сформировались за счет рециклированного материала метатерригенных пород древних континентальных блоков, при незначительном участии продуктов разрушения магматических пород кислого (нижнеордовикская обеизская свита), основного (верхнерифейская хобеинская свита) состава и материала кор выветривания. Породы основного состава, принимающие участие в сложении хобеинских кварцитопесчаников, возможно, имели мантийное происхождение. За время накопления псаммитов нижнепалеозойской обеизской свиты произошла постепенная эволюция источников поступления обломочного материала, увеличилось влияние выведенных на эрозионный уровень гранитоидов.

Автор благодарит анонимных рецензентов и научного редактора М.А. Левитана за конструктивные замечания и полезные рекомендации, а также к.г.-м.н. О.В. Гракову и к.г.-м.н. Н.С. Носкову за помощь в проведении полевых исследований.

Работа выполнена в рамках Госпрограммы "Осадочные формации: вещество, седиментация, литогенез, геохимия, индикаторы литогенеза, реконструкция осадконакопления" (ЕГИСУ НИОКТР – 122040600013-9).

СПИСОК ЛИТЕРАТУРЫ

Балашов Ю.А. (1976) Геохимия редкоземельных элементов. М.: Наука, 268 с.

Белякова Л.Т. (1972) Стратиграфическое расчленение доордовикских отложений Ляпинского антиклинория (Приполярный Урал). Материалы по геологии и полезным ископаемым Северо-Востока европейской части СССР. 7, 21-33.

Государственная геологическая карта Российской Федерации (2013). Масштаб 1 : 200000. Серия Северо-Уральская. Лист Q-41-XXV. Объяснительная записка. М.: МФ ВСЕГЕИ. 252 с.

Коссовская А.Г., Тучкова М.И. (1988) К проблеме минералого-петрохимической классификации и генезиса песчаных пород. *Литология и полезные ископаемые*. (2), 8-24.

Львов К.А. (1959) Стратиграфия протерозоя и нижнего палеозоя Приполярного и Полярного Урала. *Труды НИИГА*, **105**(11), 51-73.

Никулова Н.Ю. (2013) *Базальные горизонты уралид Севера Урала*. Екатеринбург: РИО УрО РАН. 240 с.

Соболева А.А., Андреичев В.Л., Михайленко Ю.В., Хубанов В.Б. (2022) U-Pb (LA-ICP-MS) изотопные возрасты и вероятные источники детритовых цирконов в кварцитопесчаниках хобеинской свиты (Приполярный Урал). Вестник геонаук. (1), 4-20.

Петтиджон Ф., Поттер П., Сивер Р. (1976) *Пески и песчаники*. Москва: Мир, 536 с.

Пыстин А.М., Гракова О.В., Пыстина Ю.И., Кушманова Е.В., Попвасев К.С., Потапов И.Л., Хубанов В.Б.

(2022) U-Pb (LA-ICP-MS) возраст и вероятные источники сноса детритовых цирконов из терригенных отложений верхнего докембрия Приполярного Урала. *Литосфера.* **22**(6), 741-760.

Тейлор С.З., Мак-Леннон С.М. (1988) Континентальная кора: ее состав и эволюция. М.: Мир, 384 с.

Шатров В.А. (2004) Редкоземельные элементы, как индикаторы метаосадочных пород нижнего протерозоя. *ДАН*. **397**(3), 396-399.

Юдович Я.Э., Кетрис М.П. (2000) Основы литохимии. СПб.: Наука, 479 с.

Bhatia M.R., Crook K.A.W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. contrib. *Mineral. Petrol.*, 1986. **108**(1-2), 1-16.

Condie K.C. (1993) Chimical composition and evolution of the upper continental crust contrasting results from surface and shales. *Chem. Geol.* **104**, 1-37.

Cullers R.L. (2002) Implications of elements concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. *Chem. Geol.* **191**(4), 305-327.

Herron M.M. (1988) Geochemical classification of terrigenous sands and shales from core or log date. *J. Sed. Petrol.* **58**, 820-829. Maynard J.B., Valloni R., Yu H.-Sh. (1982) Composition of modern deep-sea sands from arc-related basins. *Geol. Soc. Spec. Publs.* L. **10**, 551-561.

McLennan S.M., Hemming S.R., McDaniel D.K., Maynard J.B. (1993) Geochemical approaches to sedimentation, provenance and tectonics. *Processes controlling the composition of clastic sediments. Geol. Soc. Am. Spec. Pap.* **284**, 21-40.

Murray R.W., Buchholtz ten Brink M.R., Gerlach D.C. et al. (1991) Rare earth, major and trace elements in chert from the Franciscan Complex and Monerey Group, California Assessing REE sources to fine-graied marine sediment. *Geochim. Cosmochim. Acta.* **55**, 1875-1895.

Roser B.P., Korsch R.J. (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO₂ content and K_2O/Na_2O ratio. J. Geology. **94** (5), 635-650.

Sun S.S., McDonough W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processed. *Geological Society, London, Special Publications.* **42**, 313-345.

Taylor S.R. (1995) The geochemical evolution of the continental crust. S.R. Taylor, S.M. McLennan. *Rev. Geophys.* **33**, 241-265.

Weill D.F., Drake M.J. (1973) Europium Anomaly in Plagioclase Feldspar: Experimental Results and Semiquantitative Model. *Science*. **180** (4090), 1059-1060.