УДК 550.42

ЗОЛОТОРУДНЫЕ МЕСТОРОЖДЕНИЯ ОРОГЕННОГО ТИПА СЕВЕРНОГО ЗАБАЙКАЛЬЯ (РОССИЯ): ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ, ВОЗРАСТ, ИСТОЧНИКИ ВЕЩЕСТВА И ГЕНЕЗИС

© 2024 г. А.В.Чугаев

Институт геологии рудных месторождений, петрографии, минералогии и геохимии (ИГЕМ) Российской Академии наук, Старомонетный пер., 35, Москва, 119017 Россия e-mail: vassachav@mail.ru

> Поступила в редакцию 04.04.2024 г. После доработки 28.04.2024 г. Принята к публикации 30.05.2024 г.

В статье представлены новые и обобщены результаты предыдущих многолетних геохронологических и изотопно-геохимических исследований мезотермальных золоторудных месторождений орогенного типа крупнейшей в мире Ленской металлогенической провинции, а также дана оценка существующим представлениям об их генезисе. На основе геохронологических данных доказывается наличие трех рудообразующих событий, проявленных в регионе в палеозойское время. С ранним позднеордовикско-раннесилурийским (450–430 млн лет назад) событием связана крупномасштабная прожилково-вкрапленная золото-сульфидная минерализация в неопротерозойских углеродистых терригенно-карбонатных породах Байкало-Патомского складчатого пояса (БПП). По времени рудообразование совпадает с развитием в регионе метаморфических процессов. Возобновление гидротермальной деятельности в БПП, приведшей к формированию жильной золото-кварцевой минерализации, произошло в среднекаменноугольное (340–330 млн лет назад) время и была вызвана постколлизионным гранитоидным магматизмом. Наиболее позднее рудообразующее событие приходилось на раннепермское (290–280 млн лет назад) время и было проявлено исключительно в докембрийских структурах Байкало-Муйского складчатого пояса (БМП). Оно было синхронно с развитием в регионе внутриплитного щелочного и субщелочного магматизма.

Новые, а также ранее опубликованные изотопно-геохимические данные (прежде всего, 87 Sr/ 86 Sr, 143 Nd/ 144 Nd, Pb-Pb и δ^{34} S) свидетельствуют о том, что мезотермальные рудообразующие системы Северного Забайкалья были неоднородны по своим изотопным характеристикам, что отличает их от рудномагматических (intrusion related type) систем. Сравнительный анализ изотопного состава Sr, Nd и Pb руд и пород региона, включая одновозрастные с золоторудной минерализацией магматические породы, доказывают ведущую роль докембрийской континентальной коры в поступлении минералообразующих компонентов в гидротермальные системы золоторудных месторождений. Участие магматического источника вещества в генезисе орогенной золоторудной минерализации носило ограниченный характер и устанавливается только для раннепермских рудообразующих систем БМП, для которых предполагается поступление металлов из щелочных расплавов базитового состава.

Ключевые слова: Северное Забайкалье, орогенные месторождения золота, возраст, источники вещества, генезис

DOI: 10.31857/S0016752524090015, EDN: IYSKZL

введение

Генезис мезотермальных месторождений, играющих важную роль в общем балансе добычи золота в мире, относится к числу актуальных проблем современной рудной геологии (Hu et al., 2002; Бортников, 2006; Hart, 2007; Sillitoe, 2010, 2020; Su et al., 2018; Vikentyev et al., 2019; Wilson et al., 2020a,b). В рамках этой проблемы наиболее острую дискуссию среди исследователей вызывает происхождение месторождений орогенного типа (Groves et al., 1998; 2020a,b; Goldfarb et al., 2001, 2014; de Boorder, 2012; Hronsky et al., 2012; Groves, Santosh, 2016; Gaboury, 2019; Меуег, 2023 и цитируемые в них работы). Они приурочены к разновозрастным метаморфическим комплексам орогенных поясов и для них, как правило, отсутствуют прямые геологические свидетельства связи оруденения с магматизмом. В последние годы вопросы источников вещества орогенных месторождений золота, геотектонических условий их образования и временной корреляции рудообразующих процессов с магматизмом и метаморфизмом широко обсуждается на примере крупных рудных провинций мира (Mao et al., 2008; de Boorder, 2012; Hronsky et al., 2012; Fu et al., 2012; Tomkins, 2013а; Groves, Santosh, 2016; Liu et al., 2019; Wilson et al., 2020b; Groves et al., 2020a; Wang et al., 2022 и цитируемые в них работы).

Ленская провинция, охватывающая территорию Северного Забайкалья (Россия), является одной из крупнейших золоторудных провинций мира (Константинов, 2010а). В ее пределах известно более трех десятков орогенных месторождений золота крупного и среднего масштаба, включая месторождение мирового класса Сухой Лог (Goldfarb et al., 2001, 2014). Изучение их геологического строения, минерального состава руд, возраста, геохимических и изотопно-геохимических характеристик продолжается на протяжении более полувека, что привело к появлению среди исследователей разных взглядов на их генезис (Буряк, 1965, 1982; Митрофанов и др., 1983; Рундквист и др., 1992; Дистлер и др., 1995; Лаверов и др., 2000; Distler et al., 2004; Ланда и др., 2006; Кучеренко, 2004, 2007, 2014; Корольков, 2007; Large et al., 2007; Русинов и др., 2008; Юдовская и др., 2011; Иванов, 2014; Кучеренко, 2016; Попов и др., 2017; Кряжев, 2017; Тарасова и др., 2016; Tarasova et al., 2020, 2022; Chugaev et al., 2022a,b).

Цели настоящей работы состояли: 1) в представлении новых и в обобщении ранее опубликованных результатов многолетних геохронологических и изотопно-геохимических исследований орогенных месторождений золота Северного Забайкалья; 2) в обсуждении на их основе вопросов корреляции рудообразующих, магматических и метаморфических процессов, проявленных в палеозойское время в регионе; 3) в обосновании источников минералообразующих компонентов, включая золото.

Используя возрастные и изотопно-геохимические критерии, выполнена ревизия существующих представлений об образовании золоторудной минерализации в Северном Забайкалье. Проведено их согласование с современными данными о геотектоническом развитии региона и, в более широком контексте, с разработанными к настоящему времени концепциями генезиса орогенных месторождений.

ЗОЛОТОРУДНЫЕ МЕСТОРОЖДЕНИЯ ОРОГЕННОГО ТИПА

Определение, геолого-геохимические особенности и экономическая значимость

Сушествует большое разнообразие классификаций мезотермальных золоторудных месторождений, обзоры которых приведены в работах (Hagemann, Cassidy, 2000; Bierlein, Crowe 2000; Константинов, 2010б; Хомич, Борискина, 2011; Викентьев и др., 2016; Sillitoe, 2020). При их разработке исследователи использовали различные подходы и основывались на геологических, минералогических, геохимических, генетических и геодинамических особенностях золоторудных месторождений. В России наиболее широкое использование получил рудно-формационный подход (Петровская и др., 1976; Сопко, 1977; Сафонов, 1997, 2010; Соболев, 2008; Викентьев и др., 2016). Каждая из предложенных классификаций имеет как свои преимушества, так и недостатки. В настоящей работе при типизации изученных месторождений Северного Забайкалья использовалась классификация, разработанная для мезотермальных месторождений золота D.I. Groves и R.J. Goldfarb. Этими исследователями было выделено два основных типа: золоторудные месторождения, генезис которых непосредственно связан с магматическими системами (intrusion related type) и орогенные (oroginic type) месторождения золота, происхождение которых является одним из наиболее обсуждаемых проблем в современной геологии (de Booder et al., 2012; Hronsky et al., 2012; Tomkins, 2013a; Gaboury, 2019; Groves et al., 2020a,b; Goldfarb, Pitcairn, 2023).

Термин «орогенный» применительно к мезотермальным золоторудным месторождениям впервые был использован J.K. Bohlke (1982) при описании золотоносных кварцевых жил, пространственно приуроченных к докембрийским породам метаморфических поясов. В дальнейшем, благодаря работам D.I. Groves и R.J. Goldfarb (например, Groves, 1993; Groves et al., 1995, 1998, 2003, 2020a,b; Goldfarb et al., 2001, 2005, 2014, 2019; Goldfarb, Groves, 2015; Groves, Santosh, 2016) этот термин получил широкое распространение в современной зарубежной научной литературе. Во многом этому способствовало то обстоятельство, что из-за разнообразия существующих классификаций мезотермальных месторождений (например, Hagemann, Cassidy, 2000; Bierlein, Crowe 2000) возникали трудности для исследователей при их описании и сопоставлении, а также при разработке генетических моделей. Предложенный в работах D.I. Groves с соавторами (Groves, 1993; Groves et al., 1995, 1998) подход имеет генетическую

753

ГЕОХИМИЯ том 69 № 9 2024

основу, связывая образование орогенных золоторудных месторождений с конкретными этапами тектонического развития, геологическими процессами, а также обосновывая источники флюидов и рудных компонентов. Согласно представлениям, изложенным в работах (Groves et al., 2003, 2020а). формирование золоторудных месторождений орогенного типа происходило практически на протяжении всей (от позднего архея до кайнозоя) геологической истории Земли на конвергентных границах в различных (например, активная континентальная окраина, посторогенная обстановка (decratonization)) геотектонических обстановках на финальных стадиях эволюции орогена. Рудообразующий процесс протекает в условиях регионального метаморфизма при температурах $350 \pm 50^{\circ}$ C в широком диапазоне глубин (от 2 до 15 км) с участием водно-углекислого ($\pm CH_4 \pm N_2$) флюида, характеризующегося относительно низкой соленостью.

На основе обобщения имеющихся литературных данных по месторождениям крупнейших золоторудных провинций мира D.I. Groves и R.J. Goldfarb, а также другие исследователи (Kerrich, Cassidy, 1994; Hagemann, Cassidy, 2000; Groves et al., 1998, 2003; Goldfarb et al., 2001, 2005) выделили ряд общих геологических, минералогических и геохимических черт, характерных для орогенных золоторудных месторождений. Среди них: 1) приуроченность орогенных месторождений к региональным глубинным (транслитосферного заложения) тектоническим зонам и наличие структурного контроля в расположении рудных тел; 2) отсутствие вертикальной и горизонтальной геохимической зональности как в пределах отдельных рудных тел, так и рудных полей в целом; 3) рудные тела на месторождениях представлены кварцевыми жилами и прожилково-вкрапленными минерализованными зонами; 4) пространственная ассоциация рудной минерализации с дайками лампрофиров и гранит-порфиров; 5) золото присутствует в самородной форме и имеет высокую пробность, а сами руды характеризуются высоким (обычно ≥5) Au/Ag отношением; 6) помимо золота и серебра, руды могут обладать повышенным содержанием $As \pm B \pm Bi \pm Sb \pm Te \pm W.$

В экономическом отношении золоторудные месторождения орогенного типа играют ведущую роль. Согласно имеющимся оценкам (Frimmel, 2008; Phillips 2013; Lipson, 2014; Goldfarb et al., 2014) на этот тип коренных месторождений приходится около 40% добычи золота в мире (рис. 1). К орогенному типу принадлежат более двух десятков объектов мирового класса с запасами более 500 т золота (Goldfarb et al., 2001, 2014; Савчук, Волков, 2019). Среди них известные месторождения Колар (~850 т,

Аи), золотоносные кварцевые жилы которого локализованы в неоархейском зеленокаменном поясе в пределах Дарварского кратона Индийского щита (Сафонов, 1988; Balakrishnan et al., 1990; Goldfarb et al., 2001; Chugaev et al., 2001), палеопротерозойское месторождение Хоумстейк (~1200 т, Au), приуроченное к железистым кварцитам архейского Вайомингского кратона (Frimmel, 2008; Frei et al., 2009; Steadman, Large, 2016), а также близкое к нему по возрасту месторождение Ашанти (≥2000 т, Au), рудная минерализация которого расположена среди палеопротерозойских метаосадочных пород зеленокаменного пояса Ашанти (Западно-Африканский кратон) и представленная прожилково-вкрапленными рудами и крутопадающими кварцевыми жилами (Mumin et al., 1994; Berge, 2011; Oliver et al., 2020). Самым крупным из известных в настоящее время орогенных месторождений золота является Мурунтау (Узбекистан). Добытые, разведанные и прогнозные запасы золота на этом месторождении оцениваются почти в 5300 т (Goldfarb et al., 2014). Раннепермская золоторудная минерализация на месторождении образует крупномасштабные штокверковые зоны среди метаосадочных пород раннего палеозоя (Золоторудное месторождение Мурунтау, 1998; Morelli et al., 2007; Seltmann et al., 2020)

В России месторождения орогенного типа также являются важной частью ее золотодобывающей отрасли. К их числу относятся, например, суперкрупные месторождения Сухой Лог (~1900 т, Аи) в Байкало-Патомском поясе (Северное Забайкалье), Наталкинское (~1500 т, Аи) в Яно-Колымском поясе (Магаданская область), Олимпиада (~950 т, Au) на Енисейском Кряже (Красноярский край) и Нежданинское (630 т. Аи) в Южном Верхоянье (Якутия) (Савчук, Волков, 2019). Эти месторождения приурочены к разновозрастным (от неопротерозоя до мезозоя) орогенным поясам, в которых рудная минерализация (прожилкововкрапленные руды, жильные тела) локализована среди метаморфизованных (включая высокоуглеродистые) осадочных пород, а ее положение тектоническими контролируется структурами (Буряк, Бакулин, 1998; Вуд, Попов, 2006; Гамянин и др., 2000; Бортников и др., 2007; Горячев и др., 2008; Голубев, 2008; Чугаев и др., 2010а; Чернышев и др., 2011; Волков и др., 2016; Сазонов и др., 2019; Sazonov et al., 2020; Vursiy et al., 2020).

Орогенные месторождения золота России

Орогенные месторождения золота присутствуют в большинстве известных металлогенических провинций России. Наиболее древние (палеопротерозойского возраста) небольшие по своему масштабу месторождения и рудопроявления

Рис. 1. На диаграмме приведены оценки вкладов в общемировую добычу золота разных геолого-промышленных типов месторождений. Данные заимствованы из работ (Frimmel, 2008; Phillips 2013; Lipson, 2014; Goldfarb et al., 2014) без учета вклада россыпных месторождений и месторождения Витватерсранд (ЮАР).

(например, Талловейс, Фаддейн-Келья, Майское) известны в архейских зеленокаменных поясах Карело-Кольской провинции (Сафонов и др., 2003; Ларионова и др., 2013). Месторождения неопротерозойского возраста находятся на территории Енисейского Кряжа Саяно-Енисейской золоторудной провинции, ресурсный потенциал которой оценивается примерно в 1500 т золота. Здесь помимо месторождения Олимпиада, также известны крупные и средние месторождения орогенного типа: Эльдорадо, Советское, Благодатное и Ведуга (Чугаев и др., 2001; Гибшер и др., 2019; Sazonov et al., 2020). В этой же провинции в Восточном Саяне находится крупное месторождение Зун-Холбинское (Константинов, 2010в; Гордиенко и др., 2016; Томиленко и др., 2018; Damdinov et al., 2022; Чугаев и др., 2024). В пределах Уральской провинции, для которой основные ресурсы (≥2000 т, Au) связаны с магматогенными (колчеданными и мезотермальными) месторождениями (Сазонов и др., 1999; Vikentyev et al., 2021), известны многочисленные, как правило, мелкие позднепалеозойские золото-кварцевые месторождения, расположенные вблизи или непосредственно в зоне Главного Уральского разлома в тектонизированных и метасоматизированных породах различного состава и возраста. Среди

ГЕОХИМИЯ том 69 № 9 2024

месторождения Ганеевское, них. например, Орловское, Среднеубалинское, Малый Каран и Миндяк (Знаменский, Знаменская, 2011; Знаменский и др., 2015; Чугаев, Знаменский, 2018). Мезозойские орогенные месторождения золота представлены в нескольких провинциях России. В Буреинско-Ханкайской (Монголо-Охотский пояс) провинции расположены, например, раннемеловые месторождения Маломыр, Токур, Угличкан и Эльгинское (Goldfarb et al., 2014; Кадашникова и др., 2022; Sorokin et al., 2023), золото-кварцевая минерализация которых локализована среди метаосадочных пород. В Верхоянской провинции (Верхоянский складчато-надвиговый пояс) находятся упомянутое выше суперкрупное месторождение Нежданинское с возрастом около 130 млн лет, а также несколько более мелких раннемеловых месторождений и рудопроявлений, например, Булар, Кузминична, Дуэт, Юр и Финн (Гамянин и др., 2000; Гамянин, 2001; Горячев, 2003; Nokleberg et al., 2005; Бортников, 2006; Бортников и др., 2007; Чугаев и др., 2010b; Чернышев и др., 2018). К ним по возрасту близки орогенные месторождения в Яно-Колымском поясе. К их числу относятся суперкрупное месторождение Наталкинское и крупное месторождение Кучус, а также меньшие по своим масштабам оруденения месторождения Хангалас, Школьное и Ветренское (Goldfarb et al., 2014; Савчук, Волков, 2019; Kudrin et al., 2021).

Самой крупной в России является Ленская золоторудная провинция, которая также входит в число крупнейших золоторудных провинций мира. За почти 200-летнюю историю освоения здесь было добыто более 2000 т золота. В настоящее время ее ресурсный потенциал оценивается примерно в 4000 т, а ежегодная добыча золота составляет более 20 т (https://nedradv.ru/nedradv/ ru/resources/?obj=ab05b068239ede80d3dd35cf40638 bd2). Долгое время главным источником металла здесь являлись россыпные месторождения. Однако по мере их истощения все больший вклад в общий баланс добычи золота в регионе стали вносить коренные месторождения, локализованные среди докембрийских метаморфических пород (Буряк, Бакулин, 1998; Константинов, 2010а и др.). В регионе известно более двух десятков месторождений различного масштаба (например, Чертово Корыто, Ходокан, Истанах, Вернинское, Голец Высочайший, Угахан, Красное, Ирокинда, Кедровское и другие), включая месторождениегигант Сухой Лог. Золоторудная минерализация представлена двумя основными типами: золотосульфидными прожилково-вкрапленными рудами и золото-кварцевыми жильными телами. В геологическом отношении месторождения приурочены к двум крупным тектоническим структурам: Байкало-Патомскому и Байкало-Муйскому докембрийским складчатым поясам. Согласно работам (Goldfarb et al., 2014; Бондарь и др., 2018; Тарасова и др., 2016; Tarasova et al., 2020, 2022; Chugaev et al., 2022 a,b; Будяк и др., 2024 a,б), большинство расположенных в этом регионе месторождений отнесены к орогенному типу.

