УДК 550.4

ПЕРИТЕКТИЧЕСКАЯ РЕАКЦИЯ ОЛИВИНА В АЛМАЗООБРАЗУЮЩЕЙ СИСТЕМЕ КАРБОНАТ-СИЛИКАТ-(С-О-Н) ПРИ 6 ГПа

©2024 г. А. В. Кузюра^{*a*, *}, А. В. Спивак^{*a*}, Ю. А. Литвин^{*a*}

^а Институт экспериментальной минералогии им. академика Д.С. Коржинского РАН, ул. Академика Осипьяна, 4, Черноголовка, Московская область, 142432 Россия

> *e-mail: shushkanova@iem.ac.ru Поступила в редакцию 03.04.2023 г. После обработки 30.06.2023 г. Принята к публикации 20.07.2023 г.

Экспериментально при 6 ГПа и 700-1200°С (условия верхней мантии) исследовано влияние компонентов сверхкритического С-О-Н-флюида (при содержании 7.5 мас. %) на фазовые отношения при плавлении многокомпонентной алмазообразующей системы оливин-жадеит-диопсид-(Mg-Fe-Ca-Naкарбонаты)-(С-О-Н). Установлена перитектическая реакция оливина и жадеит-содержащего расплава с образованием граната как ключевой механизм ультрабазит-базитовой эволюции алмазообразующих расплавов. СО₂-компонент С-О-Н-флюида реагирует с силикатными компонентами с образованием карбонатов. Н₂О-компонент совместно с карбонатными соединениями алмазообразующей системы существенно понижает температуру ее ликвидусной и солидусной границ. После завершения кристаллизации полностью смесимого силикат-карбонат-(С-О-Н-флюидного) расплава в субсолидусе алмазообразующей системы появляются фаза сверхкритического водного флюида и водосодержащий карбонат несквегонит MgCO₃·3H₂O, идентифицированный методом КР-спектроскопии.

Ключевые слова: алмазообразующая система силикат-карбонат-(С-О-Н-флюид), перитектическая реакция оливина, ультрабазит-базитовая эволюция алмазообразующего расплава, флюидная CO₂-карбонатизация силикатов, роль H₂O, несквегонит MgCO₃·3H₂O, эксперимент

DOI: 10.31857/S0016752524010034, EDN: MVGHZF

ВВЕДЕНИЕ

алмазоносных Сосуществующие ксенолиты перидотитов и эклогитов в кимберлитах (Литвин и др., 2020), а также парагенные включения перидотитовых и эклогитовых минералов в алмазах кимберлитовых месторождений (Соболев, 1974) свидетельствуют об ультрабазит-базитовой эволюции алмазообразующих расплавов на глубинах верхней мантии. Алмазоносные породы и алмазы с включениями были транспортированы из верхней мантии кимберлитовыми магмами в земную кору вместе с ксенолитами перидотитовых и эклогитовых пород, вмещающих для мантийных алмазообразующих очагов (Dawson, 1980; Маракушев, 1984). Генезис алмазоносных ассоциаций связан с ультрабазит-базитовой эволюцией верхне-мантийного магматизма.

Экспериментально установлено, что эволюция ультрабазитовых магм верхней мантии контролировалась перитектической реакцией ортопирок-

сена и ультрабазитового силикатного расплава с образованием клинопироксена (Литвин, 1991; Литвин и др., 2016). При этом критически важное пограничное изменение составов расплавов верхней мантии от ультрабазитовых к базитовым обеспечивается перитектической реакцией оливина и жадеит-содержащего расплава с образованием граната в эксперименте без участия флюидных компонентов (Литвин и др., 2019). Экспериментально при 6 ГПа исследована роль сверхкритического С-О-Н-флюида (при его содержании 5.0 мас.%) во фракционной ультрабазит-базитовой эволюции расплавов верхне-мантийной системы оливин-жадеит-диопсид-(С-О-Н) (Литвин, Кузюра, 2021). Обнаружено, что при воздействии СО₂ на силикатные минералы образуются примесные карбонаты, которые ассимилируются в полностью смесимых силикат-карбонатных расплавах, таким образом СО2-компонент флюида практически полностью расходуется на метасоматическую карбонатизацию минералов верхней мантии. В результате среди продуктов экспериментов идентифицировано множество мелких зерен карбонатов Mg, Fe, Ca и Na. При этом H_2O -компонент растворяется в полностью смесимых силикат-карбонатных расплавах. На солидусе исследуемой системы карбонаты кристаллизуются как самостоятельные фазы субсолидусной ассоциации. Сверхкритический H_2O -флюид растворяется в образовавшихся силикат-карбонатных расплавах, тем самым понижая температуры ликвидусных и солидусных равновесий минеральных систем верхней мантии.

Показательно, что субсолидусное затвердевание верхне-мантийных расплавов сопровождается выделением H₂O-флюида как самостоятельной фазы. С геохимической точки зрения появление H₂O-флюида в субсолидусных *PT*-условиях C-O-H-содержащей силикатной системы верхней мантии может рассматриваться как формирование совмещенной с нею самостоятельной сверхкритической гидротермальной системы. Обе системы являются открытыми друг к другу, чем создается возможность для химических и фазовых реакций между их компонентами.

Включения сильно сжатых газа СО₂ и воды H₂O с изменчивыми относительными содержаниями обнаруживаются при нормальной температуре в минералах коренных магматических пород мантии (Green et al., 1987), а также в алмазах совместно с силикатными, карбонатными и другими включениями (Navon et al., 1988; Schrauder, Navon, 1994; Томиленко и др., 1997; Izraeli et al., 2001; Zedgenizov et al., 2007; Logvinova et al., 2008; Weiss et al., 2009). Это свидетельствует о том, что сверхкритические флюидные компоненты СО₂ и H₂O растворяются в ростовых силикат-карбонатных расплавах и захватываются растущими алмазами в составе таких расплавов. В итоге при затвердевании расплавов в герметических включениях в алмазах выделяются в самостоятельные фазы сверхкритических СО₂ и H₂O, состояния, которые с понижением температуры до нормальной изменяются от сверхкритических флюидов до углекислого газа и воды. Преобладание СО₂ и H₂O в составе сверхкритических флюидов, растворенных в верхне-мантийных магматических и алмазообразующих расплавах, как и устойчивость карбонатных фаз, обусловлены режимом фугитивности кислорода (Кадик, 2003).

В соответствии с мантийно-карбонатитовой теорией генезиса алмаза и ассоциированных фаз (Litvin, 2017), ростовые среды алмазов формировались при воздействии крупных восходящих потоков сверхкритических С-О-Н-флюидов, в составе которых преобладала двуокись углерода СО₂. Этими потоками осуществлялся СО₂-метасоматоз коренных силикатных минералов мантии с образованием карбонатов Mg, Fe, Ca, Na и их расплавов. При этом

ГЕОХИМИЯ том 69 № 1 2024

среди силикатных пород верхней мантии возникали очаги многокомпонентного силикат-карбонатного вещества. Их объемы возрастали в результате СО₂-карбонатизации силикатов, а также растворения минералов мантии в образовавшихся карбонатных, а затем и в полностью смесимых силикат-карбонатных расплавах. Карбонатные компоненты имеют приоритетное значение в составе алмазообразующих расплавов, так как придают им способность к эффективному растворению твердых фаз углерода и созданию насыщенных растворенным углеродом концентраций по отношению к алмазу. При понижении температуры алмазообразующего очага возникают силикат-карбонатные растворы-расплавы углерода, пересыщенные к алмазу, чем обеспечивается его спонтанная кристаллизация. В результате формируются как алмазы с парагенными включениями ассоциированных минералов, так и алмазоносные перидотиты и эклогиты. Консолидированные алмазоносные очаги существуют продолжительное геологическое время на глубинах верхней мантии.

Вопросы о роли CO₂- и H₂O-компонентов сверхкритического C-O-H-флюида в алмазообразующих процессах, их влияния на ликвидусные структуры и фракционную ультрабазит-базитовую эволюцию ростовых силикат-карбонатных расплавов, а также формирование парагенных с алмазом минералов принадлежат к приоритетным в физико-геохимическом эксперименте. В поле зрения оказываются также вопросы возникновения и активизации сверхкритической гидротермальной деятельности в субсолидусных ассоциациях минералов алмазообразующих силикат-карбонатных систем.

Главными задачами настоящей работы являются:

1) Экспериментальные исследования при 6 ГПа влияния сверхкритического С-О-Н-флюида при его повышенном содержании 7.5 мас. % на фазовые отношения при плавлении многокомпонентной алмазообразующей системы оливин-жадеит-диопсид— (Mg-Fe-Ca-Na-карбонаты)-(С-О-Н-летучие).

 Оценка реакционной активности сверхкритического Н₂О-флюида как гидротермального компонента в субсолидусной минеральной ассоциации исследуемой алмазообразующей системы.

ЭКСПЕРИМЕНТАЛЬНЫЕ И ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ

Исследуются фазовые отношения при плавлении алмазообразующей системы оливин $Ol[Mg, Fe)_2SiO_4]$ — жадеит Jd [NaAlSi₂O₆]—диопсид Di [CaMgSi₂O₆]-Мg-Fe-Ca-Na-карбонаты—С-О-Н-флюид[CO₂+H₂O]при 6 ГПа и 700—1200°С.

Стартовые материалыи ампулы. Вопытахиспользованы силикатные гелевые смеси, изготовленные в ИЭМ РАН кремнеорганическим нитратным методом с составами оливина $Ol[(Mg_2SiO_4)_{s0}(Fe_2SiO_4)_{20}],$ жадеита Jd (NaAlSi₂O₆) и диопсида Di (CaMgSi₂O₆), омфацита *Отр* ($Jd_{62}Di_{38}$), химические реактивы карбонатов MgCO₃ (синтезирован в ИЭМ РАН методом продувки гидрокарбоната магния при давлении СО₂ порядка 3.5-4 атм), СаСО₃, Na_2CO_3 и минерал сидерит Sd (FeCO₃) с составом Fe 59.85, Mg 0.24, Mn 2.98, Zn 0.13, Sr 0.28, Ba 0.14, CO₃ 36.38 мас. %. Летучие компоненты CO₂ и H₂O генерируются при разложении в герметических платиновых ампулах дигидрата щавелевой кислоты по реакции $H_2C_2O_4 \cdot 2H_2O \rightarrow 2CO_2 + 2H_2O + H_2$ При этом элементарный водород Н₂ диффундирует сквозь проницаемые для него стенки Pt-ампул за их пределы. В ампулах удерживается эквимолекулярная смесь СО₂ и H₂O совместно с силикатно-карбонатным веществом. В РТ-условиях эксперимента компоненты СО2 и Н2О находятся в состоянии полностью смесимого сверхкритического С-О-Н-флюида (Abramson et al., 2017). Составы стартовых смесей следующие (мас. %): $[(Ol_{80}Jd_{12,4}Di_{7,6})_{80}Carb^*_{20}]_{92,5}$ $(C-O-H)_{7.5}$, $[(Ol_{45}Jd_{34.1}Di_{20.9})_{80}Carb_{20}]_{92.5}COH_{7.5}$, $[(Ol_{40}O)_{10}]_{10}COH_{10}COH_{10}$ $mph_{60}_{80}Carb_{20}_{92.5}COH_{7.5}, [(Ol_{30}Omph_{70})_{80}Carb_{20}^*]_{92.5}(C-$ О-H)_{7.5} и [(*Ol*₂₀*Omph*₈₀)₈₀*Carb*^{*}₂₀]_{92.5}(С-О-H)_{7.5}, где *Carb** – смесь $(MgCO_3)_{25}(FeCO_3)_{25}$ карбонатов (CaCO₃)₂₅(Na₂CO₃)₂₅. Стартовые смеси гомогенизированы механически при растирании в агатовой ступке. В опытах они помещены в чечевицеобразные платиновые ампулы диаметром 5 мм и высотой 4 мм, герметичность которых обеспечивается контролируемой аргоновой сваркой. В один из опытов в центральную часть Pt-ампулы был помещен синтетический монокристалл Са-граната андрадита размером около 3 мм. Предполагалось, что он сыграет роль затравки.

Рис. 1. Схема экспериментальной ячейки аппарата "наковальня с лункой – тороид": 1 – ячейка из литографского камня – известняка Алгети, Грузия; 2 – термостойкая втулка-держатель (смесь порошков MgO и гексагонального BN) для ампулы с исследуемым веществом; 3 – платиновая ампула; 4 – экспериментальное вещество; 5 – графитовая втулка-нагреватель.

Компоненты смеси высушивались в сушильном шкафу до взвешивания, после гомогенизации смеси, загруженные ампулы также сушились непосредственно перед сваркой.

Реакцию платиновой ампулы с исследуемым веществом (Fe-содержащим) мы исключили, так как производили контроль по рентгеноспектральному анализу самой платины после опыта.

Техника и методы эксперимента. Использован твердофазовый аппарат высоких давлений и температур типа "наковальня с лункой-тороид" (рис. 1) с ячейкой из литографского камня (известняк Алгети, Грузия) и изотермическим трубчатым нагревателем (Литвин, 1991). Ампула с исследуемым веществом размещается внутри трубчатого графитового нагревателя высотой 7.2 мм с внешним диаметром 7 мм, нагреватель плотно закрывается сверху и снизу графитовыми прессованными крышками. При этом ампула защищена от графитового нагревателя электроизолирующими втулками из спрессованной смеси MgO и BN.

Давление определяется по калибровочным кривым, усилие пресса – давление с использованием стандартных реперных полиморфных превращений висмута (2.55 ГПа) и таллия (3.67 ГПа) при комнатной температуре с точностью ±0.25 ГПа. Определение температуры со статистической погрешностью ±20°С выполняется по калибровочным кривым, мощность тока нагрева – температура с использованием платинородиевой термопары ПР 30/6. Опыты завершаются закалкой со скоростью 300°С/сек.