Приведенный выше обзор по орогенным месторождениям России нельзя рассматривать как исчерпывающий. В российской научной среде понятие «орогенные» не получило столь широкого распространения, как зарубежом. Вследствие этого зачастую затруднительно определить, к какому типу принадлежит то или иное месторождение только на основании геологического описания, приводимого в научной литературе. Сложность добавляет и то обстоятельство, что для многих месторождений существуют противоположные точки зрения как на их происхождение, так и на их принадлежность к тому или иному типу. В качестве примера можно привести крупное месторождение Дарасун, расположенное в Восточном Забайкалье. Согласно обзорной работе (Goldfarb et al., 2014), оно является представителем месторождений орогенного типа. Напротив, в работах (Прокофьев и др., 2000; Prokof'ev et al., 2010; Чугаев и др., 2013;

Чернышев и др., 2014) обосновывается генетическая связь золоторудной минерализации с юрским гранитоидным магматизмом и принадлежность месторождения к типу объектов магматогенного происхождения (intrusion related).

Проблема генезиса орогенных золоторудных месторождений

В отношении генезиса золоторудных месторождений орогенного типа в настоящее время разрабатывается две основные концепции: корового метаморфизма (crustal metamorphic model) и магрудообразования матогенно-гидротермальная (magmatic-hydrothermal model). Наиболее популярной из них является метаморфогенная концепция, которая наиболее полно изложена в работах (Tomkins, 2013a; Goldfarb, Groves, 2015; Groves et al., 2020). В соответствие с этой концепцией формирование мезотермальных месторождений золота орогенного типа связано с внутрикоровыми метаморфическими процессами, протекавшими на глубинах менее 20-25 км. В качестве главного источника как рудообразующих растворов, так и металлов, включая золото, рассматриваются супракристаллические породы (как правило, осадочного происхождения), дегидратация которых происходила при Р-Т условиях, отвечающих зеленосланцевой или амфиболитовой фациям метаморфизма (рис. 2). В качестве флюидоподводящих и рудоконтролирующих структур предполагаются транскоровые тектонические зоны и оперяющие их разломы.

Результаты термодинамического моделирования показывают, что наибольший объем водного флюида отделяется от кристаллических пород при температурах 500-550°С, тогда как при температурах выше 650°С как отделение, так и миграция в породах флюидов затруднено (Connolly, 2010; Tomkins, 2010). Метаморфогенная модель позволяет объяснить: пространственную связь золоторудной минерализации с метаморфическими породами, которая устанавливается на многих орогенных месторождениях, структурный контроль месторождений и рудных тел, относительно низкую соленость и водно-углекислотный состав флюида, а также присутствие в газово-жидких включениях СН₄ и N₂, повышенное содержание As в рудах и, напротив, присутствие лишь в незначительных количествах других металлов (Cu, Mo, Sb, Bi, W, Pb, Zn, Te) (Goldfarb et al., 2005; Phillips, Powell, 2010).

Концепция метаморфогенного происхождения орогенных месторождений золота доминировала в рудной геологии на протяжении почти 20 лет. Однако в последнее время отмечается существенный сдвиг в сторону магматогенно-гидротермальной модели. Это выражается, с одной

Рис. 2. Схема формирования орогенных золоторудных месторождений согласно метаморфогенной концепции. Составлена по (Groves et al., 2020a,b; Goldfarb et al., 2023) с изменениями.

стороны, в том, что ряд месторождений, классифицируемых ранее как орогенные, в последнее время были отнесены к intrusion related типу (например, упомянутое выше месторождение Дарасун), или их метаморфогенное происхождение (например, Голден Майл (Австралия), Цзяодун (Китай), Хоумстейк (США)) результате новых исследований было поставлено под сомнение (de Booder, 2012; Sillitoe, 2020). Так, для суперкрупного месторождения Хоумстейк на основе комплекса новых геохронологических и изотопно-геохимических данных (в первую очередь, результатов изучение изотопного состава Pb) были

ГЕОХИМИЯ том 69 № 9 2024

показаны синхронность развития магматизма и рудообразования, а также участие магматического источника в его генезисе (Frei et al., 2009). Во-вторых, существует целый ряд геологических фактов, которые затруднительно объяснить в рамках метаморфогенной концепции. К их числу относится пространственная и временная сопряженность золоторудной минерализации месторождений орогенных поясов с лампрофировыми и гранит-порфировыми телами, что неоднократно было отмечено исследователями (McNeil, Kerrich, 1986; Rock et al., 1987; Robert, 2001; Бортников, 2006; Mao et al., 2008; Vielreicher et al., 2010; de Boorder, 2012). Кроме того, для некоторых золоторудных провинций мира (например, Цзяодунская провинция (Китай), Варисциды (Центральная Европа)) существует значительный (в десятки — сотни миллионов лет) разрыв между возрастом золоторудной минерализации и пиком регионального метаморфизма, что, по мнению некоторых исследователей, свидетельствует о генетической связи рудообразования с глубинными магматическими процессами (Mao et al., 2008: de Boorder, 2012; Hronsky et al., 2012). Кроме того, ряд месторождений (например, Mouther Lode, Myрунтау), отнесенные к орогенному типу (Goldfarb et al., 2001), обладают повышенными содержаниями таких элементов как Pb, Zn, W, Bi и Te (Weir et al., 1987; Kempe et al., 2001), что сближает их с месторождениями, образование которых связано с магматогенными гидротермальными системами (Sillitoe, 2020).

Учитывая эти особенности, ряд исследователей в своих работах (Бортников, 2006; Mao et al., 2008; Hronsky et al., 2012; de Boorder, 2012; Webber et al., 2013; Чугаев и др., 2024) обосновывают магматогенно-гидротермальное образование золоторудной минерализации орогенного типа (рис. 3). В этих моделях важная роль, по крайней мере, для части металлов (включая и золото), а также других компонентов (CO₂, S) рудоносных флюидов отводится глубинному источнику. В качестве такового, как правило, рассматривается подкоровая литосферная мантия (Hronsky et al., 2012; González-Jiménez et al., 2020; Wang et al., 2022; Chugaev et al., 2022b; Чугаев и др., 2024) или мантийный плюм, обладающий повышенным содержанием золота (Bierlein, Pisarevsky, 2008; Mao et al., 2008; de Boorder, 2012; Webber et al., 2013). В работе (Hronsky et al. 2012) предполагается существование долгоживущих (>100 млн лет) региональных областей в подкоровой литосферной мантии, обогащенных золотом. Их активизация за счет магматических процессов в различное геологическое время, по мнению этих авторов, позволяет объяснить формирование крупных рудных провинций, объединяющих золоторудные месторождения различного типа. Перенос рудных компонентов от глубинного источника на верхнекоровые уровни осуществлялся за счет магматических расплавов (кислого или основного состава) и отделившиеся от них флюидов. При этом предполагается, что магматические расплавы имеют преимущественно окисленное состояние, т.е. ΔQFM (кварц-фаялит-магнетитовый буфер), отражающий химический потенциал кислорода, превышает 1 (Hronsky et al., 2012; Рябчиков и др., 2016). Согласно (Richards, 2011), окисленные магматические расплавы обладают существенно

более высокой емкостью по сравнению с восстановленными расплавами в отношении серы и некоторых халькофильных и сидерофильных элементов, к числу последних относится золото. Транскоровые глубинные разломы в этих моделях рассматриваются как каналы, по которым происходит подъем рудоносных магм от источника и циркуляция гидротермальных растворов, преимущественно магматогенного происхождения. Возможность обогащения золотом щелочных мафических и кислых расплавов (вплоть до 100 ppb) подтверждено результатами прямых определений содержания этого элемента в породах и ксенолитах (Arima, Kerrich, 1988; Zheng et al., 2005; Wang et al., 2022). К ключевым процессам, при которых золото ведет себя как несовместимый элемент, отнесены метасоматическое преобразование литосферной мантии и низкие степени плавления ее вещества при формировании рудоносных шелочных и субщелочных магм. Более подробное геохимическое обоснование этого механизма приведено в работе (Tassara et al., 2020).

ТЕКТОНИЧЕСКАЯ И ГЕОЛОГИЧЕСКАЯ ПОЗИЦИЯ ОРОГЕННЫХ ЗОЛОТОРУДНЫХ МЕСТОРОЖДЕНИЙ СЕВЕРНОГО ЗАБАЙКАЛЬЯ

Тектоническая позиция золоторудных месторождений Северного Забайкалья

Золоторудные месторождения орогенного типа локализованы в пределах двух крупных структурных зон южного обрамления Сибирской платформы: Байкало-Патомского и Байкало-Муйского складчатых поясов (рис. 4). Байкало-Патомский пояс (БПП) расположен на южной окраине Сибирского кратона. Он образован сложно деформированными и метаморфизованными осадочными комплексами. С запада, севера и востока Байкало-Патомский пояс отделен от Сибирской платформы системой глубинных разломов, представленных преимущественно надвигами с северной вергентностью. Южной границей БПП является неопротерозойская сутурная зона, отделяющая его от структур Байкало-Муйский складчатого пояса (Зоненшайн и др., 1990; Гусев, Хаин, 1995; Зорин и др., 1997, 2009; Хоментовский, Постников, 2001; Гордиенко, 2006; Кузмин и др., 2006; Немеров и др., 2010; Станевич и др., 2010; Юдовская и др., 2011; Гладкочуб и др., 2013; Powerman et al., 2015; Чугаев и др., 2017а, 2018).

Байкало-Муйский складчатый пояс (БМП) расположен к югу от Байкало-Патомского пояса. Он выделяется в составе северо-восточной части Центрально-Азиатского орогенного пояса (ЦА-ОП) — крупной аккреционно-коллизионой струк-

Рис. 3. Схема формирования орогенных золоторудных месторождений согласно магматогенной концепции. Составлена по (Hronsky et al., 2012; de Boorder, 2012; Goldfarb et al., 2023) с изменениями.

туры, имеющей протяженность около 5 тыс. км и характеризующаяся длительной историей развития (от неопротерозоя до мезозоя) (Ярмолюк и др., 2012; Добрецов и др., 2013; Kröner et al., 2014; Safonova et al., 2017). Байкало-Муйский складчатый пояс состоит из разнородных блоков докембрийской коры, интенсивно переработанной в каледонский и герцинский этапы развития ЦАОП. С запада и востока БМП граничит через систему надвиговых и сдвиговых тектонических зон с выходами докембрийского основания Сибирского кратона. С юга он соседствует с Баргузино-Витимским супертеррейном, образованного неопротерозойскими и раннепалеозойкими блоками континентальной коры, интенсивно переработанными в позднепалеозойское время (Добрецов, 1983; Рыцк и др., 2007а; Зорин и др., 2009; Ярмолюк и др., 2012; Kröner et al., 2014; Ярмолюк, Дегтярев, 2019).

ГЕОХИМИЯ том 69 № 9 2024

Рис. 4. Геотектоническая схема северо-восточной части Центрально-Азиатского орогенного пояса (ЦАСП) по (Кröner et al., 2014) с изменениями.

Геологическое строение Байкало-Патомского складчатого пояса

Структура БПП

Внутреннее строение БПП определяется присутствием в его пределах выступов раннедокембрийского фундамента (Чуйско-Тонодско-Нечерская цепочка блоков), а также палеорифтов, поднятий и эпикратонных прогибов, сложенных преимущественно позднедокембрийскими и раннепалеозойскими осадочными комплексами (рис. 5).

При геолого-структурном районировании БПП принято выделять следующие структурнофациальные зоны: Прибайкальскую, Патомскую и Бодайбинскую (Немеров и др., 2010; Гладкочуб и др., 2013). Первые две являются приплатформенными моноклинальными зонами и формируют внешнюю часть БПП. Внутренняя Бодайбинская зона представляет собой широкую, серповидную складчатую область, которую с юга полукольцом ограничивают выходы палеозойских гранитоидов Ангаро-Витимского батолита, а также докембрийские блоки коры Байкало-Муйского пояса.

Докембрийские комплексы БПП

К наиболее древним породам БПП отнесены раннедокембрийские метаосадочные образования, слагающие ядра гранито-гнейсовых куполов Чуйско-Тонодско-Нечерская антиклинорной зоны. К ним приурочены такие крупные месторождения золота, как Чертово Корыто и Ходокан (Ланда и др., 2006; Константинов, 2010; Yudovskaya et al., 2016; Тарасова и др., 2016; Tarasova et al., 2022), которые находятся за рамками настоящей обзорной статьи. Среди исследователей региона

нет единого мнения относительно их возраста. Расходятся также и взгляды на их стратиграфическое расчленение (Салоп, 1964, 1967; Казакевич и др., 1971; Кориковский и Федоровский, 1980; Хоментовский, 1990; Иванов и др., 1995). При описании раннедокембрийских кристаллических пород за основу была взята схема, изложенная в объяснительной записке к Государственной геологической карте масштаба 1:1000000 (третье поколение), серия Алдано-Забайкальская, лист О-50 (2010). Среди раннедокембрийских образований выделяют породы чуйской и кевактинской серии. Чуйская серия, выходы пород которой описаны в пределах Чуйского и Тонодского поднятий, образована гнейсами, плагиогнейсами и кристаллическими сланцами. Слагающие эту толщу отложения метаморфизованы в условиях гранулитовой и эпидот-амфиболитовой фаций. Предполагаемый для этих пород архейско-нижнепротерозойский возраст основывается на геологических данных (Кориковский и Федоровский, 1980; Иванов и др., 1995). К центральным частям антиклинориев приурочены также нижнепротерозойские отложения кевактинсой серии, которая подразделяется на албазинскую и михайловскую свиты. В ее строении, главным образом, принимают участие слюдистые кварциты, кварц-полевошпатовые метапесчаники, метаалевролиты и кварц-серицитовые и серицит-хлоритовые сланцы, слюдистые кварциты и алевролиты. Породы метаморфизованы в условиях эпидот-амфиболитовой и амфиболитовой фаций. Верхняя возрастная граница отложений чуйской толщи и кевактинской серии устанавливается по прорывающим их палеопротерозойским гранитоидам чуйско-нечерского (ранее

115°00`

Рис. 5. Схема геологического строения центральной части Байкало-Патомского пояса (по Митрофанов и др., 1994 с изменениями): *1* — раннедокембрийские интрузивные и метаосадочные породы (без расчленения); *2*–*4* — неопротерозойские метаосадочные породы патомского комплекса и юдомской группы, серии (снизу вверх): *2* — баллаганахская, *3* — дальнетайгинская; *4* — жуинская; *5* — юдомская; *6* — палеозойские гранитоиды; *7* — фанерозойский осадочный чехол Сибирской платформы; *8* — тектонические нарушения.

Основные тектонические структуры Байкало-Патомского складчатого пояса: выступы раннедокембрийского фундамента: І — Чуйский; ІІ — Тонодский; ІІІ — Нечерский; структурно-фациальные зоны: IV — Бойдабинская; V — Патомская; VI — Прибайкальская.

известный как чуйско-кадарский) и ничатского комплексов.

Палеопротерозойские магматические образования проявлены в ядрах купольных структур Чуйско-Нечерской антиклинальной зоны. Наиболее крупномасштабными среди них являются батолитовые интрузии чуйско-нечерского комплекса, сложенные плагиогранитами, гранитами, аляскитовыми гранитами и кварцевыми сиенитами. В соответствии с U-Pb данными, полученными по цирконам, становление гранитоидов чуйско-

ГЕОХИМИЯ том 69 № 9 2024

нечерского комплекса происходило 1.85 млрд лет назад (Ларин, 2011). Близкими по возрасту являются интрузивные породы ничатского комплекса. Среди них преобладают пегматоидные лейкограниты с гранатом и турмалином.

В свою очередь, палеопротерозойские интрузии перекрываются мезопротерозойскими метаосадочными породами пурпольской свиты и неопротерозойскими отложениями медвежевской свиты и патомского комплекса. Породы пурпольской свиты обнажаются по периферии и в сводах Чуйского и Нечерского поднятий. Породы представлены метапесчаниками, гравелитами и высокоглиноземистыми сланцами и относятся к отложениям красноцветной формации.

Наибольшее площадное распространение в пределах БПП имеют терригенно-карбонатные породы неопротерозойского возраста. Они с несогласием перекрывают либо раннепротерозойские отложения, либо вулканогенно-осадочные образования медвежевской свиты, в составе которой преобладают грубообломочные отложения: конгломераты, гравелиты и песчаники. Вулканические породы представлены покровами метабазальтов. По своим геохимическим характеристикам они близки к вулканитам рифтогенного происхождения (Макрыгина и др., 2007).

Неопротерозойские осадочные отложения объединены в патомский комплекс и в юдомскую серию. В составе патомского комплекса выделяют (снизу вверх) три стратиграфические серии: балаганахскую, дальнетайгинскую и жуинскую. Породы этого комплекса относятся к флишоидным отложениям, которые фиксируют крупный цикл осадконакопления, обусловленный формированием эпикратонных прогибов на окраине Сибирского кратона. Юдомская серия, согласно перекрывающая нижележащие породы патомского комплекса, объединяет как флишоидные отложения (Бодайбинская зона), так и карбонатные осадки (Патомская зона), накопление которых происходило уже в спокойных тектонических условиях платформы.