Аналитические методы. Неполированный слом, а также полированные поверхности экспериментальных образцов исследовались методами сканирующей электронной микроскопии и электронного микроанализа с использованием электронного микроскопа CamScanMV230 (VEGA TS5130MM) с энергодисперсионным анализатором Link INA Energy-350 (ускоряющее напряжение 20 kV). Электронный зонд размером 115—140 нм, в режиме сканирования — до 60 нм, диаметр области возбуждения до 5 мкм. Стандартами служили кварц, альбит, MgO, Al₂O₃, волластонит, металлы Mn, Cr, Ti, Fe.

Использован также метод КР-спектроскопии. КР-спектры экспериментальных образцов снимались на установке, состоящей из спектрографа Acton SpectraPro-2500i с охлаждаемым до -70°С детектором ССD Pixis2K и микроскопом Olympus с непрерывным твердотельным одномодовым лазером с длиной волны излучения 532 нм. Лазерный пучок фокусировался на образец при помощи объектива Olympus 50' в пятно диаметром ~5 мкм. Интенсивность возбуждения непосредственно перед образцом составляла ~0.7 мВт. Время накопления сигнала составляло 360 сек (3×120 сек). Полученные спектры обработаны в программах Fytik 1.3.1 и Crystal Sleuth.

Методы физической химии многокомпонентных систем. Физико-геохимические механизмы происхождения и эволюции магматических минералов и пород мантии Земли раскрываются на основе экспериментальных исследований фазовых отношений при плавлении многокомпонентных многофазовых систем, в составах которых воспроизведены главные компоненты глубинного вещества. При определении задач эксперимента в экспериментальных исследованиях и обработке полученных результатов используются методы физической химии многокомпонентных систем (Rhines, 1956; Палатник, Ландау, 1961; Захаров, 1964). Эти метолы позволяют эффективно раскрывать физико-химические механизмы, обеспечивающие ультрабазит-базитовую эволюцию магматических и алмазообразующих расплавов верхней мантии, на основе перитектических реакций ортопироксена и расплава с образованием клинопироксена, а также оливина и расплава с образованием граната (Литвин и др., 2016, 2019; Литвин, Кузюра, 2021).

Составы многокомпонентных многофазовых магматических систем мантии могут быть представлены комплексными диаграммами, состоящими из простых диаграмм-симплексов, ликвидусная структура каждого из которых является носителем единственной нонвариантной эвтектической или перитектической точки. Однако в равновесном режиме кристаллизации вещества любого симплекса фигуративная точка состава системы не может по определению переместиться за его пределы, т.е. межсимплексные границы представляют собой своего рода физико-химические барьеры. В неравновесном режиме фракционной кристаллизации расплавов общий состав системы при перемещении ее фигуративной точки непрерывно изменяется, сравниваясь с составами остаточных расплавов (после фракционного удаления кристаллизующихся фаз). В этом режиме эффективными для перемещения фигуративной точки в соседний симплекс становятся перитектические реакции, для которых «исходящие» моновариантные котектики направлены в соседний симплекс с понижением температуры. При этом преодолеваются межсимплексные физико-химические барьеры, что невозможно в случае эвтектических систем. В условиях мантии режим фракционной кристаллизации магм реалистичен при воздействии гравитационного поля Земли, о чем свидетельствуют ксенолиты парагенных ассоциаций ультрабазитовых и базитовых пород, перемещенных к поверхности Земли кимберлитами.

Для экспериментальных исследований межсимплексных фазовых отношений эффективен метод двумерных политермических сечений, который

ГЕОХИМИЯ том 69 № 1 2024

позволяет исследовать ликвидусные структуры сопряженных перитектического и эвтектического симплексов. Это дает возможность раскрывать ключевые механизмы ультрабазит-базитовой эволюции мантийного магматизма на основе экспериментальной физико-химической информации.

Правило фаз Райнза (Rhines, 1956), называемое иногда "правилом креста", позволяет контролировать корректность построения фазовых диаграмм многокомпонентных многофазовых систем, раскрывающих механизмы эволюции магматических расплавов.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Исследуется влияние сверхкритического С-О-Н-флюида с его повышенным содержанием (7.5 мас. %) на ультрабазит-базитовую эволюцию алмазообразующей системы оливин-жадеит-диопсид-(Mg-Fe-Ca-Na-карбонаты)-(С-О-Н флюид) в экспериментах при 6 ГПа и 700–1400°С.

Влияние сверхкритического С-О-Н-флюида на ультрабазит-базитовую эволюцию алмазообразующей системы. Фазовые отношения при плавлении алмазообразующей системы *Ol-Jd-Di*-(реакцион-

Рис. 2. Экспериментальные фазовые отношения при плавлении в политермическом сечении Ol (=Fo₈₀Fa₂₀)-Omp (= $Jd_{62}Di_{38}$) ультрабазит-базитовой алмазообразующей системы Ol-Jd-Di-(C-O-H) при 6 ГПа. Черные точки обозначают стартовые составы. Символы фаз: L – расплав, Ol – оливин, Grt – гранат, Cpx – клинопироксен, Omp – омфацит, $Carb^*$ – все карбонаты, (H₂O) – водно-флюидный раствор. P – квазинонвариантная перитектика L+Ol+Omp+Grt. Аналитические данные в таблице.

ный Grt)-MgCO₃-FeCO₃-Na₂CO₃-CaCO₃-(С-О-Н флюид) экспериментально изучены в ее политермическом сечении $Ol_{74}Carb^*_{18.5}(C-O-H)_{7.5} - Omp_{74}Carb^*_{18.5}(C-O-H)_{7.5} - Omp_{74}Carb^*_{7.5}(C-O-H)_{7.5} - Omp_{74}Carb^*_{7.5}(C-O-H)_{7.5} - Omp_{74}Carb^*_{7.5}(C-O-H)_{7.5} - Omp_{74}Carb^*_{7.5}(C-O-H)_{7.5} - Omp_{74}Carb^*_{7.5}(C-O-H)_{7.5} - Omp_{75}Carb^*_{7.5}(C-O-H)_{7.5} - Omp_{75}Carb^*_{$ О-Н)₇₅ при 6 ГПа (рис. 2). Специфическая деталь в том, что перитектический состав в политермическом сечении данной многокомпонентной системы представлен короткой моновариантной линией параллельно оси температур. Вдоль нее осуществляется перитектическая реакция в согласии с правилом фаз Райнза (Rhines, 1956). Соответственно, пограничные моновариантные котектики, как ультрабазитовая Ol+Grt+Cpx/Omp+L, так и базитовая Grt+Omp+L, изображаются узкими дивариантными полями.

Условия и результаты экспериментов приведены в таблице 1. Электронно-микроскопические изображения экспериментальных образцов алмазообразующей системы после закалки представлены на рис. 3. Средний состав оливина соответствует (Mg_{0.58}Fe_{0.42})₂SiO₄. Составы клинопироксена/омфацита характеризуются содержаниями жадеитового компонента NaAlSi₂O₆ в пределах 10-67 мас. %. Гранаты имеют гроссуляр-пироповые составы с вариацией содержания пиропового компонента в прелелах 10-46 мас. %. Для гранатов характерно спонтанное зародышеобразование, их размеры достигают 200 микрон (рис. 3 а-в). Гранаты являются продуктами перитектической реакции оливина с жадеит-содержащим, полностью смесимым силикат-карбонатным расплавом с растворенным сверхкритическим водным флюидом.

О карбонатизации силикатных компонентов ультрабазитовых расплавов при воздействии растворяющихся в них летучих СО2-компонентов сверхкритического флюида С-О-Н свидетельствуют многочисленные мелкие зерна закалочных карбонатов натрия (Na₂CO₃), а также карбонатов Mg, Fe и Ca, которые обнаруживаются в смесях с закалочныклинопироксенами/омфацитами. ми В результате частичной карбонатизации силикатов образуются магнезит (Mgs), арагонит (Arg), а также (Mg-Fe)-, (Mg-Ca-Fe)- и (Na-Ca)-карбонаты, которые также встречаются как включения в гранатах (рис. 3в). Мелкие карбонатные фазы распространены как составляющие основной массы экспериментальных образцов.

Таблица 1. Условия опытов и составы экспериментальных фаз

	Сумма	98.79	100.37	98.65	99.74	98.47	100.00	100.00	101.45	99.19	99.32	101.22	100.00	100.00
ементов	\mathbf{CO}_{2}^{*}	Ι	Ι	Ι	Ι	Ι	27.63	31.36	I	I	Ι	Ι	31.51	44.10
кислов эл в)	Na_2O	0.03	0.64	0.18	11.26	3.74	3.36	14.34	6.40	12.25	0.52	0.52	19.75	0.84
3, мас.% о м анализс	CaO	0.09	10.45	6.04	7.29	17.54	13.12	17.39	12.97	10.72	0.04	0.15	17.36	3.38
льных фаз –11 точка	FeO	17.02	11.70	20.67	7.17	8.13	39.69	19.99	8.01	54.06	30.54	32.01	0.55	8.27
іеримента рифм.по 7	MgO	42.57	15.60	11.96	4.69	12.38	2.23	2.77	12.06	3.84	37.10	36.60	13.72	31.32
нализ эксг (средн. ај	$\mathbf{Al}_{2}\mathbf{O}_{3}$	0.31	18.92	20.85	13.9	2.79	11.43	0.43	6.43	10.85	0.26	0.42	2.77	1.19
ический ан	SiO_2	39.55	43.06	38.93	55.43	53.90	2.54	13.72	55.60	7.47	30.86	31.52	14.34	10.90
Хим	Фаза	10	$G \pi$	$G \pi$	Omp	Omp	Г	Γ	Cpx	Cpx	10	10	Г	Γ
Выд- ка,	МИН				95						001	170		
$T, ^{\circ}C$		1020				630								
Стартовый состав	CtaptObert COCtab				[(U180) d 12.40 U17.6) 80 C d U 20] 92.5 C U IT7.5									
№ oбp		_	_	_	3291	_	_			_	000	7670	_	

Продолжение таблицы 1

Nº oốp	Стартовый состав	T. °C	Выд- Ka.	Хим	ический а	нализ эксі (средн. а	перимента рифм.по 7	льных фаз —11 точка	3, мас.% ој м анализо	кислов эл в)	ementob	
4 - -			МИН	Фаза	SiO_2	$\mathbf{Al}_{2}\mathbf{O}_{3}$	MgO	FeO	CaO	Na_2O	CO_2^*	Сумма
				01	31.44	I	39.54	29.06	I	0.77	I	100.81
				10	30.71	0.37	28.38	38.61	0.14	0.75	I	99.28
3296	$[(Ol_{80}Jd_{12,40}Di_{7,6})_{80}Carb_{20}]_{92,5}COH_{7,5}$	880	09	Omp	55.19	11.26	7.73	5.07	8.97	9.68	I	97.90
				Omp	54.81	10.83	8.38	5.22	9.81	10.08	I	99.13
				Mg,Fe- <i>carb</i>	Ι	Ι	41.12	13.66	6.37	Ι	38.85	100.00
				10	32.70	I	44.36	22.82	Ι	0.81	I	100.68
				10	31.66	I	38.34	29.68	0.02	0.12	I	99.82
3297	$[(Ol_{80}Jd_{12,40}Di_{7,6})_{80}Carb_{20}]_{92,5}COH_{7,5}$	740	90	Omp	55.43	13.90	7.17	4.69	7.29	11.26	Ι	99.74
				Omp	48.88	2.46	10.96	13.33	9.32	13.25	I	98.20
				Carb	1.72	I	38.65	7.30	0.30	2.11	49.92	100.00
				Grt	40.51	22.08	12.16	11.05	11.28	3.03	I	100.11
		1100	00	Grt	40.01	20.25	12.09	19.67	7.34	0.18	I	99.54
C7CC	[(U45/d341/D120.9)80Ca7D20]92.5CUH7.5	1100	06	Γ	12.65	9.57	3.98	9.82	7.39	5.34	51.25	100.00
				Г	3.61	0.14	1.63	0.66	1.02	22.98	96.69	100.00
				Grt	40.25	21.02	9.18	12.28	17.14	0.2	I	100.07
3000		0011	00	Grt	40.25	20.70	9.45	13.96	1.76	0.16	I	86.28
C7CC	[(Ut ₆₀ Ump40)80Cutr020]92.5CUT17.5	0CT1	06	Γ	46.53	4.76	10.19	3.01	16.77	4.46	14.28	100.00
				Γ	42.64	9.21	8.86	5.47	13.31	3.47	17.04	100.00
				Grt	40.44	21.21	9.74	12.24	15.91	0.11	I	99.65
				Grt	41.06	23.49	11.95	4.76	16.75	0.20	Ι	98.21
				Γ	23.38	0.04	0.04	0.11	3.63	34.89	37.91	100.00
3326	$[(Ol_{60}Omp_{40})_{80}Carb_{20}]_{92.5}COH_{7.5}$	950	06	Γ	37.61	5.18	6.13	3.83	12.83	12.20	22.22	100.00
				Omp	55.31	10.28	11.27	1.20	13.21	9.21	I	100.47
				Omp	56.22	9.22	11.48	0.79	16.21	5.04	I	98.96
				Carb	9.13	0.71	1.14	0.53	2.40	38.36	47.73	100.00