Геологическое строение Бодайбинской зоны

Бодайбинская зона (БЗ), к центральной части которой приурочено большинство известных месторождений коренного и россыпного золота БПП, в структурном отношении представляет собой крупную региональную синформу, известную как Бодайбинский синклинорий. Он сложен мощной (более 14 км) толщей терригенно-карбонатных пород неопротерозойского возраста и рассматривается как наиболее глубокая часть осадочного палеобассейна (Кузьмин и др., 2006; Чумаков и др., 2007). Внутреннее строение синклинория осложнено чередованием синклинальных прогибов и антиклинальных поднятий, разделенных глубинными тектоническими зонами надвигов и сбросов субширотного простирания с падением поверхностей смещения на север (рис. 6, 7). Слагающие Бодайбинский синклинорий породы претерпели интенсивные пластические деформации, что привело к образованию изоклинальных складчатых структур различного порядка, вытянутых в субширотном направлении.

Литолого-стратиграфическая характеристика неопротерозойских метаосадочных толщ Бодайбинской зоны

Неопротерозойские толщи БЗ являются вмещающими породами для большинства орогенных месторождений золота региона. Петрографическое и литологическое описания образующих их пород даны в целом ряде работ (Салоп, 1964, 1967; Журавлева и др., 1969; Львова, 1969; Кориковский, Федоровский, 1980; Иванов, 1995; Покровский и др., 2006; 2010; 2021; Немеров и др., 2010; Чумаков и др., 2013; Покровский, Буякайте, 2015). При их описании использовалась схема стратиграфического расчленения неопротерозойских метаосадочных толщ, приведенная в работах (Немеров и др., 2010; Чумаков и др., 2013).

Согласно данной схеме, неопротерозойские отложения подразделяются (снизу вверх) на патомский комплекс и юдомскую (или бодайбинскую по (Немеров и др., 2010)) серию. В составе патомского комплекса выделяется три серии (снизу вверх): баллаганахская, дальнетайгинская и жуинская.

Баллаганахскую серию традиционно подразделяют (снизу вверх) на харлухтахскую, хайвергинскую, бугарихтинскую и мариинскую свиты.

В пределах Бодайбинской зоны выходы медвежевской свиты (соответственно, и нижняя граница патомского комплекса) отсутствуют, а сами отложения баллаганахской серии вскрыты не полностью. Баллаганахский горизонт представлен частично отложениями харлухтахской свиты и в полном объеме породами хайвергинской, бугарихтинской и мариинской свит. Выходы метапесчаников харлухтахской свиты известны вблизи массивов палеозойских гранитоидов. Метаосадочные породы здесь существенно изменены, характерны проявления приконтактового метаморфизма и метасоматоза, что выражается в присутствии среди породообразующих минералов новообразованного граната, мусковита и биотита. Отложения хайвергинской свиты, представленные мощной толщей (до 600 м) олигомиктовых метапесчаников

Рис. 6. Геологическая схема Бодайбинского рудного района (Байкало-Патомский пояс) с указанием положения изученных месторождений «сухоложского» типа (по данным Tarasova et al., 2020) с изменениями.

Рис. 7. Схема геологического строения Бодайбинской зоны Байкало-Патомского складчатого пояса по (Константинов, 2010а) с изменениями: *1* — палеопротерозойские метаосадочные породы нечерской и кевактинской серий (без расчленения); *2-3* — неопротерозойские терригенно-карбонатные породы патомского комплекса и бодайбинской серии, образующие структуры второго порядка: *2* — синклинальные прогибы (I — Бодайбинский, II — Маракано-Тунгусский, III — Хомолхино-Илигирский); *3* — антиклинальные поднятия (IV — Кропоткинское, V — Кадаликанское, VI — Тамаракское); *4* — палеозойские гранитоидные интрузивы; *5* — региональные тектонические нарушения.

и алевросланцев с горизонтами углеродсодержащих филлитовых сланцев (до 20%), изучались на большем удалении от интрузивов. В породах отсутствуют признаки наложенных процессов, связанных с развитием в регионе палеозойского гранитоидного магматизма. Выше по разрезу залегают существенно более груботерригенные отложения бугарихтинской свиты, среди которых преобладают известковистые метапесчаники и алевролитистые сланцы при подчиненной роли углеродсодержащих метапелитовых и карбонатных пород (<7%). Разрез баллаганахской серии завершают известняки и известковистые алевросланцы мариинской свиты.

Для изученного разреза баллаганахской серии Бодайбинской зоны прослеживается общий тренд в изменении литологических характеристик отложений. Он выражается в постепенном увеличении вверх по разрезу доли алевролитового и пелитового материала, а также в повышении карбонатной составляющей в метаосадочных породах.

Дальнетайгинская серия, отложения (~2.5 км) которой с несогласием перекрывают нижележащие терригенно-карбонатные толщи, подразделяется на три свиты (снизу вверх): бужуихтинская, угаханская и хомолхинская (Немеров и др., 2010). Основание дальнетайгинской серии (бужуихтинская свита) сложено грубообломочными породами: гравелитами, кварцевыми метапесчаниками. В меньшем количестве присутствуют углеродсодержащие алевросланцы и филлиты, а также карбонатные породы. Доля филлитовых сланцев в Бодайбинской зоне достигает 20%. Выше по разрезу большее распространение имеют мелко- и тонкозернистые метаосадочные породы. Отложения угаханской свиты — это углеродсодер-

764

жащие биогенные известняки с подчиненными горизонтами известковистых сланцев. Разрез дальнетайгинской серии завершается толщей терригенных пород (хомолхинская свиты), характеризующихся повышенным содержанием (в среднем 1–3 мас.%) углеродистого вещества. Среди них широко распространены (до 45%) углеродистые (до 5 мас.%) кварц-серицит-хлоритовые сланцы. В разрезе свиты также участвуют метапесчаники и алевросланцы нередко с примесью карбонатного компонента.

Жуинская серия, максимальная мощность отложений которого по разным оценкам достигает ~1.5 км, имеет согласную стратиграфическую границу с нижележащими породами дальнетайгинской серии. В ее составе для Бодайбинской зоны выделяют имняхскую, аунакитскую и вачскую свиты (Немеров и др., 2010). Базальная имняхская свита образована известковистыми алевросланцами, карбонат-слюдистыми сланцами, мергелями и известняками. При этом карбонатные породы характерны для верха свиты. Породы аунакитской и вачской свит отличаются существенно большим содержанием терригенного материала. В основании аунакитской свиты залегают кварцевые и олигомиктовые, часто известковистые песчаники, чередующиеся с горизонтами известковистых алевролитов и углеродистых сланцев. В верхней части разреза свиты доля углеродсодержащих метапелитов резко увеличивается (с 10 до 40%). Здесь наблюдается тонкое переслаивание черных сланцев с прослоями кварцевых песчаников. Содержание С_{орг} в сланцах варьирует от 0.5 до 3.7 мас.%. Выше по разрезу согласно залегает толща пород вачской свиты, образованная углеродистыми кварц-серицитовыми сланцами с подчиненной долей (менее 30%) кварцевых песчаников и алевролитистых сланцев. В породах вачской свиты устанавливается максимальное для всего разреза неопротерозойских отложений Бодайбинской зоны БПП содержание углеродистого вещества (до 10 мас.%) (Немеров и др., 2010; Чугаев и др., 2018).

Отложения юдомской серии согласно залегают на нижележащих метаосадочных породах патомского комплекса (Станевич и др., 2007; Немеров и др., 2010; Чумаков и др., 2013 и др.). Метаосадочные породы юдомской серии в пределах Бодайбинской зоны подразделяются на три свиты (снизу вверх): анангрскую, догалдынскую и илигирскую. Наблюдается плавный переход в разрезе между породами жуинской и юдомской серий. Углеродсодержащие кварц-серицитовые сланцы вачской свиты сменяются толщей пород анангрской свиты, сложенной гравелитами, полимиктовыми песчаниками и серицит-хлоритовыми сланцами. Выше по разрезу залегают полимиктовые песчаники и сланцы догалдынской свиты. Отличительной особенностью является присутствие в метапесчаниках этой свиты большого количества обломков вулканогенных пород различного состава (Львова, 1969; Немеров и др., 2010). Завершают разрез юдомской серии аркозовые метапесчаники илигирской свиты, среди которых присутствуют маломощные пачки серицит-хлоритовых сланцев с содержанием С_{орг}, достигающим 1.5 мас.%. Породы илигирской свиты согласно перекрываются нижнекембрийскими карбонатными породами нохтуйской свиты, принадлежащими уже к осадкам чехла Сибирской платформы.

Геологическое строение Байкало-Муйского складчатого пояса

Структура БМП

Байкало-Муйский пояс представляет собой коллаж из разнородных блоков протерозойской коры, интенсивно переработанной в каледонский герцинский этапы формирования И ЦАОП. В строении БМП выделяется несколько структурно-формационных зон, формирование которых связывают с раннебайкальским (тонийская эпоха) и позднебайкальским (криогений и эдиакарская эпохи) тектоническими циклами (Рыцк и др., 2007а; Ярмолюк и др., 2012; Kröner et al., 2014; Ярмолюк, Дектярев, 2019) (рис. 8). К раннебайкальским структурам отнесены Анамакит-Муйская, Кичерская, Светлинская и Парам-Шаманская зоны, тогда как к позднебайкальским — Каралон-Мамаканская, Янская и Катеро-Уакитская. Современный структурный облик БМП в значительной степени сложился в позднеэдиакарское время (630-620 млн лет назад) в результате аккреции раннебайкальских и позднебайкальских тектонических блоков, которая сопровождалась развитием метаморфизма высоких степеней (Шатский и др., 2012; Skuzovatov et al., 2019).

В настоящее время существуют разные точки зрения на геотектоническую природу БМП. Ряд исследователей предполагают, что пояс представляет собой комплекс блоков, образованных на месте палеотрогов и разделяющих их межтроговых зон (Добрецов, 1983; Рыцк и др., 2007а; Kröner et al., 2014). Напротив, в более поздних работах (Зорин и др., 2009; Ярмолюк и др., 2012; Ярмолюк, Дектярев, 2019; Skuzovatov et al., 2019) обосновывается его аккреционно-коллизионная природа. В настоящее время эта точка зрения преобладает среди исследователей.

Известные в пределах БМП орогенные месторождения золота расположены преимущественно в трех структурно-формационных зонах БМП: Анамакит-Муйской, Каралон-Мамаканской и Янской.

Рис. 8. Тектоническая схема Байкало-Муйского пояса и прилегающих областей по (Ярмолюк, Дегтярев, 2019) с изменениями.

Анамакит-Муйская, Каралон-Мамаканская и Янская зоны БМП представляют собой самостоятельные геотектонические блоки, характеризующиеся сложным геологическим строением и индивидуальной историей их формирования. В их пределах присутствуют стратифицированные, магматические и метаморфические комплексы с возрастом от раннего докембрия до кайнозоя. Здесь приведено краткое описание докембрийских образований, которые широко распространены в указанных регионах. При их описании использовались материалы, опубликованные в объяснительных записках к Государственным геологическим картам Российской Федерации, а также литературные источники (Цыганков и др., 1998; Цыганков, 2005; Рыцк и др., 2001, 2007а, б, 2011, 2017а, б. 2018; Грудинин и др., 2002; Макрыгина и др., 2007; Шатский и др., 2012; Скузоватов и др., 2016; Skuzovatov et al., 2019; Чугаев и др., 2019а и другие работы).

Докембрийские комплексы Анамакит-Муйской, Каралон-Мамаканской и Янской структурных зон БМП

К наиболее древним образованиям отнесены метаморфические породы (гнейсами, гранитогнейсами, кристаллическими сланцами, кальцифиры) киндиканской толщи и джалтукской серии, выходы которых присутствуют в восточной части (Муйская подзона) Анамакит-Муйской зоны (рис. 9). Они формируют относительно крупные тектонические структуры, известные как Северо-Муйскую и Южно-Муйскую глыбы. Традиционно они рассматриваются исследователями региона как выходы раннедокембрийского фундамента древнего кратона. Однако в работе (Зорин и др., 2009) высказано также предположение, что это основание (цоколь) позднепротерозойской островной дуги. Следует отметить, что возраст этих пород на основании геологических данных принимается как позднеархейско(?)-раннепротерозойский. Имеюшиеся единичные Nd-модельные оценки указывают на раннепротерозойский возраст субстрата, по которому сформированы эти метаморфические породы (Рыцк и др., 2011; Чугаев и др., 2020). С этими оценками согласуются наши (неопубликованные) U-Pb исследования акцессорных цирконов в палеозойских риолитовых дайках, прорывающих гнейсы киндиканской толщи в пределах Южно-Муйской глыбы. Они дали максимальные значения возраста в 1.9-1.8 млрд лет, который можно рассматривать как нижнюю возрастную границу для пород киндиканской толщи. Кроме того, непосредственное U-Pb геохронологическое исследование цирконов из гнейсов киндиканской толщи показали, что в их состав могли быть ошибочно включены породы тонийского возраста.

Наиболее широким распространением в рассматриваемых зонах БМП пользуются неопротерозойские островодужные комплексы, представленные вулканогенно-осадочными породами и пространственно ассоциирующие с ними расслоенными интрузиями габбро-диорит-плагиогранитного состава и высокотитанистые габбро. Среди них наиболее древними (тонийского возраста) являются вулканогенно-осадочные породы (метаморфизованные базальты, андезиты, дациты, риолиты, плагиориолиты, туфы кислого, среднего

ЗОЛОТОРУДНЫЕ МЕСТОРОЖДЕНИЯ ОРОГЕННОГО ТИПА

Рис. 9. Геологическая схема Байкало-Муйского пояса по (Рыцк и др., 2011; Skuzovatov et al., 2019) с изменениями.

и основного состава, туфогенно-терригенные породы, кремнисто-углеродистые сланцы и карбонатные породы) усть-келянской (825–815 млн лет) толщи и габброиды и плагиограниты (812±19 млн лет) муйского комплекса, распространенные в пределах восточной части Анамакит-Муйской зоны (Рыцк и др., 2007б; 2011). К островодужным образованиям этого же возрастного уровня отнесены метаморфизованные вулканиты и туфы кислого и (реже) основного состава аюлиндинской серии, присутствующие в пределах Янской зоны. К тонийским образованиям Анамакит-Муйской зоны также принадлежат синметаморфические гранито-гнейсы (~785 млн лет, Рыцк и др., 2011)) илеирского комплекса. В течение уже постколлизионного этапа, завершающего раннебайкальский цикл развития БМП, сформировались расслоенные габбро-плагиогранитные интрузии кедровского (781±3 млн лет, Чугаев и др., 2019а) и сред-

ГЕОХИМИЯ том 69 № 9 2024

немамаканского (769 \pm 33 млн лет, Рыцк и др., 2011) комплексов, а также калиевые гранитоиды (793 \pm 6 млн лет, U-Pb данные, SHRIMP-метод, BCEГЕИ) бамбукойского комплекса. К позднетонийским (723 \pm 4 млн лет, Рыцк и др., 2011) образованиям отнесены высококалиевые субщелочные вулканиты (трахириолиты) и субвулканические (лейкогранит-порфиры, гранит-порфиры, туффы) породы жанокской свиты.

Криоген-эдиакарские комплексы преимущественно присутствуют в Каралон-Мамаканской и Янской зонах, расположенных по северной периферии Анамакит-Муйской зоне БМП. Наиболее древними (~700–650 млн лет, Рыцк и др., 2011, 2018а) из них являются вулканогенно-осадочные породы островодужной ассоциации каралонской и якорной толщи, сложенные контрастно дифференцированными метавулканитами, а также туффами и сланцами. Эти толщи выделены в пределах Каралон-Мамаканской зоны. По площади большую часть этой же зоны занимают выходы крупных габброидных и плагиогранитных интрузий таллаинского комплекса (~600 млн лет, Рыцк, и др., 2017а). Породы этого же комплекса широко распространены и в пределах Янской зоны, где они прорывают вулканогенно-осадочные толщи аюлиндинской серии. В пределах Каралон-Мамаканской зоны к эдиакарским образованиям принадлежат вулканогенно-осадочные отложения и гранитоидные интрузии падринского комплекса (590±5 млн лет, Рыцк и др., 2004; 598±4 млн лет, Рыцк и др., 2007б). С его формированием связывают завершение позднебайкальского цикла и начало постколлизионного (или орогенного) этапа развития БМП (Ярмолюк, Дегтярев, 2019). В течение постколлизионного этапа происходит становление серии гранитоидных и габброидов массивов лесного (556±16 млн лет, Срывцев и др., 1992) и заоблочного комплексов. Наиболее поздними (позднеэдиакарско-раннекембрийскими) докембрийскими образованиями в пределах рассмотренных зон БМП являются терригенно-карбонатные (туколамийская, сидельтнинская и аматканская свиты, юктоконская серия) отложения, приуроченные к наложенным грабенам и впадинам.

Палеозойские магматические комплексы БПП и БМП

Магматические интрузивные образования палеозойского возраста в БПП и в БМП по своему объему значительно превосходят докембрийские и мезозойские магматические образования. Палеозойские интрузии в регионе образуют непрерывные по протяженности и значительные по площади поля.