ПЕРИТЕКТИЧЕСКАЯ РЕАКЦИЯ ОЛИВИНА В АЛМАЗООБРАЗУЮЩЕЙ

41

42
сончание таблицы 1
õ

Nº oбp	Стартовый состав	T, °C	Выд- ка,	Хим	ический а	нализ экс (средн. а	перимента рифм.по 7	льных фа: -11 точка	3, мас.% о. м анализо	кислов эл в)	ементов	
	·		НИМ	Фаза	SiO ₂	$\mathbf{M}_2\mathbf{O}_3$	MgO	FeO	CaO	Na_2O	\mathbf{CO}_{2}^{*}	Сумма
				Grt	40.83	21.24	6.02	13.6	17.71	0.14	I	99.54
		0011	00	Grt	41.60	24.53	9.11	7.51	17.13	0.24	Ι	100.12
2266	[(UI30/d43.30UI26.6)80Carb20]92.5CUH7.5	1100	90	Т	44.17	6.8	7.74	3.08	10.67	5.47	22.07	100.00
				Т	44.28	6.81	7.77	3.08	10.71	5.49	21.86	100.00
				Grt	37.11	16.50	19.11	3.83	21.39	0.43	I	98.37
		-		Grt	38.05	16.43	4.35	19.36	21.09	0.30	I	99.58
				Omp	50.18	7.14	2.67	17.16	15.83	7.10	I	100.08
				Omp	51.14	1.97	14.41	6.30	20.38	4.91	I	99.11
0000		020	00	Ca,Na-carb	0.03	0.11	0.77	1.53	15.88	21.13	60.55	100.00
6066	[(U ₃₀ Ja43.40Dl26.6)80Ca1020]92.5CUH7.5	066	90	Na-carb	2.93	0.36	6.85	5.90	2.40	24.60	56.96	100.00
		-		Carb	4.50	0.79	14.78	14.99	10.76	12.58	41.60	100.00
		-		Carb	1.28	1.13	28.04	22.22	2.35	0.64	44.34	100.00
				Г	21.36	5.02	2.59	13.14	6.67	12.42	38.82	100.00
		-		Т	28.63	0.85	11.11	6:59	12.62	7.10	33.10	100.00
				Omp	57.89	17.44	3.65	2.84	4.16	13.08	I	90.06
1000		012	00	Omp	55.62	5.14	12.64	3.89	19.71	4.95	I	101.95
0770	[(U ₃₀ Ja43 40 Dl 26,6) 80 Caro 20] 92.5 CUH 7.5	/10	90	Arg	0.18	0.08	0.22	0.00	55.08	0.37	44.07	100.00
				Mgs	2.10	0.69	38.44	5.80	1.64	0.96	50.37	100.00
0100		1020	07		24.43	5.58	2.68	13.44	4.02	10.13	39.72	100.00
0166	[(U ₂₀ Ja49.60 DI 30.4) 80 Caro ² 0] 92.5 COH 7.5	1000	00	Г	25.06	6.18	17.26	2.42	6.63	17.94	24.51	100.00
				Omp	55.34	13.41	10.25	0.79	10.33	9.86	I	99.98
3312	$[(Ol_{20} Jd_{49,60} Di_{30,4})_{80} Carb_{20}]_{92.5} {\rm COH}_{7.5}$	790	90	Omp	50.18	1.59	12.69	6.35	20.23	8.08	I	99.12
				Carb	I	I	0.66	0.89	49.91	4.87	43.67	100.00
	* CO ₂ - расчётное количество.											

КУЗЮРА и др.

Вероятно, большие объемы сверхкритического С-О-Н-флюида, обогащенного СО₂-компонентом, в веществе верхней мантии могут возникать локально при формировании очагов алмазообразующих силикат-карбонатных расплавов, а также карбонатитов. При этом СО₂ связывается в составах карбонатов Mg, Fe, Ca и Na в реакциях оливина $Mg_2SiO_4 + CO_2 = MgSiO_3 + MgCO_3$ (Koziol, Newton, 1998) и других Mg-Fe- и Ca-Na-силикатных минералов – ортопироксена, клинопироксена/омфацита и граната. Эти же реакции могут осуществляться и при распространении в верхне-мантийном веществе относительно невысоких содержаний C-O-H-флюида.

Рис. 3. СЭМ-фотографии экспериментальных образцов: а, г – обр. 3326; б, в – обр. 3309; д – обр. 3325; е – обр. 3292. а–в – реакционный гранат в карбонатно-силикатном раскристаллизованном расплаве, г, д – зерна клинопироксенов в локальном равновесии с карбонатно-силикатным расплавом, е – перидотитовая ассоциация *Ol+Cpx+L*.

ГЕОХИМИЯ том 69 № 1 2024

На рис. 4 представлена диаграмма структуры ликвидуса алмазообразующей системы оливин-жадеит-диопсид-(реакционный гранат)-(Mg-Fe-Ca-Na-карбонаты)-(С-О-Н) с повышенным солержанием 7.5 мас. % (С-О-Н)-флюида. Необходимо отметить, что положение ее перитектической точки Р при 64 мас. % граничного Ol-содержащего компонента политермического сечения и 1000-1020°C опрелеляется совместным влиянием (С-О-Н)-флюида и Mg-Fe-Ca-Na-карбонатной составляющей алмазообразующей системы. В данном случае оливин эффективно растворим в карбонатно-силикатном расплаве, чем активизируется его перитектическая реакция с жадеитовым компонентом. В результате происходит масштабный сдвиг перитектической точки по сравнению с силикатной системой без летучих компонентов в сторону повышения содержания оливина до состава, в котором он частично сохраняется как самостоятельная твердая фаза.

По экспериментальным определениям при 6 ГПа температура ультрабазитового солидуса верхне-мантийной системы оливин—омфацит близка к 1420°С (Литвин и др., 2019). При воздействии сверхкритического С-О-Н-флюида с его стартовым содержанием 5.0 мас. % температура солидуса понижается до 1290°С (Литвин, Кузюра, 2021). При этом отмечается сдвиг перитектической точки на ликвидусе силикатной системы с 5.0 мас. % (С-О-Н) в сторону понижения содержания жадеита от 62 до 57 мас. %.

Между тем при достаточно значительном понижении температуры солидуса исследуемой в настоящей работе алмазообразующей силикат-карбонат-флюидной системы до 1000–1020°С, т.е. на 270°С по отношению к верхне-мантийной силикатной системе, содержащей 5.0 мас. % С-О-Н-летучих, радикально меняются положения их перитектических точек в солидусных условиях. В случае алмазообразующей силикат-карбонат-(С-О-Н-флюидной) системы к факторам понижения температуры ее солидуса на 270°С принадлежат как воздействие сверхкритического флюида H_2O , так и влияние карбонатных компонентов стартового состава и добавленных в результате CO_2 -карбонатизации силикатов.

Главным результатом является то, что в алмазообразующих расплавах формируются как алмазы, так и парагенные силикатные минералы, которые по существу являются перекристаллизованными аналогами коренных минералов мантии. При этом алмазообразующей системе вместе с силикатным веществом транслируется способность к перитектической реакции оливина и жадеит-содержащего расплава с образованием граната. Эта реакция сохраняется и при повышенном содержании С-О-Н-флюида.

Рис. 4. Строение ликвидуса алмазообразующей системы $[Ol-Jd-Di-(Mg-Fe-Ca-Na-карбонаты)]_{92.5}(C-O-H)_{7.5}$ при 6 ГПа. Символы фаз: Jd – жадеит + см. подписи к рис. 2. Черные кружки с номерами – точки экспериментов в проекции на диаграмму.

Реакционная активность сверхкритического H_2O -флюида в субсолидусе алмазообразующей системы. Экспериментально обнаружено, что субсолидусное завершение алмазообразующих процессов в очагах верхней мантии сопровождается выделением сверхкритической H_2O -фазы, химически активного агента гидротермальной системы. Таким образом, сосуществуют алмазообразующая и гидротермальная системы, взаимодействующие в открытом режиме.

ИК-спектроскопическое изучение распределения воды в номинально безводных породообразующих минералах ксенолитов перидотитов и эклогитов трубки Удачная (Рагозин и др., 2014) позволило обнаружить в них гидроксильные структурные дефекты. При этом отмечен значительный разброс содержаний H_2O как в различных провинциях кимберлитов, так и для трубки Удачная. В перидотитах содержание воды (г/т) оценено в пределах 38–126, при этом в оливине 23–75, ортопироксене 52–317, клинопироксене 29–126, гранате 0–95. В эклогитах – заметно выше в пределах 391–1112, при этом в клинопироксене до 1898 (~ 0.19 мас. %), гранате до 833. Эти различия сохраняются при перемещении к поверхности Земли по разрезу трубки. В условиях эксперимента при 6 ГПа реакционная активность сверхкритического флюидного H₂O-раствора как гидротермального компонента в субсолидусе алмазообразующей системы *Ol-Jd-Di*-(реакционный *Grt*)-MgCO₃-FeCO₃-CaCO₃-Na₂CO₃-(C-O-H-флюид) проявляется разнообразно (рис. 5).

Могут формироваться локализованные резервуары воды (рис. 5а), обнаруживаемые в герметических Pt ампулах после их вскрытия при нормальных давлении и температурах. Вероятно, в *PT*-условиях эксперимента они возникали как скопления сверхкритических H₂O-флюидов среди силикат-карбонатного вещества. Наблюдаются мелкие зародыши гидротермальных структур типа жеод (рис. 5б), заполненные карбонатными и силикатными фазами. В результате заключительной кристаллизации в условиях субсолидуса формируются как ультрабазитовые ассоциации силикатных и карбонатных минералов (рис. 5в), так и базитовые (рис. 5г).

В субсолидусе исследуемой системы наблюдается формирование гидротермальной жеодообразной структуры (рис. 6). В ее веществе идентифицированы силикатные минералы ультрабазитовой ассоциации – оливин, клинопироксен, пироп-грос-

Рис. 5. СЭМ-фотографии экспериментальных образцов, демонстрирующие реакционную активность сверхкритического флюидного H₂O-раствора: а – обр. 3312; б – обр. 3291; в – обр. 3297; г – обр. 3298. *Сое* – коэсит, здесь практически черный.

ГЕОХИМИЯ том 69 № 1 2024

суляровый гранат. В ее межзерновом пространстве содержится смесь мелких силикатов и карбонатов.

Вместе с тем использование КР-спектроскопии позволило идентифицировать водосодержащий карбонатный минерал несквегонит (*Nes*) MgCO₃·3H₂O как индивидуально, так и в виде парагенного включения в гранате. В составе данной гидротермальной структуры оказался посторонний Са-гранат андрадит, который был внесен в образец как возможная затравка для ожидаемой Mg-Fe-Ca-гранатовой фазы (поскольку при пониженных температурах в экспериментах можно ожидать трудности с нуклеацией гранатовых фаз). Однако оказалось, что "нормальный" для исследуемой системы Mg-Fe-Ca гранат способен нуклеировать самостоятельно также и при пониженных температурах без "помощи" андрадитовой затравки. Необходимо отметить, что андрадит, вероятно, был механически разрушен конвективным водосодержащим потоком при формировании гидротермальной жеодоподобной структуры.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Коренные породы верхней мантии и глубинные потоки сверхкритических флюидов системы С-О-Н, обогащенные СО₂-компонентом, являются главным источником вещества в формировании очагов алмазообразующих карбонат-силикат-(С-О-Н-флюидных) расплавов с раство-

Рис. 6. Идентификация фаз жеодоподобной структуры методом КР-спектроскопии (обр. 3291): (а) – СЭМ-снимок образца; (б) – рамановские спектры андрадита (*Adr*), оливина (*Ol*), граната (*Grt*), клинопироксена (*Cpx*), смеси несквегонита и андрадита (*Nes+Adr*); (в) – КР-спектр смеси несквегонита с андрадитом, отчетливо выделяются пики ОН-групп; слева для сравнения представлен спектр несквегонита из базы данных – RRUFF ID: R050639.

ренным элементарным углеродом (Litvin, 2017). В РТ-условиях эксперимента компоненты СО₂ и Н₂О находятся в состоянии полностью смесимого сверхкритического С-О-Н-флюида (Abramson et al., 2017). В процессе опытов СО₂-компонент полностью смесимого С-О-Н-флюида расходуется на карбонатизацию силикатов. Карбонатизация приводит к образованию полностью смесимых Н₂О-содержащих карбонат-силикатных расплавов. При этом сверхкритический флюид H₂O, растворенный в карбонат-силикатных расплавах существенно понижает температуру перитектической реакции оливина и жадеит-содержащего расплава. В условиях мантии сверхкритический флюид H₂O, скапливаясь локально, является физико-химическим фактором активизации гидротермальных процессов, в которые вовлекаются минералы субсолидусной ассоциации алмазообразующих систем верхней мантии. В результате в условиях мантии формируются характерные очаги мантийных гидротерм и гидротермальные жеодоподобные структуры, в ассоциации минералов которых представлены гидрокарбонаты, как в данных экспериментах. По существу, размеры формирующихся алмазообразующих очагов зависят от массы CO_2 , поступающего в область их

формирования на глубинах верхней мантии. Однако карбонатные расплавы эффективны как растворители не только оксидных и силикатных фаз, но и минералов углерода – алмаза и графита. Эта способность передается и полностью смесимым карбонат-силикатным и карбонат-оксидным расплавам. В результате в природных условиях физико-химически становится возможным формирование алмазообразующих очагов карбонат-силикат-(С-О-Н-флюидных) расплавов-растворов элементарного углерода.

Показательной особенностью как коренных пород верхней мантии, так и алмазообразующих минеральных систем является способность их расплавов к ультрабазит-базитовой эволюции с формированием, соответственно, серий перидотит-пироксенитовых пород и алмазоносных минеральных ассоциаций. Эти породы и минеральные ассоциации были вынесены транспортирующими кимберлитовыми расплавами в трубки взрыва с разной степенью алмазоносности (Соболев, 1974; Dawson, 1980). В физико-химическом эксперименте была раскрыта перитектическая реакция оливина и жадеит-содержащего расплава как ключевой механизм ультрабазит-базитовой магматической эволюции как в породах верхней мантии, так и материнских средах алмаза и ассоциированных фаз (Litvin, 2017; Литвин, Кузюра, 2021).

Выполненные прежде и настоящее исследования показывают, что в природных условиях способность к перитектической реакции "гранатизации

оливина", определяющей физико-химические особенности коренного силикатного вещества верхней мантии Земли, транслируется вместе с силикатным веществом при формировании более сложной карбонат-силикатной алмазообразующей системы. В результате определяется ее физико-химическое повеление в условиях повышенного солержания сверхкритического флюида H₂O. При этом выясняется, что реализация указанной перитектической реакции и контролируемой ею ультрабазит-базитовой эволюции как верхне-мантийных магм, так и алмазообразующих расплавов становится возможной только в режиме неравновесной фракционной кристаллизации, обусловленной существованием достаточно сильного гравитационного поля Земли.