Палеозойские магматические комплексы Бодайбинской зоны

В Бодайбинской зоне их выходы расположены вдоль ее южной и западной границы (рис. 7). Среди палеозойских магматических образований, присутствующих в Бодайбинской зоне, традиционно выделяют несколько комплексов (Государственная геологическая карта..., 2010). К наиболее ранним относят пегматоидные граниты и пегматиты мамского комплекса, которые преимущественно распространены в юго-западной и западной частях региона в бассейнах рек бассейнах Чуя и Большой Патом. Ими сформированы разные по площади (вплоть до 45 км²) массивы, а также небольшие тела и жилы. Породы, главным образом, представлены мусковитовыми и биотитовыми плагиогранитами и плагиопегматитами, нередко содержащими гранат. Для них характерно гнейсовидные текстуры. В экзоконтактах изменения вмещающих метаосадочных толш, как правило, отсутствуют. Геологические и геохимические особенности гранитоидов мамского комплекса, по мнению (Макагон, 1977; Зорин и др., 2008), указывают на то, что их формирование происходило синхронно с процессами регионального метаморфизма и складчатыми деформациями. Имеющиеся геохронологические Rb-Sr и U-Pb данные свидетельствуют в пользу позднеордовикско-раннесилурийского (450-420 млн лет) возраста гранитоидов (Государственная геологическая карта..., 2012; Зорин и др., 2008). Опубликованы также и более молодые (~320-300 млн лет) К-Аг, Rb-Sr и ⁴⁰Аг-³⁹Аг датировки, полученные по слюдам (Неймарк и др., 1993; Государственная геологическая карта..., 2012; Chugaev et al., 2022а). Наличие «омоложенных» возрастов большинство исследователей связывают с нарушением замкнутости Rb-Sr и K-Ar изотопных систем под воздействием термального события, имевшего место в регионе в герцинское время.

В Бодайбинской зоне также известны интрузии позднепалеозойских известково-щелочных гранитов, которые объединены в конкудеро-мамаканский комплекс. Большая часть из них широкой полосой расположены по южной и юго-восточной периферии зоны, а также присутствуют в пределах Бодайбинского синклинория в виде отдельных массивов (например, Джегдокарский массив) и штоков (например, Константиновский шток). Породы представлены гранитами, граносиенитами, гранодиоритами, кварцевыми диоритами, биотитовыми гранитами и лейкогранитами. Гранитоидные массивы окружены широкой (до 3 км) зоной биотитовых, кордиеритовых и андалузитовых роговиков и сопровождаются ореолами жильных пегматитов. Гранитоиды конкудеро-мамаканского комплекса формируют северную часть Ангаро-Витимского батолита и относятся к ранней фазе его становления (Литвиновский и др., 1993; Неймарк и др., 1993; Ярмолюк и др., 1997; Цыганков и др., 2010, 2017; Рыцк и др., 2021). Результаты U-Pb геохронологического изучения цирконов (Неймарк и др., 1993; Цыганков и др., 2017; Рыцк и др., 2021) определяют возраст гранитоидов конкудеро-мамаканского комплекса как позднекарбоновый (320-300 млн лет). Согласно данным (Рыцк и др., 2021), в гранит-порфирах Константиновского штока присутствуют также захваченные из вмещающих метаосадочных толщ палеопротерозойские цирконы. Кроме того, в некоторых магматогенных зональных зернах циркона установлены ксеногенные ядра с возрастом 367–352 млн лет, что может свидетельствовать о присутствие в регионе позднедевонских магматических образований.

Наиболее поздними магматическими образованиями в пределах Бодайбинской зоны являются дайковые тела лампрофиров, объединенные в кадали-бутуинский комплекс (Рундквист и др., 1992; Неймарк и др., 1993). Это небольшие по протяженности и мощности тела субмеридионального простирания, которые прорывают как метаосадочные толщи Бодайбинского синклинория, так и граниты конкудеро-мамаканского комплекса. Надежные геохронологические определения для даек отсутствуют.

Палеозойские магматические комплексы БМП

Важной особенностью геологического строения БМП является широкое присутствие в его пределах гранитоидных интрузий палеозойского возраста, выходы которых занимают около 60% площади региона (рис. 9). Ранне- и среднепалеозойские магматические образования, представленные небольшими массивами габброидного (бирамьинский комплекс) и гранитгранодиорит-диоритового составов (светлинский комплекс), а также дайками гранит-порфиров и плагиогранит-порфиров (качойский комплекс) (Государственная геологическая карта..., 2010, 2011). По своему объему они сушественно уступают позднепалеозойским (330-290 млн лет) высококалиевым известково-щелочным и щелочным гранитоидам, которые формируют большую часть Ангаро-Витимского батолита (Цыганков и др., 2010, 2017; Ярмолюк и др., 2012; Ковач и др., 2012). Они представлены средне- и крупнозернистыми гранитами, биотит-амфиболовыми гранодиоритами, кварцевыми диоритами (ранние фазы), а также мелко- и среднезернистыми лейкократовыми и биотитовыми гранитами (поздние фазы). Согласно (Государственная геологическая карта..., 2010) они выделены как магматические образования конкудеро-мамаканского комплекса.

С финальной фазой развития позднепалеозойского магматизма связывают образование серии щелочных массивов и даек пермского возраста (290–255 млн лет), пространственно приуроченных к эдиакарским рифтовым структурам БМП (Цыганков и др., 2010, 2017; Владыкин и др., 2014; Рыцк и др., 20176, 2018б). Одним из наиболее крупных (~585 км²) среди них является Сыннырский массив, расположенный в Янской зоне и локализованный вблизи Байкало-Сыннырской тектонической зоны глубинного заложения. Массив сложен шонкинитами, нефелиновыми сиенитами, а также ультракалиевыми псевдолейцитовыми и кальсилит-калишпатовыми сиенитами (сынныритами) (Рыцк и др., 20176).

РЕГИОНАЛЬНЫЙ МЕТАМОРФИЗМ В БАЙКАЛО-ПАТОМСКОМ И БАЙКАЛО-МУЙСКОМ СКЛАДЧАТЫХ ПОЯСАХ В НЕОПРОТЕРОЗОЙСКО-ПАЛЕОЗОЙСКОЕ ВРЕМЯ

Обобщение результатов геохронологических исследований различных метаморфических пород и синметаморфичеких гранитоидов БМП и БПП (Виноградов и др., 1996; Амелин и др., 2000; Зорин и др., 2008; Meffre et al., 2008; Юдовская и др., 2011; Рыцк и др., 2011; Шацкий и др., 2012; Yudovskava et al., 2016; Palenova et al., 2019; Skuzovatov et al., 2019; Чугаев и др., 2019а) позволяет выделить несколько пиков прогрессивного регионального метаморфизма. проявившихся в неопротерозойско-палеозойский период. Наиболее ранний этап метаморфизма приходится на вторую половину (800-780 млн лет назад) тонийского времени и фиксируется по становлению гранито-гнейсов илеирского комплекса в БМП. По своим условиям в центральных зонах он отвечал амфиболитовой фации, тогда как по периферии — зеленосланцевой фации метаморфизма (Неелов и др., 1987). Метаморфизм более высоких ступеней, устанавливаемый по присутствию в Анамакит-Муйской зоне БМП эклогитов и гранатсодержащих гнейсов, приходится на эдиакарское время (620-610 млн лет назад) и связан с финальным этапом аккреции блоков раннебайкальской и позднебайкальской континентальной коры БМП (Рыцк и др., 2011; Skuzovatov et al., 2019).

Проявления раннепалеозойского регионального метаморфизма наиболее достоверно устанавливаются в неопротерозойских осадочных комплексах Бодайбинской зоны БПП, тогда как в пределах Байкало-Муйского пояса были развиты преимущественно процессы дислокационного метаморфизма, связанные с активизацией глубинных тектонических зон.

Осадочные толши Бодайбинской зоны претерпели полифациальный региональный метаморфизм. При этом наблюдается закономерное расположение фациальных зон внутри района. Породы, метаморфизованные в условиях эпидот-амфиболитовой и амфиболитовой фаций, расположены по краям Бодайбинского синклинория и пространственно приурочены к периферийным частям раннепротерозойских выступов Чуйско-Тонодско-Нечерской зоны и к контактам палеозойских гранитоидов. На удалении от них в центральной части Бодайбинской зоны преимущественно развиты породы, преобразование которых происходило в условиях низкотемпературной зеленосланцевой фации метаморфизма (Петров, Макрыгина, 1975; Кориковский, Федоровский, 1980; Иванов

769

ГЕОХИМИЯ том 69 № 9 2024

и др., 1995 и цитируемые в них работы.). Существующие представления о времени проявления метаморфических процессов в Бодайбинской зоне противоречивы. Однако большинство исследователей предполагают раннепалеозойский возраст метаморфизма (Виноградов и др., 1996; Meffre et al., 2008; Зорин и др., 2008; 2009; Юдовская и др., 2011). Имеющиеся геохронологические данные определяют весьма широкий возможный временной интервал развития метаморфизма от 520 млн лет (Виноградов и др., 1996; Meffre et al., 2008) до 420 млн лет (Зорин и др., 2008) с наличием нескольких пиков, приходящихся на позднекембрийское-раннеордовикское время (Бухаров и др., 1992; Meffre et al., 2008; Юдовская и др., 2011; Yudovskava et al., 2016; Palenova et al., 2019).

Метаморфизм осадочных толщ сопровождался интенсивными пластическими деформациями, в результате которых были сформированы основные складчатые структуры БПП (Буряк, 1982 и др.). Некоторыми исследователями допускается более сложная тектоническая история развития БПП, включавшая несколько сближенных по времени эпизодов деформаций осадочных толщ, протекавших с эдиакарского периода и длившихся вплоть до среднего кембрия (Вуд, Попов, 2006; Чумаков, 2016).

ОСНОВНЫЕ ЭТАПЫ ГЕОТЕКТОНИЧЕСКОГО РАЗВИТИЯ БАЙКАЛО-ПАТОМСКОГО И БАЙКАЛО-МУЙСКОГО ПОЯСОВ В ЭДИАКАРСКО-ПАЛЕОЗОЙСКОЕ ВРЕМЯ

В настоящее время не существует единой точки зрения среди исследователей на геотектоническое развитие структур южной окраины Сибирскоконтинента, включая Байкало-Патомский го и Байкало-Муйский складчатые пояса, в эдиакарско-палеозойское время (Зоненшайн и др., 1990; Zorin, 1999; Жмодик и др., 2006; Кузмин и др., 2006; Станевич и др., 2007, 2010; Зорин и др., 2009; Цыганков и др., 2010, 2017; Немеров и др., 2010; Litvinovsky et al., 2011; Гладкочуб и др., 2013; Donskaya et al., 2013; Yarmolyuk et al., 2014). Однако обобщение современных геологических и геохронологических данных, а также предложенных палеогеотектонических схем позволяет выделить несколько ключевых рубежей в истории эволюции региона в этот период.

Ключевое значения для понимания развития Байкало-Патомской структуры в поздненеопротерозойское время имеет вопрос условий и времени формирования терригенно-карбонатных осадочных толщ патомского комплекса и юдомской серии. Вопрос о времени накопления осадочных толщ патомского комплекса и отчасти вышележащих пород юдомской (или бодайбинской) серии относится к одной из базовых проблем в стратиграфических построениях и схемах тектонического развития БПП (Зорин и др., 2009; Немеров и др., 2010; Чумаков и др., 2011 и др.). Несмотря на продолжительное исследование этого вопроса, он по-прежнему остается одним из наиболее дискуссионных (Покровский и др., 2006; Станевич и др., 2007, 2010; Хоментовский, 2008; Чумаков и др., 2011 и др.).

Верхняя возрастная граница неопротерозойских отложений БПП (~540 млн лет) належно обоснована геохронологическими и биостратиграфическими данными и принята по основанию нижнекембрийских пород нохтуйской свиты, образующих нижнюю часть платформенного чехла Сибирской платформы (Хоментовский и др., 2004; Kuznetsov et al., 2013). В свою очередь, представление о возрастных рубежах для патомского комплекса пород противоречивы. Большинством исследователей (Журавлева и др., 1969; Семихатов, 1985; Иванов и др., 1995; Дольник, 2000; Станевич и др., 2007; Хоментовский, 2008 и др.) признается средне-верхнерифейский (~1.0 ... ~0.65 млрд лет) возраст пород патомского комплекса, что согласно хроностратиграфической шкале (версия 2019 г.) отвечает тонийскому и криогенийскому периоду неопротерозоя. В свою очередь, к вендским (или эдиакарским) образованиям традиционно относятся отложения юдомской/бодайбинской серии (Хоментовский и др., 2004; Чумаков и др., 2013 и др.). Эти представления основываются, главным образом, на историко-геологических и биостратиграфических данных (Журавлева и др., 1969; Семихатов, 1985; Дольник, 2000 и др.). Однако в последние годы был опубликован ряд работ, в которых представлены новые палеонтологические данные (Воробьева и др., 2008; Чумаков и др., 2013 и др.), результаты U-Pb геохронологического изучения детритовых цирконов (Чумаков и др., 2011; Юдовская и др., 2011; Гладкочуб и др., 2013; Powerman et al., 2015), а также данные δ^{13} С, Sr-хемостратиграфических и Pb-Pb исследований (Покровский и др., 2006; Покровский и др., 2010, 2021; Чумаков и др., 2013; Покровский, Буякайте, 2015; Rud'ko et al., 2021). В совокупности приведенные в этих работах результаты дали основание существенно пересмотреть возрастные границы стратиграфических серий патомского комплекса.

Отличительной изотопной «меткой» для карбонатных отложений жуинской серии БПП является присутствие в них отрицательной δ^{13} С аномалии, которая коррелируется с важнейшим стратиграфическим маркером позднего эдиакария — так

называемой аномалией «Шурам-Вонока» (Cozzi et al., 2004: Halverson et al., 2010). Появление этой аномалии в эдиакарских карбонатных отложениях прослеживается по всему миру и соотносится с оледенением Гаскирса, имевшего место на Земле 580-579 млн лет назад (Pu et al., 2016: Покровский и др., 2021). Аномалия «Шурам-Вонока» фиксируется в породах имняхской и ченченской свит, вхоляших в состав жуинской серии (Покровский. Буякайте, 2015; Покровский и др., 2021). Таким образом, накопление отложений этой серии может быть определено интервалом в 580-550 млн лет назад (Покровский, Буякайте, 2015), что поддерживается данными U-Pb датирования детритовых цирконов (Powerman et al., 2015). В свою очередь, результаты изучения вариаций величин δ^{34} S и δ^{238} U в разрезе жуинской серии уточняют представления об условиях накопления осадков этого стратиграфического уровня (Покровский и др., 2006; Чугаев и др., 2018; 2019б, в; Zhang et al., 2019). По данным изучения изотопного состава серы в пиритах и ангидритах пород жуинской серии установлены отрицательные экскурсы величины δ^{34} S по отношению к эволюционным кривым $\delta^{34}S$ диагенетических сульфидов и сульфатов осадочных толщ Мирового океана эдиакарского времени (Chang et al., 2008). Эти отличия свидетельствуют о формировании на рубеже около 600-580 млн лет назад изолированного от Мирового океана осадочного палеобассейна, для которого была свойственна собственная эволюция изотопных параметров растворенного сульфата. Это заключение согласуется с геологическими данными, также свидетельствующими о развитии в это время осалочных процессов в морском бассейне закрытого типа (Немеров и др., 2010).

Эдиакарские карбонатные породы жуинской серии демонстрируют значительный масштаб вариации величины параметра δ^{238} U (~0.9‰) (Чугаев и др., 2018, 2019в; Zhang et al., 2019). При этом проявлена корреляционная зависимость между δ²³⁸U в породе, с одной стороны, положением в разрезе, а также величиной δ^{13} С в породообразующих карбонатах, с другой, что свидетельствует об изменении окислительно-восстановительных условий в зоне осадконакопления в палеобассейне. Модельные оценки показывают резкое изменение восстановительных условий на слабо окислительные и сокращение (более чем в 10 раз) площади участков дна бассейна, в которых преобладали восстановительных условий. Эти изменения приходятся на время (~580 млн лет) одного из крупных кислородных событий эдиакарского периода (Sahoo et al., 2016). Повышенный уровень концентрации аутигенного урана на отдельных участках разреза пород жуинской серии свидетельствует о наличии локальных анаэробных (euxinic) условий в палеобассейне в это время.

жениям бужуихтинской свиты (Melezhik et al., 2009; Чумаков и др., 2013). Стратиграфический уровень бужуихтинская свиты являются важным маркирующим горизонтом для патомского комплекса, поскольку имеют ледниковое происхождение. Согласно существующим представлениям, их формирование связано с глобальным оледенением Марино (~640-635 млн лет назал) (Melezhik et al., 2009; Чумаков и др., 2013; Покровский, Буякайте, 2015; Rooney et al., 2015; Prave et al., 2016; Zhou et al., 2019). Другим важным возрастным маркером лальнетайгинской серии является появление в породах хомолхинской свиты помимо детритовых раннедокембрийских цирконов также популяции неопротерозойских цирконов с возрастами от 950 до 600 млн лет (Юдовская и др., 2011; Чумаков и др., 2013; Powerman et al., 2015). Кроме того, Pb-Pb геохронологические данные для карбонатных пород, слагающих верхние горизонты дальнетайгинской серии, подтверждают их отложение в позднеэдиакарское время около 600-580 млн лет назад (Rud'ko et al., 2021). Наличие неопротерозойских цирконов в метаосадках, образующих верхнюю часть разреза дальнетайгинской серии, рассматривается рядом исследователей как признак сокращения площади Палеоазиатского океана и смены условий осадконакопления с режима открытого океанического бассейна на бассейн типа «форланда» (Гладкочуб и др., 2013; Powerman et al., 2015; Чугаев и др., 2018). Для этого же стратиграфического уровня характерен существенный положительный экскурс величины $\epsilon_{Nd}(T)$ (вплоть до -2.1) для терригенных пород, что свидетельствует о поступлении в осадочный палеобассейн кластогенного материала, образованного за счет разрушения неопротерозойских комплексов Байкало-Муйского пояса (Чугаев и др., 20176, 2018).