Обнаружилось также, что влияние повышенной концентрации компонента H₂O сверхкритического флюида на особенности ликвидусной структуры алмазообразующей карбонат-силикат-С-О-Н-флюидной системы выражено количественно в существенномпонижениитемпературыперитектической реакции "гранатизации оливина" (при совместном влиянии с карбонатными компонентами). При этом реакционная активизация С-О-Н-флюида при плавлении алмазообразующей системы проявляется в отношении процессов CO₂-карбонатизации силикатных минералов.

Между тем активность сверхкритического Н₂О-флюида в эксперименте может интерпретироваться как основной фактор формировании самостоятельных водных очагов гидротерм среди субсолидусных минеральных ассоциаций алмазообразующей системы оливин-жадеит-диопсид-(реакционный гранат)-(карбонаты Mg, Fe, Ca, Na)-(С-О-Н-флюид), а также жеодоподобных образований, заполненных субсолидусными силикатными и карбонатными минералами. При этом важным признаком физико-химической активизации гидротерм служит образование в гидротермальных мантийных процессах водосодержащего минерала несквегонита (Nes) MgCO₃·3H₂O, идентифицированного среди продуктов экспериментов методом КР-спектроскопии как индивидуально, так и в виде парагенного включения в гранате.

Полученные в настоящем исследовании результаты и выводы имеют значение для развития мантийно-карбонатитовой теории генезиса алмаза и ассоциированных минеральных фаз. Обнаружились новые экспериментальные факты дополнительной карбонатизации силикатных минералов алмазообразующих систем. Вместе с тем показана возможность формирования гидротермальных очагов и жеодоподобных образований в субсолидусной ассоциации алмазообразующих систем верхней мантии, что относится к пост-генетической исто-

ГЕОХИМИЯ том 69 № 1 2024

рии алмаза и ассоциированных фаз в консолидированных алмазоносных очагах верхней мантии еще до возникновения их кимберлитового транспорта в земную кору. В этом отношении также показательно образование гидрокарбоната несквегонита (*Nes*) $MgCO_3$ · $3H_2O$.

На завершающих этапах формирования кимберлитовых месторождений алмаза алмазообразующие системы разрушаются, исчезают физико-химические механизмы, контролирующие генезис алмазов и ассоциированных минералов. Кимберлитовые потоки разрушают стационарные алмазоносные очаги, захватывают алмазы, генетически ассоциированные фазы, вмешающие породы, смешивают их и перемещают в земную кору с понижением давления. Возникают новые условия и процессы – разложение карбонатов Mg и Fe ниже 2.6 и 0.4 ГПа на оксиды и СО₂-флюид, формирование вторичного С-О-Н-флюида, который совместно с кимберлитовой магмой и ассимилированным ею вешеством участвует в создании в земной коре стационарных кумулятивных очагов с прочной кровлей. Вещество в таких очагах постепенно затвердевает. При этом С-О-Н-флюид выделяется в сильно сжатую энергоемкую фазу, происходит "флюидное бурение" кровли кумулятивного очага и ее взрывное разрушение с перемещением кимберлитового и ассимилированного вещества в образующиеся алмазоносные трубки взрыва. Завершение их образования сопровождается понижением температуры ниже 300-400°С и распадом С-О-Н-флюида на двухфазовые смеси СО₂ (с потерей в атмосферу) с водяным паром и водой.

ЗАКЛЮЧЕНИЕ

Сверхкритический С-О-Н-флюид (при содержании 7.5 мас.%) оказывает эффективное воздействие на фазовые отношения при плавлении многокомпонентной алмазообразующей системы оливин-жадеит-диопсид-(Mg-Fe-Ca-Na-карбонаты)-(С-О-Н) в эксперименте при 6 ГПа и 700-1400°С (условия верхней мантии). Его компонент СО2 как метасоматический агент активно участвует в дополнительной карбонатизации силикатных твердых фаз и расплавов алмазообразующих сред. При этом сверхкритический флюид H₂O, растворенный в карбонат-силикатных расплавах существенно понижает их температуры плавления. включая и температуру перитектической реакции оливина и жадеит-содержащего расплава. Данная реакция обеспечивает возможность ультрабазит-базитовой эволюции алмазообразующих расплавов в режиме фракционной кристаллизации.

Вместе с тем сверхкритический флюид H₂O является физико-химическим фактором активизации гидротермальных процессов, в которые вовлекаются минералы субсолидусной ассоциации алмазообразующих систем верхней мантии. В результате формируются характерные очаги мантийных гидротерм и гидротермальные жеодоподобные структуры, в ассоциации минералов которых представлены гидрокарбонаты.

Полученные в физико-химическом эксперименте новые результаты способствуют развитию мантийно-карбонатитовой теории генезиса алмаза и ассоциированных фаз.

Авторы благодарны к.г.-м.н. Бутвиной В.Г. и д.г.-м.н. Шмуловичу К.И. за обсуждение материалов статьи и полезные замечания; к.ф.-м.н. Бондаренко Г.В., Варламову Д.А. и к.т.н. Вирюс А.А. за помощь при выполнении КР-спектроскопических и микрорентгеноспектральных исследований, а также интерпретации их результатов; к.х.н. Редькину $A. \Phi$. за предоставление реактива MgCO₃ собственного изготовления. Авторы искренне признательны рецензентам, научному редактору статьи д.г.-м.н. Антону Фарисовичу Шаикому и заместителю главного редактора д.г.-м.н. Олегу Александровичу Луканину за тшательное изучение манускрипта и сопроводительных материалов статьи, а также ценные замечания, которые в итоге сделали данную статью лучше и понятней.

Настоящее исследование выполнено в Институте экспериментальной минералогии им. Д.С. Коржинского РАН при финансовой поддержке по теме FMUF-2022-0001.

СПИСОК ЛИТЕРАТУРЫ

Захаров А.М. (1964) Диаграммы состояний четверных систем. М.: Металлургия, 240 с.

Кадик А.А. (2003) Восстановленные флюиды мантии: связь с химической дифференциацией планетарного вещества. *Геохимия*. (9), 928–940.

Kadik A.A. (2003) Mantle-derived reduced fluids: relationship to the chemical differentiation of planetary matter. *Geochem. Int.* **41**(9), 844–855.

Литвин Ю.А. (1991) Физико-химические исследования плавления глубинного вещества Земли. М.: Наука, 312 с.

Литвин Ю.А., Спивак А.В., Кузюра А.В. (2016) Основы мантийно-карбонатитовой концепции генезиса алмаза. *Геохимия.* (10), 873–892.

Litvin Yu.A., Spivak A.V., Kuzyura A.V. (2016) Fundamentals of mantle-carbonatite concept of diamond genesis. *Geochem. Int.* **50**(10), 839–857.

Литвин Ю.А., Кузюра А.В., Лиманов Е.В. (2019) Роль гранатизации оливина в системе оливин-диопсид-жадеит в ультрамафит-мафитовой эволюции верхне-мантийного магматизма (эксперимент при 6 ГПа). *Геохимия*. **64**(10), 1026–1046. Litvin Yu.A., Kuzyura A.V., Limanov E.V. (2019) The role of garnetization of olivine in the olivine-diopside-jadeite system in the ultramafic-mafic evolution of upper-mantle magmatism (experiment at 6 GPa). *Geochem. Int.* **57**(10), 1045–1065.

Литвин Ю.А., Кузюра А.В. (2021) Перитектическая реакция оливина при 6 ГПа в системе оливин-жадеит-диопсид-гранат-(С-О-Н) как ключевой механизм эволюции магматизма верхней мантии. *Геохимия*. **66**(9), 771–798.

Litvin Yu.A., Kuzyura A.V. (2021) Peritectic reaction of olivine in the olivine-jadeite-Diopside-garnet-(C-O-H) system at 6 GPa as the key mechanism of the magmaic evolution in the upper mantle. *Geochem. Int.* **59**(9), 813–839.

Литвин Ю.А., Кузюра А.В., Бовкун А.В., Варламов Д.А., Лиманов Е.В., Гаранин В.К. (2020) Генезис алмазоносных пород из ксенолитов верхней мантиии в кимберлитах. *Геохимия*. **65**(3), 209–236.

Litvin Yu.A., Kuzyura A.V., Bovkun A.V., Varlamov D.A., Limanov E.V., Garanin V.K. (2020) Genesis of diamondiferous rocks from upper-mantle xenoliths in kimberlite. *Geochem. Int.* **58**(3), 245–270.

Маракушев А.А. (1984) Нодули перидотитов в кимберлитах как индикаторы глубинной структуры литосферы. В кн.: Доклады советских геологов на XXYII сессии Международного геологического конгресса. Петрология, М.: Наука, стр. 153–160.

Палатник Л.С., Ландау А.И. (1961) Фазовые равновесия многокомпонентных систем. Харьков: Изд. ХГУ, 406 с.

Рагозин А.Л., Каримова А.А., Литасов К.Д., Зедгенизов Д.А., В.С. Шацкий В.С. (2014) Содержание воды в минералах мантийных ксенолитов из кимберлитов трубки Удачная (Якутия). *Геология и геофизика*. **55**(4), 549–567.

Соболев Н.В. (1974) Глубинные включения в кимберлитах и проблема состава верхней мантии. Новосибирск: Наука, 264 с.

Томиленко А.А., Чепуров А.И., Пальянов Ю.Н., Похиленко Н.П., Шебанин А.П. (1997) Летучие компоненты в верхней мантии по данным изучения флюидных включений. Геология и геофизика. **38**(1), 276–285.

Abramson E.H., Bollengier O., Brown J.M. (2017) The water-carbon dioxide miscibility surface to 450°C and 7 GPa. *Amer. J. Sci.* **317**(9), 967-989.

Green D.H., Falloon T.J., Taylor W.R. (1987) Mantle-derived magmas – role of variable source peridotite and variable C-H-O fluid compositions. In: Magmatic Processes: Physicochemical Principles. A volume in honor of Hatten S. Yoder, Jr. (Mysen B.O., Ed.). The Geochemical Society Special Publication No. 1. University Park: Pennsilvania, 139–154.

Dawson J.B. (1980) Kimberlites and their Xenoliths. Berlin, Springer-Verlag. XII, 252 p.

Hosoya T., Kubo T., Ohtani E., Sano A., Funakoshi K. (2005) Water controls the fields of metastable olivine in cold subducting slabs. *Geophys. Res. Lett.* 32:L17305 doi:10.1029/2005GL023398

Izraeli E.S., Harris J.H., Navon O. (2001) Brine inclusions in diamonds: a new upper mantle fluid. *Earth Planet. Sci. Lett.* **187**, 323–332.

Koziol A.M., Newton R.C. (1998) Experimental determination of the reaction: Magnesite + enstatite = forsterite + CO_2 in the range 6-25 kbar and 700-1100°C. *Am. Mineral.* **83**, 213–219.

Litvin Yu.A. (2017) Genesis of diamonds and associated phases. Springer Mineralogy, 137 p.

Logvinova A.M., Wirth R., Fedorova E.N., Sobolev N.V. (2008) Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insight on diamond formation. *Eur. J. Mineral.* 20, 1223-1233.

Navon O., Hutcheon I.D., Rossman G.R., Wasserburg G.J. (1988) Mantle derived fluids in diamond micro-inclusions. *Nature*. **355**(6193). 784–789.

Ohtani E., Litasov K.D. (2006) The Effect of Water on Mantle Phase Transitions. *Reviews in Mineralogy & Geochemistry*. **62**, 397–420.

Rhines F.N. (1956) Phase diagrams in metallurgy: their developments and application. N. Y.-Toronto-L.: McGraw-Hill Book Company, 348 p.

Schrauder M., Navon O. (1994) Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. *Geochim. Cosmochim. Acta* 58, 761–771.

Weiss Ya., Kessel R., Griffin W.L., Kiflavi I., Kleim-BenDavid O., Harris J.W., Bell D.R., Navon O. (2009) A new model for the evolution of diamond-forming fluids: Evidence from microinclusion-bearing diamonds from Kankan, Guinea. *Lithos.* **112**(1-3), 660–674.

Zedgenizov D.A., Rege S., Griffin W.L., Kagi H., Shatsky V.S. (2007) Composition of trapped fluids in cuboid diamonds from the Udachnaya kimberlite: LAM-ICPMS analysis. *Chem. Geol.* 240, 151–162.

PERITECTIC REACTION OF OLIVINE IN THE DIAMOND-FORMING SYSTEM CARBONATE-SILICATE-(C-O-H) AT 6 GPA

A. V. Kuzyura^{*a*,*}, A. V.Spivak^{*a*}, Yu. A. Litvin^{*a*}

^aD.S. Korzhinskii Institute of Experimental Mineralogy of the RAS, Academician Osipyan str., 4, Chernogolovka, Moscow district, 142432 Russia *e-mail: shushkanova@iem.ac.ru

Influence of the supercritical C-O-H-fluid (7.5 wt. %) onto melting phase relations of the multicomponent multiphase diamond-forming system olivine-jadeite-diopside-(Mg-Fe-Ca-Na-carbonates)-(C-O-H) in experiments at 6 GPa and 700–1200°C (the upper mantle conditions) has been studied. The peritectic reaction of olivine and jadeite-bearing melt with garnet formation has been retained as a key mechanism of the ultrabasic-basic evolution of diamond-forming melts. The CO₂-fluid and silicate components react forming carbonate phases. The H₂O-fluid together with carbonates has essentially lowered temperatures of the liquidus and solidus boundaries. The phase of supercritical water fluid and water-bearing carbonate nesquehonite (Nes) Mg-CO₃·3H₂O were identified with the Raman-spectroscopy method after crystallization of the completely mixed silicate-carbonate-(C-O-H-fluid) melt.

Keywords: diamond-forming system silicate-carbonate-(C-O-H-fluid) system, peritectic reaction of olivine, ultrabasic-basic evolution of diamond-forming melt, fluid CO_2 -carbonization of silicates, H_2O role, nesquehonite Mg CO_3 ·3H₂O, experiment