Нижняя возрастная граница (~635 млн лет)

для эдиакарских образований БПП установлена

по подошве дальнетайгинской серии, т.е. по отло-

Открытым для обсуждения остается вопрос о возрасте нижней части патомского комплекса, которой отвечают породы баллаганахской серии. Ее отложения с несогласием залегают на метабазальтах медвежевской свиты, для которых отсутствуют надежные геохронологические данные. Геохимические характеристики пород медвежевской свиты указывают на то, что их формирование происходило в обстановке рифтогенеза (Макрыгина и др., 2007). существующим палеотектоническим Согласно моделям, начало рифтогенного этапа, в течение которого, в том числе, произошло заложение одного из крупных структурных элементов БПП — Олокитского палеорифта, соотносят со второй половиной тонийского периода (~0.85-0.8 млрд лет назад) (Жмодик и др., 2006; Станевич и др., 2010; Гладкочуб и др., 2013 и др.). При этом основной пик проявленного в пределах Олокитского палеорифта

ГЕОХИМИЯ том 69 № 9 2024

магматизма, представленного, главным образом, вулканитами бимодальной серии и интрузиями ультраосновного и основного состава, приходится на период 740-720 млн лет назад (Рыцк и др., 2002; Арискин и др., 2015). Собственно начало образования осадочных толщ патомского комплекса, совпадающее по времени с раскрытием Палеоазиатского океана, приходится на позднетонийский период (800-750 млн лет назад) (Гордиенко, 2006; Покровский и др., 2006; Станевич и др., 2010; Чумаков и др., 2013). Результаты U-Pb геохронологического изучения детритовых цирконов, выявившие присутствие популяции цирконов раннедокембрийского возраста с пиками U-Pb датировок около 2.7, 2.0 и 1.85 млрд лет (Гладкочуб и др., 2013; Powerman et al., 2015), а также полученные оценки Nd-модельных возрастов (T(DM) = 3.1...2.2 млрд лет, Чугаев и др., 2017а, 2018) дают основание заключить, что терригенная составляющая пород баллаганахской серии была образована за счет разрушения древней (раннедокембрийской) континентальной коры Сибирского кратона.

Обобщение разработанных палеотектонических реконструкций (Зоненшайн и др., 1990; Жмодик и др., 2006; Кузмин и др., 2006; Зорин и др., 2009; Станевич и др., 2010; Немеров и др., 2010; Гладкочуб и др., 2013) для позднедокембрийского этапа развития БПП, а также принимая во внимание опубликованные геохронологические и изотопно-геохимические данные (Юдовская и др., 2011; Гладкочуб и др., 2013; Powerman et al., 2015; Покровский, Буякайте, 2015; Покровский и др., 2021; Чугаев и др., 2017а, 2018, 2019б, в) можно заключить следующее. Неопротерозойские терригенно-карбонатные толши формировались на пассивной континентальной окраине Сибирского кратона в палеобассейне (Палеоазиатском океане), заложение которого связано с развитием окраинно-континентального рифтогенеза, вызванного распадом около 800-750 млн лет назад суперконтинента Родиния. В позднеэдиакарское время произошло сокращение площади Палеоазиатского океана и смена условий осадконакопления режима открытого океанического бассейна С на изолированный/полуизолированный бассейн типа «форланд». Формирование бассейна типа «форланд» было обусловлено аккрецией к Сибирскому кратону целого ряда микроконтинентов и островных дуг, включая те, что входят в состав Байкало-Муйского террейна. Для этого же этапа предполагается резкое изменение окислительно-восстановительных условий и возникновение в палеобассейне частично изолированных участков, различающихся по глубине и гидродинамическому режиму, а также появление локальных зон с преобладанием анаэробных условий (рис. 10).

Ha позднеэдиакарско-раннекембрийское время приходится завершающий этап орогенеза позднерифейских структур Байкало-Муйского пояса, что устанавливается по наличию молассоидных отложений этого возраста, выполняющих палеограбены и наложенные впадины. В это же время вдоль северной границы БМП в пределах южной окраины Байкало-Патомского палеобассейна формируется узкий прогиб с некомпенсированным осадконакоплением. В кембрии большая часть территории развивается в платформенном режиме: осадко накопление происходит в мелководных морских бассейнах в условиях пассивной континентальной окраины (Станевич и др., 2010; Немеров и др., 2010; Никишин и др., 2010; Рыцк и др., 2011; Donskaya et al., 2013).

Важное значение в геологической истории Байкало-Патомского пояса имел каледонский (ордовика-силур) этап. С ним большинство исследователей (Буряк, 1982; Виноградов и др., 1996; Meffre et al., 2008; Юдовская и др., 2011; Жмодик и др., 2006; Зорин и др., 2008, 2009) связывают развитие процессов регионального метаморфизма, а также формирование главных складчатых структур пояса (рис. 10). Существуют разные точки зрения на длительность как процессов метаморфизма, так и складкообразования. Согласно (Буряк, 1982), имел место одноэтапный метаморфизм и складчатость.

Однако имеющиеся геохронологические данные, основанные на изучении U-Pb изотопных систем монацита из осадочных толщ Бодайбинского синклинория, циркона из синметаморфических гранитоидов, а также Rb-Sr изотопной системы метаосадков (Виноградов и др., 1996; Meffre et al., 2008; Юдовская и др., 2011; Зорин и др., 2008; Государственная геологическая ..., 2012), определяют довольно широкий интервал значений (от 520 до 420 млн лет), что, вероятнее всего, указывает на несколько эпизодов регионального метаморфизма с пиком около 480–460 млн лет назад.

Допускается также и более сложная тектоническая история развития БПП, включавшая несколько сближенных по времени эпизодов деформаций осадочных толщ — начиная с позднего эдиакарского периода и вплоть до среднего кембрия (Хоментовский, Постников, 2001; Чумаков, 2016). Каледонский орогенез, который, по мнению некоторых исследователей, завершился только к раннему девону, обусловлен аккрецией Баргузино-Витимский микроконтинента к южной границе Сибирского кратона (Зоненшайн и др., 1990; Жмодик и др., 2006; Safonova et al., 2011; Donskay et al., 2013). В пределах Байкало-Муйского пояса каледонские процессы нашли отражение в становлении ордовикских габброидных интрузий.

ЗОЛОТОРУДНЫЕ МЕСТОРОЖДЕНИЯ ОРОГЕННОГО ТИПА

Рис. 10. Схема геотектонического развития южной окраины Сибирской платформы в палеозойское время по (Немеров и др., 2010; Donskaya et al., 2013) с изменениями.

Гершинский этап развития. охватывающий средне-позднепалеозойский период времени, широко обсуждается среди исследователей, что привело к появлению в настоящее время нескольких концепций: плюмовая (Yarmolyuk et al., 2014), модель континентальной окраины (Zorin, 1999; Donskaya et al., 2013) и постколлизионная (Цыганков и др., 2010; 2017; Litvinovsky et al., 2011). Все они предполагают, что в этот временной интервал происходило масштабное воздействие мантии на континентальную литосферу региона. Наиболее широко признанной является геотектоническая модель, изложенная в работах (Zorin, 1999; Donskaya et al., 2013). Согласно ей в раннекарбоновое время на юге Сибирского континента возникла активная континентальная окраина в результате субдукции океанической коры Монго-

ГЕОХИМИЯ том 69 № 9 2024

ло-Охотского океана. Это привело к интенсивному воздействию астеносферной мантии на докембрийскую литосферу южной окраины Сибирской платформы, что вызвало ее масштабное плавление и формирование в средне-позднекаменноугольное время аллохтонных и автохтонных гранитоидных интрузий Ангаро-Витимского батолита, сложенных преимущественно биотитовыми гранитами известково-щелочной серии (рис. 10).

Изменение режима субдукции приходится на конец карбона — начало перми и обусловлено деструкцией погружающегося слеба (Donskaya et al., 2013). В это время начинают преобладать условия растяжение континентальной коры, что подтверждается широким развитием в регионе роев даек бимодальной формации. Одновременно происходило внедрение субщелочных и щелочных гранитоидных магм и высококалиевых расплавов основного состава, сформировавших щелочные массивы (например, Бурпалинский, Сыннырский и Догалдынский), а также дайки лампрофиров, шонкинитов и монцодиоритов (рис. 10). Развитие магматизма в пермское время происходило в условиях внутриплитной обстановки (Цыганков и др., 2010, 2017; Владыкин и др., 2014; Рыцк и др., 20176).

ЗОЛОТОРУДНАЯ МИНЕРАЛИЗАЦИЯ СЕВЕРНОГО ЗАБАЙКАЛЬЯ

Геологические и минералогические особенности золоторудных месторождений БПП

Основные запасы коренного золота в Болайбинском золоторудном районе связаны с месторождениями, локализованными в докембрийских метаосадочных породах черносланцевой формации Байкало-Патомского складчатого пояса (Буряк, 1982; Буряк В.А., Хмелевская, 1997; Буряк, Бакулин, 1998; Large et al., 2007; Константинов, 2010а и др.). Известно более десятка крупных и средних по масштабу коренных месторождений, включая месторождение-гигант Сухой Лог (~1900 т Аи, Савчук, Волков, 2019). Они обладают схожим геологическим строением рудных тел, относительно однообразным минеральным составом и близкими геохимическими и изотопными характеристиками. В целом это позволило большинству исследователей объединить месторождения Бодайбинского золоторудного района в единый «сухоложский» тип орогенных месторождений золота. (Буряк, Бакулин, 1998; Буряк и др., 2002; Вуд, Попов, 2006; Дубинина и др., 2014; Чугаев, Чернышев, 2017; Tarasova et al., 2020; Chugaev et al., 2022a; Будяк и др., 2024a,б и др.). Золоторудная минерализация на этих месторождениях представлена прожилково-вкрапленными рудами, имеющих главное промышленное значение, и золотоносными кварцевыми жилами. Прожилково-вкрапленные руды преимущественно образуют относительно простые по морфологии и значительные по протяженности платообразные тела, приуроченные к замкам складок и их крыльям. Рудные тела не имеют четких геологических границ и определяются по результатам геолого-разведочных работ и опробывания. Главными рудными минералами, доля которых, как правило, в среднем не превышает 3-4%, в прожилково-вкрапленных рудах являются сульфиды: пирит, пирротин и арсенопирит (рис. 11). Их содержание, а также соотношение сильно варьирует как внутри рудных тел, так и от месторождения к месторождению. Сульфиды в рудах присутствуют в виде отдельных зерен и скоплений, имеющих часто кварцевую оторочку, а также совместно с кварцем образуют линзовидные выделения и маломощные кварцевые прожилки, субпараллельные полосчатости метаосадочных пород. Золото в прожилково-вкрапленных рудах представлено мелкими самородными выделениями (размер большинства зерен, как правило, менее 500 мкм) в срастании с сульфидами, реже в кварце (Буряк, Попов, 1969; Буряк, Бакулин, 1998; Константинов, 2010а; Паленова и др., 2015; Бабяк и др., 2019; Tarasova et al., 2020; Онищенко, Сокерина, 2021; Будяк и др., 2024а,6).

Золотоносные кварцевые жилы, как правило, пространственносовмещенысзонамипрожилкововкрапленной сульфидной минерализации и занимают по отношению к ней секущее положение. Рудные минералы в кварцевых жилах распределены крайне неравномерно и представлены, главным образом, пиритом и пирротином, которые существенно преобладают над галенитом, сфалеритом и самородным золотом. Общее содержание рудных минералов обычно составляет менее 1%. Золото концентрируется, главным образом, в жильном кварце в виде отдельных выделений размером до 2 мм или гнездовых скоплений.

В пределах месторождений «сухоложского» типа проявлены метасоматические измерения вмещающих метаосадочных пород, выражающиеся, главным образом, в их карбонатизации, сульфидизации и окварцевании. Как показывают микроструктурные исследования (Large et al., 2007), изменение вмещающих пород происходило синхронно с развитием складчатости и формированием прожилково-вкрапленной сульфидной минерализации. Метасоматиты сопровождают участки рудной минерализации и локализованы вдоль узких тектонических зон рассланцевания. Они образуют значительные по протяженности (десятки километров) и мощности (десятки сотни метров) зоны. По мере приближения к участкам золотоносной минерализации количество и размер новообразованных кварцевых жил, кварц-карбонатных и сульфид-кварцевых линз, гнезд и прожилков постепенно возрастает. Метасоматические минералы образуют ранние парагонит-сидерит + анкерит-кварц ± хлорит и поздние мусковит- (сидерит + анкерит) — пирит-кварцевые агрегаты (Русинов и др., 2008). Характерно также развитие новообразованного альбита и фторапатита. По данным (Буряк, 1982; Буряк, Бакулин, 1998) отмечается изменение химического состава карбонатов и хлорита по мере приближения к рудным телам. Для первых устанавливается увеличение кальциевой составляющей, тогда как для второго — снижение содержания железа. Химизм метасоматического преобразования черносланцевых пород определялся, с одной стороны, заметным привносом Ca, CO₂, S и Au, a с другой стороны слабым выносом калия и натрия (Буряк, 1982; Tarasova et al., 2020).

Рис. 11. Макро- и микрофотографии прожилково-вкрапленной и жильной золоторудной минерализации на месторождениях «сухоложского» типа Бодайбинского рудного района (Северное Забайкалье).

Месторождения: Сухой Лог (а, б, и–м), Угахан (в), Вернинское (г), Голец Высочайший (д–3): а — плойчатый пирит-кварцевый прожилок в черных сланцах хомолхинской свиты в обрамлении зон развития метасоматического карбоната (*Crb*); б — пирит-кварцевые прожилки в ассоциации с метакристаллами пирита (*Py*-4); в — прожилкововкрапленные руды в углеродистых метапесчаниках бужуихтинской свиты, сложенные линзовидными выделениями пирротина (*Po*) и метакристаллами пирита (*Py*); г — игольчатые выделения арсенопирита в кварцевой (*Qtz*) оторочке; д- идиоморфные зерна пирита (*Py*-4), наложенные на более ранний пирротин; е — фрамбоидальные выделения пирита (*Py*-1), ж — *Py*-2 обрастает фрамбоиды *Py*-1, з — микровключения галенита (*Gn*), халькопирита (*Ccp*) и самородного золота в пирите (*Py*-4); и — выделения самородного золота в кварц-карбонатном прожилке в ассоциации с пиритом и сфалеритом из прожилково-вкрапленных руд (изображение в отраженном свете); к — кварцевая жила, секущая прожилково-вкрапленную минерализацию в известковистых сланцах имняхской свиты; л — поздний жильный кварц (*Qzt*), содержащий гнезда сфалерита (*Sp*) и галенита (*Gn*); м — выделения комковатого золота (*Au*) в ассоциации с карбонатом в позднем жильном кварце. Геотермобарометрические исследования месторождений Сухой Лог, Вернинское, Голец Высочайший, Красное и ряда других месторождений «сухоложского» типа показали, что гидротермально-метасоматический процесс, с которым связано образование прожилково-вкрапленной минерализации, протекал при температурах около 300–350°С и давлении 0.7–2.8 кбар (Русинов и др., 2008). Эти оценки согласуются с результатами изучения флюидных включений в кварце прожилково-вкрапленных руд из тех же месторождений (Distler et al., 2004; Юдовская и др., 2011; Prokof'ev et al., 2021).

Данные о вариациях δ^{18} О в кварце и в метасоматизированных рудовмещающих породах месторождения Сухой Лог (Дубинина и др., 2014) свидетельствуют о том, что рудообразующая система характеризовалась низкой величиной соотношения флюид/порода (W/R ≤ 0.2). В свою очередь, это предполагает, что преимущественно миграция рудообразующих флюидов происходила в микропоровом и микродислокационном пространстве (кливаж и микротрещины), что согласуется с микроскопическими наблюдениями как на Сухом Логе, так и на других месторождениях «сухоложского» типа (Large et al., 2007; Русинов и др., 2008; Tarasova et al., 2020)

К настоящему времени разработано несколько схем, описывающих с разной степенью детальности последовательность формирования прожилкововкрапленной минерализации на месторождениях «сухоложского» типа (Буряк, Хмелевская, 1997; Буряк, Бакулин, 1998; Вуд, Попов, 2006; Large et al., 2007; Паленова и др., 2015; Prokof'ev et al., 2019; Tarasova et al., 2020, Тарасова и др., 2021). Ключевым минералом в этих построениях выступает пирит, который широко распространен в рудах и представлен несколькими морфологическими разновидностями (Буряк, Попов, 1969; Буряк, 1975; Large et al., 2007; Гаврилов, Кряжев; 2008; Кряжев и др., 2009; Таусон и др., 2015). Предложенные схемы несколько отличаются между собой по числу стадий минералообразования и выделяемым минеральным ассоциациям. Наиболее обоснованной, на наш взгляд, является схема, опубликованная в работе R.R. Large с соавторами (2007), для руд месторождения Сухой Лог. Она основана на результатах детальных минералого-геохимических и микроструктурных исследований. Авторы предполагают наличие трех последовательных стадий минералообразования. Наиболее ранняя (дорудная) минеральная ассоциация представлена синдиагенетическим пиритом. Это микронного размера фрамбоиды (Ру-1) и сростки или скопления микрозернистых зерен гипидеаморфного и идеаморфного облика (*Py*-2). К этой же минеральной ассоциации, отнесены и более крупнозернистые агрегаты пирита (*Py*-3), преимущественно приуроченные к полосчастости

пород и образующие конкрецевидные выделения. Для ранних выделений пирита характерно множество микровключений породообразующих минералов, а также присутствие в них «невидимого» золота (Large et al., 2007).

К ранней рудной (или синдеформационной) стадии отнесен пирит, который представлен крупными (до 3–4 см) отдельными гипидеаморфными метакристаллами в метаосадочных породах и в кварцевых прожилках и гнездах (соответственно *Ру*-4 и *Ру*-5). При травлении таких зерен, как правило, выявляются признаки их неоднократной перекристаллизации и деформации. Положение пирита подчинено направлению микротрещин и кливажа. Эти особенности, согласно (Large et al., 2007), указывают на то, что их формирование происходило на этапе метаморфизма и пластических деформаций осадочных пород.

На поздней рудной (постдеформационной) стадии формировался пирит (*Py*-6) и марказит, представленный в виде коломорфных выделений, который вдоль трещин замещает пирротин в прожилково-вкрапленных рудах. К этой же стадии относится ассоциация, образованная халькопиритом, сфалеритом, галенитом, блеклой рудой и золотом. Преимущественно это микрозернистые выделения, приуроченные к порам и микротрещинам в зернах более раннего пирита и арсенопирита или на границе зерен этих минералов.

В целом сходная последовательность образования пирита подтверждается и на других месторождениях «сухоложского» типа как собственными минералогическими наблюдениями, так и данными, приводимыми в работах (Паленова и др., 2015; Prokof'ev et al., 2019; Tarasova et al., 2020; Tapacoba и др., 2021; Будяк и др., 2024а,6).

Геологические и минералогические особенности золоторудных месторождений БМП

Золоторудная минерализация в пределах БМП локализована в разных по составу и возрасту осадочных, магматических и метаморфических породах. Наиболее древними из них являются раннедокембрийские метаморфические породы Анамакит-Муйской зоны, вмещающие рудные тела месторождения Ирокинда, тогда как самыми молодыми — позднепалеозойские граниты на месторождении Юбилейное. Рудовмещающими преимущественно являются породы неопротерозойского возраста, представленные метавулканитами, метаморфизованными терригенно-карбонатными породами, а также различными по происхождению габброидами и гранитоидами.

Большинство месторождений пространственно сопряжены с крупными региональными тектоническими зонами в БМП, которые рассматриваются в качестве рудоконтролирующих структур (Иванов и др., 1995). К их числу относятся: Сюльбанская система глубинных разломов, определяющая положение Каралонского рудного поля и месторождения Урях, Келяна-Ирокиндинская шовная зона, вблизи которой локализованы месторождения Ирокинда, Кедровское, Юбилейное и рудопроявление Ирбо, а также Байкало-Сыннырская серия глубинных разломов, контролирующая рудное поле Мукадек.

Объектами промышленной отработки в настоящее время являются кварцевые жилы (рис. 12а,б). Рудные тела приурочены к тектоническим зонам, и, как правило, они имеют сложную морфологию, что выражается в резком изменении мощности (от первых десятков сантиметров в пережимах до первых метров в раздувах) и элементов залегания как по простиранию, так и по падению. Протяженность золотоносных кварцевых жил не превышает первые сотни метров при средней мощности 0.5–1 м. Прожилково-вкрапленные руды образуют протяженные минерализованные зоны и приурочены к тектонически (катаклазированным, милонитизированным) переработанным породам.

Вблизи рудных тел вмещающие породы подверглись метасоматическим изменениям. Мощность зон околорудных метасоматитов на месторождениях меняется в широких пределах и максимально может достигать первые десятки метров. При этом характер гидротермально-метасоматических изменений во многом определяется химическим и минеральным составом исходных пород. Наиболее часто проявлены процессы окварцевания, альбитизации, серицитизации, карбонатизации и пиритизации. Околорудные метасоматиты принадлежат к березитовой и лиственитовой метасоматическим формациям (Кучеренко, 2004, 2007, 2014; Хрусталев, Хрусталева, 2006; Рыцк и др., 2018а).

Основной объем рудных тел сложен кварцем, доля которого по отношению к другим минералам, как правило, составляет 95–99 об.%. В резко подчиненном количестве присутствуют также карбонаты (доломит, анкерит, кальцит) и мусковит, образующие в кварце прожилки и гнезда (рис. 12в). Рудные минералы распределены крайне неравномерно. Они формируют мелкую вкрапленность и небольшие гнезда от первых миллиметров до десятков сантиметров, а также тонкие прожилки (рис. 12г-е). К наиболее распространенным рудным минералам относятся пирит, галенит и сфалерит. Реже встречаются пирротин, халькопирит и шеелит (рис. 12ж). Соотношения главных рудных минералов меняются не только от месторождения к месторождению, но и в пределах рудных тел одного месторождения (Жиляева и др., 2000; Хрусталев, Хрусталева, 2006; Бондарь и др., 2018; Плотинская и др., 2019). Геохимической особенностью

ГЕОХИМИЯ том 69 № 9 2024

месторождений БМП является низкая величина Au/Ag (<1) отношения в рудах, что не типично для орогенных месторождений золота (Groves et al., 2003). Это обусловлено широким распространением на месторождениях разнообразных по составу минералов серебра (самородное серебро, теллуриды серебра) и минералов, в состав которых серебро входит в виде примеси (минералы группы блеклых руд, самородное золото) (рис. 123–и).

Золото в рудах присутствует в самородном виде (рис. 123—и). Оно образует различные по форме и размеру выделения в кварце и в сульфидных минералах. Единственной примесью в нем является Ад, содержание которого может меняться в широких пределах. Так, например, для месторождения Ирокинда состав самородного золота изменятся от 269 до 907‰ (Плотинская и др., 2019).

Большинство исследователей золоторудных месторождений БМП указывают на то, что жильная минерализация сформировалась в течение одного продуктивного этапа, а отложение большей части самородного золота происходило на поздней стадии гидротермального процесса вместе с галенитом, сфалеритом и минералами группы блеклых руд (Ляхов, Попивняк, 1977; Жиляева и др., 2000; Хрусталев, Хрусталева, 2006; Ванин и др., 2017; Бондарь и др., 2018; Плотинская и др., 2019; Prokof'ev et al., 2019). Например, в работе (Плотинская и др., 2019), основанной на детальных минералого-геохимических исследований руд месторождений и рудопроявлений Кедровско-Ирокиндинского рудного поля, следующая последовательность обосновывается формирования золоторудной минерализации (рис. 13). Она включает две рудные подстадии (минеральные ассоциации): раннюю кварц-пиритовую и позднюю кварц-золото-полисульфидную. На ранней подстадии образовались околожильные березиты и кварцевые жилы с пиритом и с высокопробным самородным золотом. В течение поздней подстадии происходило отложение галенита, сфалерита, халькопирита, минералов группы блеклых руд, а также большей части самородного золота. Близкие схемы предложены и для других месторождений БМП (Жиляева и др., 2000; Prokof'ev et al., 2019).

Выполненные исследования (Ляхов, Попивняк, 1977; Prokof'ev et al., 2019) флюидных включений в жильном кварце показывают, что отложение продуктивной кварц-золото-полисульфидной минеральной ассоциации на месторождениях БМП происходило в широких диапазонах температуры (от 380 до 170°C) и давления (5.0–1.1 kbar). При этом флюид характеризовался высокой насыщенностью CO₂ и значительными вариациями солености (от 2.5 до 23 вес.% экв. NaCl).

Рис. 12. Макро- и микрофотографии жильной золоторудной минерализации, проявленной в пределах Байкало-Муйского складчатого пояса: а — выходы рудоносной жилы (жила Баргузинская №1) в неопротерозойских гранодиоритах Кедровского комплекса на месторождении Кедровское; б — выходы золоторудной кварцевой жилы Гранитная в метасоматизированных неопротерозойских гранитах бамбуйского комплекса на месторождении Ирокинда; в — выделения мусковита (*Ms*) и карбонатов (*Crb*) в жильном кварце жилы №12 на месторождении Урях; г — вкрапленность галенита в жильном молочно-белом кварце (жила Высокая, месторождение Ирокинда); д полосчатое распределение сульфидов (галенит (*Gn*) + сфалерит (*Sp*)) в жильном кварце (жила Пинегинская жила, месторождение Кедровское); е — кварцевая жила с крупным линзовидным выделением сульфидов (галенит + сфалерит) и оторочкой из серицитолитов (*Ser*); ж — вкрапленность сульфидов, блеклых руд (*Td*) и шеелита (*Sh*) в жильном кварце (рудное тело Малахитовое, месторождение Урях); з — самородное золото (Au) в ассоциации с галенитом, тетраэдритом (*Td*) и сфалеритом (жила №3, месторождение Ирокинда); и — выделение самородного золота на контакте пирита (*Py*) и галенита (рудное тело Ветвистое; месторождение Урях).

ПРЕДСТАВЛЕНИЯ О ГЕНЕЗИСЕ МЕЗОТЕРМАЛЬНОЙ ЗОЛОТОРУДНОЙ МИНЕРАЛИЗАЦИИ СЕВЕРНОГО ЗАБАЙКАЛЬЯ

Продолжающиеся более полувека исследования мезотермальных золоторудных месторождений и рудопроявлений Северного Забайкалья привело к появлению нескольких альтернативных представлений об их формировании (Буряк, 1982; Рундквист и др., 1992; Дистлер и др., 1995; Буряк В.А., Бакулин, 1998; Лаверов и др., 2000; Distler et al., 2004; Large et al., 2007; Русинов и др., 2008; Кряжев, 2017; Юдовская и др., 2011; Иванов, 2014; Кучеренко, 2016, 2017; Tarasova et al., 2020 и цитируемые в них работы). Наиболее широкое признание среди исследователей получили две генетические концепции: метаморфогенно-гидротермальная и магматогенно-гидротермальная.

Метаморфогенно-гидротермальная концепция, впервые обоснованная в работах В.А. Буряка

Ассоциация Минерал	Кварц- пиритовая	Кварц-золото-полисульфидная			
Кварц					
Кальцит					
Анкерит-доломит					
Сидерит					
Мусковит					
Хлорит					
Пирротин	_				
Марказит			_		
Пирит					
Халькопирит					
Сфалерит					
Галенит					
Самородное золото	? —		(
Блеклая руда					
Аg-теллуриды					
Ag-Sb-Sn сульфосоли					

Рис. 13. Схема последовательности гипогенного минералообразования на Кедровско-Ирокиндинском рудном поле (Плотинская и др., 2019).

(Буряк, 1965, 1982, 1987, 2000) в отношении золоторудной минерализации локализованной в докембрийских высокоуглеродистых метаосадочных породах Байкало-Патомского пояса, разрабатывается разными исследователями уже на протяжении 40 лет (Вуд, Попов, 2006; Large et al., 2007; Meffre et al., 2008, 2016; Tarasova et al., 2020; Chugaev et al., 2022a).

Согласно метаморфогенно-гидротермальной модели, формирование золоторудной минерализации в докембрийских углеродистых осадочных толщах Байкало-Патомского пояса было продолжительным по времени и включало в себя три основных этапа: дорудный (или осадочный и син-диагенетический), рудный (метаморфический или син-деформационный) и пострудный (постметаморфический или пост-деформационный (Буряк, 1982; Large et al., 2007) (рис. 14). С дорудным этапом связывается накопление

ГЕОХИМИЯ том 69 № 9 2024

первичной сульфидной минерализации и ее переотложение в диагенетический и катагенетические стадии преобразования осадочных пород. Эти процессы приводили к первичному перераспределению и повышению золота в различных участках разреза осадочных толщ, но не давали промышленно-значимых концентраций этого металла. Некоторые исследователи (Tarasova et al., 2020) допускают участие нефти в миграции золота и его перераспределении в осадочных толщах на стадии их катагенетического преобразования. Присутствие первичных сульфидов осадочно-диагенетического И осадочно-гидротермального происхождения с повышенным содержанием в них «невидимого» золота отмечено во многих месторождениях Байкало-Патомского пояса (Буряк, 1982, 1987, 2000; Large et al., 2007; Паленова и др., 2015; Таусон и др., 2015; Кряжев, 2017; Tarasova et al., 2020).

гидротермальных процессов Проявление на рудном этапе было обусловлено развитием в регионе зонального метаморфизма (Петров, Макрыгина, 1975; Буряк, 1982), что приводило к миграции металлоносных флюидов из высокотемпературных зон, отвечающих условиям амфиболитовой фации, в низкотемпературные (зеленосланцевая фация) области, где происходило отложение рудных компонентов в благоприятных структурах (Буряк, 1982; Буряк В.А., Бакулин, 1998). Согласно В.А. Буряку (Буряк, 1982; Буряк, Бакулин, 1998) собственно рудный этап подразделяется на раннеметаморфическую и метаморфогенно-гидротермальную (метаморфогенно-метасоматическую) стадии. В течение раннеметаморфогенной стадии сульфиды осадочно-диагенетического и осадочно-гидротермального происхождения претерпели частичную перекристаллизацию. Часть вещества была переотложена в виде кварц-сульфидных и кварц-карбонат-сульфидных линз и прожилков, расположение которых подчиняется структурным направлениям кливажа и зонам рассланцевания вмешающих пород. Промышленные концентрации золота были сформированы в течение метаморфогенно-гидротермальной стадии. Золоторудный процесс, протекавший в восстановительных условиях, генетически связан с развитием динамометаморфизма и метасоматитов пропилитового типа. В дислокационных зонах происходила мобилизация рудных компонентов метаморфогенными растворами и отложение их в структурных ловушках (участки рассланцевания, ядра и крылья складок высокого порядка и т.д.). В качестве источника золота и других (например, К, Na, Mg и Si) компонентов золоторудной минерализации предполагаются метаосадочные породы региона (Буряк, Бакулин, 1998; Tarasova et al., 2020; Будяк и др., 2023, 2024а,6).

Альтернативная точка зрения на генезис золоторудной минерализации, локализованной в докембрийских породах черносланцевой формации Северного Забайкалья отстаивается в работах (Рундквист и др., 1992; Дистлер и др., 1995; Лаверов и др., 2000; Distler et al., 2004; Русинов и др., 2008; Юдовская и др., 2011; Иванов, 2014; Кучеренко, 2016). Изложенная этими исследователями магматогенно-гидротермальная концепция предполагает постметаморфическое формирование золоторудных месторождений в регионе и их

Рис. 14. Схема метаморфогенно-гидротермального формирования золоторудной минерализации в неопротерозойский метаосадочных породах Байкало-Патомского складчатого пояса по (Tarasova et al., 2020) с изменениями.

тесную генетическую связь с палеозойскими магматическими событиями. Наиболее полно генетическая модель была изложена в работах (Distler et al., 2004; Юдовская и др., 2011). Она проиллюстрирована на рисунке 15. Согласно этой модели, существовал дорудный этап, на котором происходило накопление осадочных толщ в рифтогенном прогибе и дальнейшее их катагенетическое и метаморфическое преобразование. В это же время сформировались основные складчатые структуры региона. Собственно отложение промышленных прожилково-вкрапленных руд имело место в этап каледонского гранитоидного магматизма, вызванного воздействием на докембрийскую кору Байкало-Патомского пояса глубинных теплового и флюидного потоков. Глубинным флюидам отводится ведущая роль в мобилизации и переносе рудных компонентов на верхние структурные горизонты. Отложение золота и других металлов,

перенос которых осуществлялся в составе сероводородных и хлоридных комплексов, происходило на геохимических барьерах, которыми являлись высокоуглеродистые метаосадочные породы. В качестве структурных ловушек выступили, преимущественно, замки антиклинальных складок.

Оригинальная генетическая модель для объяснения особенностей формирования раннепалеозойской золоторудной минерализации в породах черносланцевой формации Байкало-Патомского пояса была предложена С.Г. Кряжевым в своей докторской диссертационной работе (Кряжев, 2017). Согласно ей золотоносные сульфиды имели первично осадочно-гидротермальное происхождение, а собственно рудообразование обусловлено поступлением флюидов, а также золота и серы из эндогенного источника. Последующие за этим процессы метаморфического преобразования осадочных толщ, а также коллизионный магматизм

	Период	Этап	Байкало-Патомский складчатый пояс		алевролитистые и песчанистые осадки
1	Поздне- гонийский (800 млн лет)	Осадкообразование в рифтогенном внутри- континентальном прогибе			карбонатные и терригенно-карбонатные осадки
					черносланцевые известковистые толщи с различным содержанием Сорг
	Криоген-		FRID	v v	вулканогенные отложения
эдиа (65 570 ле	ылакарс- кий (650— 570 млн	Катагенез и региональный метаморфизм			базит-гипербазитовые интрузии
	лет)			- Aler	раннедокембрийское основание Бодайбинского палеобассейна
	1. 1.		M: Milling and the Print		Внутрикоровые анатектические гранитоидной магмы
C	Ордовикс- ко-силу-	Тектоно- магматическая		+ + + + +	раннепалеозойского возраста
(450- 440 млн лет)	активизация и рудообразование		* * *	позднепалеозойского возраста	
					золоторудная прожилково- вкрапленная минерализация
			мантийный флюид		золоторудные кварцевые жилы
Позднекар- боново- ранне- пермский (320- 270 млн лет)	Постскладчатый магматизм и ремобилизация		5	металлоносные флюиды	
				тектонические нарушения	

Рис. 15. Схема магматогенно-гидротермального формирования золоторудной минерализации в неопротерозойский метаосадочных породах Байкало-Патомского складчатого пояса по (Distler et al., 2004; Юдовская и др., 2011) с изменениями.

были ответственны только за перераспределение и концентрирование ранних руд.

В отношении позднепалеозойской золоторудной минерализации Байкало-Муйского пояса, представленной малосульфидными золото-кварцевыми жилами, среди исследователей преобладает представление об их магматогенно-гидротермальном происхождении (Митрофанов и др., 1983; Кучеренко, 2004, 2007, 2014; Корольков, 2007; Юдовская и др., 2011; Ivanov et al., 2015; Попов и др., 2017 и др.). Главными аргументами в пользу этой точки зрения являются пространственная и временная сближенность золоторудной минерализации и проявленного в регионе позднепалеозойского магматизма, а также широкое развитие в ореоле кварцевых жил метасоматитов березит-лиственитовой формации. Однако существуют расхождения в вопросах, касающихся состава рудогенерирующих магматических расплавов и источников вещества. Часть исследователей предполагают, что основным источником

Рис. 16. Схема, описывающая магматогенно-гидротермальное формирование позднепалеозойской золото-кварцевой минерализации в докембрийских породах Северного Забайкалья. Составлена согласно представлениям, изложенным в работах (Митрофанов и др., 1983; Кучеренко, 2004, 2007, 2014; Корольков, 2007; Попов и др., 2017).

флюидов и минералообразующих компонентов золоторудных систем являлись кислые расплавы, сформировавшие известково-щелочные позднепалеозойские граниты (Митрофанов и др., 1983; Корольков, 2007; Попов и др., 2017; Prokof'ev et al., 2019 и др.) (рис. 16).

В другой модели, предложенной в работах (Кучеренко, 2004, 2007, 2014; Chugaev et al., 2022b), напротив, доказывается генетическая связь оруденения с умеренно щелочными базитовыми расплавами, из которых золото и другие рудные компоненты поступали во флюид.

С поздним постскладчатым герцинским гранитоидным магматизмом также связывают реактивацию гидротермальных процессов в Байкало-Патомском складчатом поясе и формирование поздних золото-кварцевых жил (Лаверов и др., 2007; Юдовская и др., 2011). При этом образование жил происходило за счет переотложения вещества более ранней прожилково-вкрапленной минерализации без дополнительного привноса вещества из внешнего источника (рис. 15).

Таким образом, изложенные выше концепции генезиса палеозойских золоторудных месторождений Северного Забайкалья показывают, что актуальными и наиболее дискуссионными вопросами среди исследователей являются время развития рудообразующих процессов, их синхронность с главными этапами геологического развития региона, а также природа источника минералообразующих компонентов и флюидов и роль магматизма. Рассмотрим более детально имеющиеся геохронологические и изотопно-геохимические данные, которые используются исследователями при построении изложенных выше генетических моделей.

РЕЗУЛЬТАТЫ ГЕОХРОНОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ ЗОЛОТОРУДНОЙ МИНЕРАЛИЗАЦИИ СЕВЕРНОГО ЗАБАЙКАЛЬЯ

Месторождения и рудопроявления БПП

Месторождения Байкало-Патомского пояса в силу особенностей минерального состава рудных тел и отсутствия для них четких геологических границ представляют собой сложный объект для геохронологического изучения. Это хорошо видно на примере месторождения Сухой Лог, который в силу своего масштаба для многих исследователей являлся эталонным объектом для изучения. Для его датирования были использованы различные геохронологические методы, включая нетрадиционные подходы и минералы-геохронометры (Лаверов и др., 2007; Meffre et al., 2008; Юдовская и др., 2011; Yakubchuk et al., 2014; Chugaev et al., 2022a).

ГЕОХИМИЯ том 69 № 9 2024

Первое прямое датирование руд месторождения Сухой Лог было выполнено Rb-Sr методом и основывалось на изучении валовых проб, содержащих прожилково-вкрапленную минерализацию, а также гидротермальных минералов (кварца, карбонат) из поздних золотоносных кварцевых жил (Лаверов и др., 2007). Эти данные впервые показали наличие двух рудообразующих этапов (раннепалеозойского и позднепалеозойского), разделенных между собой интервалом времени около 130 млн лет. Наиболее древняя Rb-Sr датировка 454±6 млн лет (CKBO = 22), полученная по результатам изучения 12 валовых рудоносных проб, интерпретируется как время гидротермально-метасоматической переработки вмещающих метаосадочных пород и формирования прожилково-вкрапленной золоторудной минерализации. Rb-Sr изотопные данные по гидротермальным минералам из поздних кварцевых жил определили изохрону с возрастом 326±14 млн лет (СКВО = 11), который фиксируют среднекарбоновый этап реактивизации гидротермальных процессов на месторождении Сухой Лог (рис. 17).

Последующие работы по изучению геохронологии месторождения Сухой Лог основывались на U-Th-Pb данных (Meffre et al., 2008; Юдовская и др., 2011), полученных по акцессорному монациту и циркону с помощью методики SIMS (SHRIMP), и на данных Re-Os изучения пирита (Yakubchuk et al., 2014).

В работе (Meffre et al., 2008) представлены результаты изучения U-Pb изотопной системы акцессорного монацита, выделенного из вмешающих черных сланцев. Работы выполнены с помощью ICP-масс-спектрометрии с лазерной абляцией. Образцы были отобраны за пределами рудных зон месторождения Сухой Лог. Ядра крупных кристаллов монацита показали возраст 573±12 млн лет, тогда как внешние каймы некоторых зерен монацита имели относительно более молодую датировку 516 ± 10 млн лет. Последняя, по мнению авторов, соответствует возрасту пика метаморфизма и деформации неопротерозойских рудовмещающих осадочных пород. Была также установлена малочисленная популяция кристаллов монацита с позднепалеозойскими возрастами: 374±20 млн лет и 288 ± 22 млн лет. Эти геохронологические данные могут свидетельствовать, по мнению авторов этой работы, о наличии поздних гидротермальных процессов, проявленных в районе месторождения Сухой Лог.

В работе (Юдовская и др., 2011) были изучены монацит и циркон, встречаемые как в зоне золоторудной минерализации месторождения Сухой Лог, так и во вмещающих ее породах. Эти минералы демонстрируют неоднородность внутреннего строения зерен и химического состава. Монацит представлен двумя генерациями, из которых поздняя

Рис. 17. Результаты Rb-Sr геохронологического изучения золотоносных прожилково-вкрапленных руд и поздних кварцевых жил месторождений «сухоложского» типа Байкало-Патомского пояса (Северное Забайкалье). Данные заимствованы: а–б — Лаверов и др., 2007; в–ж — Chugaev et al., 2022а.

генерация монацита установлена только в рудной зоне. Он образует каймы нарастания и блоки в более крупных выделениях раннего монацита. Зерна обломочного циркона также имеют признаки наложенных процессов, приведших к образованию краевых кайм. U-Pb-Th данные получены по 17 анализам раннего и позднего монацита. Все они проявляют дискордантность по соотношению значений изотопного возраста, рассчитанным по изотопным отношениям ²⁰⁶Pb/²³⁸U и ²⁰⁸Pb/²³²U. Они варьируют от 739 до 365 млн лет. Как следствие значительной (от десятков до сотен млн лет) аналитической погрешности SHRIMP-метода, точки монацитов на диаграмме Везерилла не аппроксимируются дискордией (или дискордиями), что не позволило авторам належно оценить возраст наложенного процесса, приведшего к образованию позднего монацита. В то же время с использованием диаграммы Терра–Вассербурга для трех точек анализа зерна позднего монацита получена возрастная оценка 486±36 млн лет. Следует отметить, что диаграмма Терра-Вассербурга является всего лишь (только) способом коррекции значений ²⁰⁶Pb/²³⁸U возраста на присутствие в минералах аномального по изотопному составу нерадиогенного свинца и, в отличие от диаграммы Везерилла, не дает возможность для дискордантных U-Th-Pb данных определить время образования и преобразования минералов.

U-Pb данные по циркону более информативны. По верхнему пересечению двух дискордий с конкордией на диаграмме Везерилла доказывается присутствие в рудовмещающих породах хомолхинской свиты обломочного материала из источников, имеющих возраст около 1.8 и 2.5 млрд лет. Кроме того, показано наличие широкой группы неопро-

Рис. 18. Возрастные спектры ⁴⁰Ar/³⁹Ar и корреляционные ³⁹Ar/⁴⁰Ar-³⁶Ar/⁴⁰Ar диаграммы (обратные изохроны) для мусковита из поздних кварцевых жил месторождений Голец Высочайший и Ожерелье (Байкало-Патомской пояс, Северное Забайкалье) по данным (Chugaev et al., 2022a).

ГЕОХИМИЯ том 69 № 9 2024

терозойских цирконов. Дискордии, положение которых, главным образом, определяется точками зерен древнего обломочного циркона, имеют нижнее пересечение с возрастом 466 ± 29 и 447 ± 32 млн лет. Эти возраста определенно свидетельствуют о наличии каледонских процессов, проявленных, как было также показано в работе (Лаверов и др., 2007) на месторождении Сухой Лог. Однако U-Pb SHRIMP данные с учетом имеющихся погрешностей определяют широкий диапазон для возраста ранней прожилково-вкрапленной минерализации от 506 до 415 млн лет. Что касается возраста герцинского рудного этапа, то его наличие результатами U-Th-Pb изучения монацита и циркона не выявлено.

Re-Os исследования на месторождении Сухой Лог были выполнены для пяти проб пиритов, отобранных из прожилково-вкрапленной минерализации (Yakubchuk et al., 2014). Они были представлены синдеформационными метаморфическими разновидностями (по Large et al., 2007) пирита. Изученные образцы показали высокие содержания обыкновенного Os и, соответственно, низкие отношения ¹⁸⁷Os/¹⁸⁸Os (от 0.992 до 1.283), т.е. они не являются LLHR-сульфидами. Вариации ¹⁸⁷Re/¹⁸⁸Os отношений в пирите также не велики (35.3 до 63.1). На Re-Os диаграмме в расположении точек изученных образцов не обнаруживается изохронной зависимости. Если их аппроксимировать линией регрессии, то ее наклон при большом разбросе точек (СКВО = 500) с огромной (~100%) погрешностью указывает на палеозойский возраст минерализации. Расчеты, выполненные авторами для индивидуальных образцов на основе подбора величин начального ¹⁸⁷Os/¹⁸⁸Os отношения, также свидетельствуют о палеозойском возрасте прожилково-вкрапленных руд.

В работе (Тарасова и др., 2021) представлены результаты ⁴⁰Ar-³⁹Ar датирования двух образцов пирита из прожилково-вкрапленной минерализации месторождения Голец Высочайший. Один из образцов показал возрастной спектр «седловидного» типа, для которого в средней и высокотемпературной части выделяется плато с возрастом 437 ± 62 млн лет. В случае другого образца получен спектр типа «лестница» вниз. Для него значение возраста плато, включающего 90% выделенного ³⁹Ar, составило 331 ± 9 млн лет. Следует отметить, что рассчитанные значения ⁴⁰Ar/³⁹Ar возраста для большинства температурных фракций (включая и фракции возрастного плато) из-за низких содержаний аргона в пирите имеют значительную (вплоть до 100%) погрешность, что препятствует надежной оценке замкнутости/нарушенности К-Аг системы изученных образцов.

В относительно недавней работе (Chugaev et al., 2022) обсуждаются результаты Rb-Sr и ⁴⁰Ar-³⁹Ar комплексного геохронологического изучения золоторудной минерализации четырех месторождений «сухоложского» типа — Вернинское, Голец Высо-

чайший, Ожерелье и Ыкан (рис. 17, 18). Эти месторождения различаются по своей геологической позиции, типу рудной минерализации и по масштабу оруденения. Полученные авторами Rb-Sr и ⁴⁰Ar-³⁹Ar данные подтвердили наличие в Бодайбинском рудном районе двух рудообразующих событий. Ранние прожилково-вкрапленные руды на месторождениях Голец Высочайший и Вернинское показали близкие Rb-Sr изохронные датировки — 425±9 млн лет (CKBO = 13) и 434 ± 4 (CKBO = 2.2) соответственно. Позднее герцинское рудообразующее устанавливается по результатам как Rb-Sr. так и ⁴⁰Ar-³⁹Ar латирования изучения жильной золотокварцевой минерализации на месторождении Голец Высочайший (Rb-Sr метод, 342 ± 5 млн лет, CKBO = 5; ⁴⁰Ar-³⁹Ar метод, 331 ± 9 млн лет, CKBO = 0.97) и Ожерелье (Rb-Sr метод, 344 ± 15 млн лет, CKBO = 13; ⁴⁰Ar-³⁹Ar метод, 323 ± 10 млн лет, CKBO = 1.7). Аналогичный среднепалеозойский Rb-Sr изохронный возраст (344 ± 8 млн лет, CKBO = 5.8) получен для прожилково-вкрапленной и жильной минерализации месторождения Ыкан, расположенного вблизи выходов герцинских гранитоидов конкудеро-мамаканского комплекса.

Месторождения и рудопроявления БМП

Для позднепалеозойской золото-кварцевой жильной минерализации Байкало-Муйского пояса число работ, посвященных определению ее возраста, весьма ограниченно. Наиболее представительной по количеству как изученных месторождений, так и геохронологических данных, является работа (Кучеренко, 1989). В ней представлены около 50 определений, выполненных с помощью K-Ar метода как для околорудных метасоматитов (валовые пробы и серицит), так и для магматических пород (валовые пробы) из 7 месторождений. В их числе месторождения Кедровское, Ирокинда и Каралонского рудного поля. В целом был получен широкий диапазон K-Ar датировок от 470 до 275 млн лет (Кучеренко, 1989). В качестве возраста рудной минерализации автором было приняты следующие средние значения: для месторождения Кедровское — 282 ± 5 млн лет, для месторождения Ирокинда — 277 ± 4 млн лет, а для золотоносных кварцевых жил Каралонского рудного поля — 275 ± 7 млн лет. Наличие более древних К-Аг датировок рудоносных метасоматитов автором объясняется присутствием в анализируемых образцах унаследованного метаморфогенного мусковита.

Близкая к указанным выше оказалась датировка (285 ± 15 млн лет), которая была получена с помощью ⁴⁰Ar-³⁹Ar метода по пириту из золоторудной минерализации месторождения Мукадек (Ivanov et al., 2015). Среди опубликованных в этой работе данных необходимо также отметить «аномальную» для месторождений БМП ⁴⁰Ar-³⁹Ar датировка (321 ± 1.9 млн лет), полученная по пи-

Рис. 19. Результаты Rb-Sr геохронологического изучения золоторудных кварцевых жил месторождений Байкало-Муйского пояса (Северное Забайкалье) по данным: а — настоящая работа (см. электронное приложение, табл. 1); б — Чугаев и др., 20176; в — Чугаев и др., 2015.

риту из сульфидизированных динамометаморфизованных пород месторождения Мукадек (Ivanov et al., 2015). Гидротермальное событие с таким возрастом пока не нашло подтверждения при геохронологических исследованиях других золоторудных объектов Байкало-Муйского пояса, хотя сама датировка весьма близка к возрасту рудообразующего события, проявленному, как было отмечено выше, в среднекарбоновое время в пределах БПП.

В серии работ (Чугаев и др., 2015, 20176, 2020) представлены результаты K-Ar, ⁴⁰Ar-³⁹Ar и Rb-Sr геохронологического изучения околорудных местасоматитов на месторождениях Урях, Кедровское и Ирокинда (рис. 19, 20). Rb-Sr изохронным методом по 11 образцам, представляющих гидротермально-метасоматические образования золото-кварцевых жил месторождения Урях, получен возраст 281 ± 5 млн лет (СКВО = 23). ⁴⁰Ar-³⁹Ar данные по метасоматическому серициту показали нарушенный возрастной спектр, в пределах которого в высокотемпературной части выделяется короткое плато (около 55% выделенного

ГЕОХИМИЯ том 69 № 9 2024

⁴⁰Аг) с возрастом 275 ± 6 млн лет. Проведенные геохронологические исследования околорудных метасоматитов на месторождении Кедровское дали Rb-Sr изохронный возраст (273 ± 4 млн лет, CKBO = 11), согласующийся с усредненной оценкой (282 ± 5 млн лет) раннее опубликованных К-Аг датировок для метасоматитов этого же месторождения (Кучеренко, 1989).

Результаты Rb-Sr и ⁴⁰Ar-³⁹Ar геохронологического изучения гидротермально-метасоматических образований месторождения Ирокинда были получены недавно и приводятся в настоящей статье впервые (рис. 19, 20, Приложение, табл. 1; дополнительные материалы размещены в электронном виде по DOI статьи). Объектом исследования являлись серицитолиты рудного тела Тулуинская. Rb-Sr методом проанализировано 6 проб, представленных валовой пробой кварц-серицитовых метасоматитов, а также выделенными минеральными фракциями (5 проб). На диаграмме в координатах ⁸⁷Rb/⁸⁶Sr — ⁸⁷Sr/⁸⁶Sr точки лежат на единой линии, тангенс угла наклона которой соответствует возрасту 284±6 млн
ЧУГАЕВ

Рис. 20. Возрастные спектры ⁴⁰Аг/³⁹Аг и корреляционные ³⁹Аг/⁴⁰Аг-³⁶Аг/⁴⁰Аг диаграммы (обратные изохроны) для мусковита из околорудных метасоматитов рудоносных кварцевых жил месторождений Ирокинда и Урях (Байкало-Муйский пояс, Северное Забайкалье) по данным: а — настоящая работа (см. электронное приложение, табл. 1); б — Чугаев и др., 2015.

лет при (⁸⁷Sr/⁸⁶Sr)_i, равном 0.7050±0.0024 (рис. 19). Величина СКВО = 13. По одному из образцов мусковита был получен возрастной спектр, состоящий из 14 ступеней (рис. 20). В низкотемпературной своей части (600–950°С) он имеет форму «лестницы вверх». Однако его высокотемпературная часть представляет собой хорошо выраженный сегмент плато, объединяющий 6 последовательных ступеней с 58% выделенного ³⁹Ar. Этому сегменту соответствует значение возраста 284 ± 7 млн лет (2 σ , СКВО = 1.6).

Таким образом, большинство значений опубликованных возрастов для позднепалеозойской золоторудной минерализации БМП находятся в относительно узком интервале времени от 290 до 270 млн лет.

Сопоставление результатов геохронологического изучения и обоснование этапов образования золоторудной минерализации орогенного типа в Северном Забайкалье

Наиболее объективным подходом при оценке достоверности опубликованных геохронологических данных является сравнение результатов исследований, полученных по одним и тем же месторождениям с помощью разных методов. В отношении золоторудных месторождений Северного Забайкалья такой подход может быть реализован, поскольку для большинства из них геохронологические данные были получены с помощью разных методов и по разным изотопным системам (прежде всего, Rb-Sr и K-Ar изотопным системам), компоненты которых отличаются геохимическим поведением в геологических процессах.

При сравнении Rb-Sr и ⁴⁰Ar-³⁹Ar геохронологических данных для золоторудной минерализации Байкало-Патомского пояса обнаруживается, что К-Аг система не «фиксируют» позднеордовикскосилурийские возрасты. Единственная ⁴⁰Ar-³⁹Ar датировка 437 ± 62 млн лет, приводимая в работе (Тарасова и др., 2021) здесь не рассматривается в силу значительной погрешности. Отчасти это можно объяснить тем обстоятельством, что объектами ⁴⁰Ar-³⁹Ar изучения на этих месторождениях, главным образом, являлись околорудные метасоматиты поздних кварцевых жил. Однако для месторождения Сухой Лог и Голец Высочайший было проведено K-Ar и ⁴⁰Ar-³⁹Ar датирование ранних прожилково-вкрапленных руд. Эти данные также показали среднекаменноугольные (K-Ar метод, 329-313 млн лет, Чугаев, 2007; ⁴⁰Ar-³⁹Ar метод, 331 ± 9 млн лет, Тарасова и др., 2021) датировки, которые совпали с Rb-Sr возрастом поздних кварцевых жил на этих же месторождениях (Лаверов и др., 2007; Chugaev et al., 2022a). Этот факт может свидетельствовать о том, что в результате формирования поздней жильной минерализации произошел «перезапуск» К-Аг изотопной системы ранних прожилково-вкрапленных руд.

Однако раннепалеозойские возрасты были установлены другими исследователями при геохронологическом изучении месторождения Сухой Лог. Согласно результатам U-Pb датирования методом SHRIMP гидротермального монацита из ранних прожилково-вкрапленных руд месторождения Сухой Лог их возраст составляет 439±34 млн лет (Юдовская и др., 2011). Несмотря на то, что приведенная в этой работе датировка отягощена значительной аналитической погрешностью, она не противоречит полученным Rb-Sr методом позднеордовикско-силурийскому возрасту прожилково-вкрапленных руд в Бодайбинском районе.

Напротив, Rb-Sr и ⁴⁰Ar-³⁹Ar возрастные данные, полученные по околорудным метасоматитам поздних кварцевых жил месторождений Голец Высочайший и Ожерелье, видно, что они хорошо согласуются в пределах погрешностей. Так, для месторождения Голец Высочайший ⁴⁰Ar-³⁹Ar возраст гидротермально-метасоматического мусковита равен 331 ± 9 млн лет, тогда как Rb-Sr изохронный возраст околорудных метасоматитов составляет 342±5 млн лет (Chugaev et al., 2022а). Аналогично и для месторождения Ожерелье — ⁴⁰Ar-³⁹Ar возраст мусковита из кварцевых жил равен 323±10 млн лет, а его Rb-Sr изохронный возраст — 344±15 млн лет. Такое совпадение объективно свидетельствует о наличие гид-

ГЕОХИМИЯ том 69 № 9 2024

ротермального события, которое было проявлено на этих месторождениях в среднекаменноугольное время. Наличие каменноугольного события в районе месторождений Ыкан и Ожерелье подтверждается геологическими и геохронологическими данными, согласно которым в районе комплекса широко развиты тела позднепалеозойских (327±5 млн лет, Rb-Sr метод, Неймарк и др., 1990) гранитоидов конкудеро-мамаканского комплекса (Государственная геологическая карта..., 2010).

Среди золоторудных месторождений БМП можно выделить три объекта, для которых геохронологические данные получены Rb-Sr, K-Ar и ⁴⁰Ar-³⁹Аг методами. Это — месторождения Ирокинда, Кедровское и Урях. Во всех случаях наблюдается хорошее совпадение опубликованных датировок. Например. Rb-Sr изохронный возраст (284 ± 6 млн лет) околорудных метасоматитов жилы Тулуинская в пределах погрешности совпал с ⁴⁰Ar-³⁹Ar возрастом (284 ± 7 млн лет) мусковита, выделенного из тех же метасоматитов. В свою очередь, они совпадают с усредненными K-Ar датировками (277±4 млн лет), приводимыми в работе (Кучеренко, 1989). Схожие оценки возраста рудной минерализации (Rb-Sr метод, 273 ± 4 млн лет; K-Ar метод, 282 ± 5 млн лет) для месторождения Кедровское приводятся в работах (Кучеренко, 1989; Чугаев и др., 2017б) согласованность $^{40}Ar - ^{39}Ar$ Удовлетворительная $(275 \pm 6 \text{ млн лет})$ и Rb-Sr $(285 \pm 5 \text{ млн лет})$ возрастов устанавливается и для околорудных местасоматитов золотоносных кварцевых жил на месторождении Урях. Таким образом, результаты Rb-Sr, ⁴⁰Ar-³⁹Ar и K-Ar изучения гидротермально-метасоматических образований одних и тех месторождений указывают на наличие раннепермского гидротермального события в Байкало-Муйском поясе. Такой вывод поддерживается и результатами отдельных геохронологических определений, выполненных для рудной минерализации месторождений Мукадек и Каралонского рудного поля БМП (Кучеренко, 1989; Ivanov et al., 2015).

Несмотря на хорошее совпадение K-Ar, ⁴⁰Ar-³⁹Ar и Rb-Sr датировок гидротермально-метасоматических образований месторождений Северного Забайкалья, наиболее надежными следует признать геохронологические данные, полученные с помощью Rb-Sr метода. Эти оценки основываются на результатах изучения большего количества образцов и использовании изохронного метода построений. Кроме того, Rb-Sr изотопная система в геологических образованиях при прочих равных условиях более устойчива к наложенным процессам, чем K-Ar изотопная система (Dodson, 1979; Cliff, 1985; Szczerba et al., 2015). Отметим, что признаки нарушения замкнутости K-Ar изотопной системы присутствуют во всех изученных пробах мусковита. Это выражаются в разной степени дискордантности ⁴⁰Ar-³⁹Ar

ЧУГАЕВ

Рис. 21. Сопоставление результатов геохронологического изучения золоторудной минерализации Северного Забайкалья.

возрастных спектров и в том, что в ряде случаев эти датировки оказывается несколько «моложе» Rb-Sr изохронных возрастов. С учетом этих замечаний, а также принимая во внимание перекрытие погрешностей имеющихся геохронологических данных, время проявления позднепалеозойских рудообразующих событий в Северном Забайкалье могут быть определены интервалами 340–330 и 285–275 млн лет.

На рисунке 21 приведено обобщение обсуждавшихся выше результатов геохронологического изучения золоторудных месторождений Северного Забайкалья. Отчетливо выделяется три группы возрастов: позднеордовикско-силурийские (450–430 млн лет), среднекаменноугольные (340– 330 млн лет) и раннепермские (285–275 млн лет).

При этом важной особенностью этих данных является тот факт, что наблюдается корреляция между типом рудной минерализации и ее геологической позицией, с одной стороны, и возрастом, с другой. Так, позднеордовикско-силурийскиевозрастыполученытолькодляпрожилкововкрапленных руд месторождений «сухоложского» типа Бодайбинского района, среднекаменноугольные — для околорудных метасоматитов поздних золото-кварцевых жил этой же группы месторождений и, наконец, раннепермские — для жильных месторождений Байкало-Муйского пояса. Все эти факты позволяют говорить о наличии в палеозойское время трех рудообразующих событий, с которыми связано формирование золоторудной минерализации в Северном Забайкалье.

Отмеченным закономерностям не подчиняется ⁴⁰Ar-³⁹Ar датировка 321 ± 1.9 млн лет, полученная для пирита из метасоматитов рудного поля Мукадек (Ivanov et al., 2015). Согласно авторам публикации метасоматиты секутся более поздними золото-кварцевыми жилами, для которых по пириту получен уже раннепермский ⁴⁰Ar-³⁹Ar возраст 285±15 млн лет. Однако минералогических свидетельств присутствия в ранних метасоматитах сингенетичной им золоторудной минерализации в работе не приводится, что оставляет вопрос о наличии двух этапов рудообразования в рудном поле Мукадек открытым для дискуссии. Следует отметить также, что детальные минералогические исследования на других месторождениях (Ирокинда, Кедровское, Урях, Юбилейное) Байкало-Муйского пояса показывают, что формирование золоторудной минерализации происходило в течение одного гидротермального процесса. Это подтверждается также и геохронологическими данными.

ИЗОТОПНО-ГЕОХИМИЧЕСКИЕ ИССЛЕДОВАНИЯ ЗОЛОТОРУДНОЙ МИНЕРАЛИЗАЦИИ СЕВЕРНОГО ЗАБАЙКАЛЬЯ

К настоящему времени накоплен обширный материал по изотопно-геохимическому изучению золоторудной минерализации Северного Забайкалья. В нем по объему существенно преобладают результаты изучения вариаций изотопного состава «легких» элементов (кислорода, углерода и серы) в рудных и жильных минералах, а также во флюидных включениях (Буряк, Хмелевская, 1997; Distler et al., 2004; Устинов и др., 2007; Русинов и др., 2008; Chang et al., 2008; Кряжев и др., 2009; Иконникова и др., 2009; Дубинина и др., 2010, 2014; Кряжев, 2017; Prokof'ev et al., 2019; Tarasova et al., 2020; Тарасова и др., 2021; Онищенко, Сокерина, 2021; Будяк и др., 2024а, б и цитируемые в них работы). Данные о вариациях изотопного состава «тяжелых» элементов (прежде всего, Pb и, в меньшей степени, Sr, Nd и Os) также представлены, хотя и в меньшем объеме (Неймарк и др., 1993; Meffre et al., 2008; Чернышев и др., 2009; Чугаев и др., 2014, 2017б, 2020; Ванин и др., 2018; Yakubchuk et al., 2014; Дубинина и др., 2014; Чугаев, Чернышев, 2017; Tarasova et al., 2020; Будяк и др., 2024а,б). Следует отметить и неравномерную изученность рудных объектов Северного Забайкалья. Подавляющее большинство изотопно-геохимических исследований выполнено, главным образом, для месторождений Байкало-Патомского пояса, прежде всего, для месторождения Сухой Лог и Голец Высочайший (Буряк, Хмелевская, 1997; Distler et al., 2004; Устинов и др., 2007; Русинов и др., 2008; Chang et al., 2008; Чернышев и др., 2009; Кряжев и др., 2009; Иконникова и др., 2009; Дубинина и др., 2010, 2014; Кряжев, 2017; Prokof'ev et al., 2019; Тарасова и др., 2021; Онищенко, Сокерина, 2021 и цитируемые в них работы). Среди месторождений Байкало-Муйского пояса наиболее системные изотопно-геохимические данные получены для золоторудной минерализации месторождений Ирокинда и Кедровское (Чугаев и др., 2017б, 2020). Другие объекты Северного Забайкалья либо не изучались, либо изучены слабо. Рассмотрим работы, в которых обсуждается вопрос возможного источника рудного вещества.

> Данные о вариациях б¹³С, б³⁴S, б¹⁸О в гидротермально-метасоматических образованиях и вмещающих породах месторождений Северного Забайкалья

Месторождения и рудопроявления БПП

ГЕОХИМИЯ том 69 № 9 2024

Данные о вариациях δ^{13} C, δ^{34} S, δ^{18} O в гидротермально-метасоматических образованиях и во флюидных включениях представлены для золоторудных месторождений Байкало-Патомского пояса в работах (Distler et al., 2004: Устинов и др., 2007: Русинов и др., 2008; Кряжев и др., 2009; Иконникова и др., 2009; Кряжев, 2017; Prokof'ev et al., 2019; Тарасова и др., 2021; Онищенко, Сокерина, 2021). Этими исследователями установлена близость величин δ^{13} C, δ^{34} S, δ^{18} O для жильных (кварц, карбонаты) минералов и для вмещающих пород на этих месторождениях, что, по их мнению, свидетельствует о вовлечении вещества неопротерозойских метаосадков в рудообразующие процессы. Кроме того, в работах (Устинов и др., 2007: Русинов и др., 2008; Кряжев и др., 2009; Кряжев, 2017) обосновывается предположение об участии единого для всех месторождений Байкало-Патомского пояса (магматогенного?) флюида с постоянным изотопным составом кислорода ($\delta^{18}O = +10.0 \pm 0.5\%$). Напротив, в работе (Дубинина и др., 2014), по результатам изучения δ^{18} O и δ^{13} C в кварце и карбонатах из прожилково-вкрапленной и жильной минерализации на месторождении Сухой Лог делается вывод о том, что ее формирование не сопровождалось поступлением флюида из внешнего (эндогенного или метеорного) источника. Однако по мнению В.Ю. Прокофьева с соавторами (Prokof'ev et al., 2019), флюидные включения в жильном кварце из месторождений Сухой Лог, Вернинское и Догалдынская жила Байкало-Патомского пояса обладают величинами $\delta^{13}C_{CO2}$ (-1.9...-5.5), характерными для гидротермальных растворов, имеющих преимущественно эндогенное происхождение.

Изотопный состав серы сульфидов месторождений Байкало-Патомского пояса изучены в значительно большем объеме (Заири и др., 1977; Буряк, Хмелевская, 1997; Distler et al., 2004; Русинов и др., 2008; Chang et al., 2008; Дубинина и др., 2010; Tarasova et al., 2020; Тарасова и др., 2021; Онищенко, Сокерина, 2021; Буряк и др., 2024а,б). Всеми исследователями отмечается неоднородность изотопного состава серы в пределах месторождений и связь ее изотопно-облегченных составов с рудными зонами. Общий размах вариаций δ^{34} S в пирите из рудных зон составляет почти 23‰ (от -7.4‰ на месторождении Красное, до +15.5‰ на месторождении Сухой Лог) (рис. 22). Представления авторов о природе источника серы, а также причин пространственной зональности изотопного состава серы сульфидов в рудах противоречивы. Среди основных факторов указывались вариации температуры при формировании сульфидов и поступление серы из эндогенного (мантийного) источника (Distler et al., 2004; Кряжев, 2017). Относительно малые вариации изотопного состава серы пирита в рудных телах ме-

Рис. 22. Вариации δ³⁴S в сульфидах из золоторудной минерализации месторождений Байкало-Патомского пояса (Северное Забайкалья). Данные заимствованы из работы Будяк и др., 2024а: 1 — Русинов и др., 2008; 2 — Будяк, 2009; 3 — Дубинина и др., 2010; 4 — Кряжев, 2017; 5 — Тарасова и др., 2021; 6 — Онищенко, Сокерина, 2021; 7 — Тагазоva et al., 2020; 8 — Будяк и др., 2024а.

сторождения Сухой Лог ($d^{34}S=+9\pm 3\%_0$) и большие значения $d^{34}S$ в сульфидах на их периферии (вплоть до +12.5 — +21.6‰) объяснялись присутствием в безрудных породах «тяжелой» серы морских сульфатов (Русинов и др., 2008; Кряжев, 2017). Авторы также не исключают, что вариации $\delta^{34}S$ в рудах обусловлены смешением серы из двух источников: осадочно-диагенетической серы и эндогенной серы рудообразующих флюидов.

Выявленные вариации δ^{34} S в пиритах из рудных зон месторождений Байкало-Патомского пояса, по мнению других исследователей (Chang et al., 2008; Дубинина и др., 2010; Tarasova et al., 2020; Будяк и др., 2024а), могут быть отчасти следствием первичной неоднородности изотопного состава осадочной серы. Однако это позволяет объяснить лишь часть наблюдаемых на этих месторождениях вариаций δ^{34} S, поскольку по своему масштабу они существенно больше, чем известно для диагенетического пирита протерозойских осадочных палеобассейнов. Кроме того, это не позволяет объяснить наличие значительных локальных вариаций на уровне отдельных зерен и сосуществующих минеральных агрегатов сульфидов. На примере результатов локальных исследований руд месторождений Сухой Лог, Голец Высочайший и Угахан было показано, что вариации δ^{34} S носят закономерный характер. Это выражается в корреляции величин $\delta^{34}S$ в пирите от степени гидротермально-метасоматической переработки рудоносных пород и его морфологического типа (Дубинина и др., 2010; Тарасова и др., 2021; Будяк и др., 2024а). Выявленные зависимости в вариациях величин δ^{34} S, по мнению авторов, свидетельствует о ведущей роли фракционирования изотопов серы при минералообразовании в результате изменения физико-химических условий в течение эволюции гидротермальной системы. Этот фактор дополнял имеющуюся первичную неоднородностью осадочно-диагенетической серы (Chang et al., 2008; Чугаев и др., 2018; Tarasova et al., 2020; Будяк и др., 2024а,б) в раннепротерозойских породах черносланцевой формации. При этом последние рассматриваются в качестве основного источника серы в рудных телах месторождения «сухоложского» типа, а некоторая гомогенизация и изотопное «облегчение» серы в сульфидах из рудных зон обусловлены переносом и отложением первично осадочно-диагенетической серы метаморфогенным флюидом (Дубинина и др., 2010; Tarasova et al., 2020; Будяк и др., 2024а,б).

Ключевой вопрос, имеющий непосредственное отношение к условиям формирования раннепалеозойской прожилково-вкрапленной минерализации в метаосадочных породах, является соотношение флюид/порода (W/R) в минералообразующей системе. Его величина — важный критерий для оценки скорости циркуляции флюида и механизма формирования рудоносных прожилков и жил. В работе (Пэк и др., 2011) проводились оценки отношения флюид/порода при рудообразовании на Сухом Логе по материальному балансу фиксации золота за счет изменения растворимости в условиях градиента температуры. Авторы получили повышенное отношение флюид/порода, равное 15.7, и пришли к выводу о высокой палеопроницаемости метаосадочных пород на месторождении Сухого Лога. Напротив, по мнению большинства авторов, отношение флюид/порода при развитии гидротермально-метасоматических процессов на месторождении было низким (Устинов и др., 2007; Русинов и др., 2008; Кряжев и др., 2009; Иконникова и др., 2009; Дубинина и др., 2010). В работе (Дубинина и др., 2014) приведены количественные оценки этого отношения, а также скорости движения флюида. Рассчитанные эффективные интегральные отношения W/R находятся в интервале от 0.046 до 0.226 и указывают на образование жильных тел месторождения с участием флюида дегидратационной или метаморфогенной природы. При этом скорость движения флюида в породах была низкой и не превышала 10⁻¹⁰-10⁻¹⁴ м/с, что соответствует интервалу скоростей фильтрации водного флюида в метаморфических процессах (10⁻⁹-10⁻¹⁴ м/с, Baumgartner, Valley, 2001; Cartwright, Oliver, 2000).

Месторождения и рудопроявления БМП

По своей изотопно-геохимической изученности золоторудная минерализация Байкало-Муйского пояса существенно уступает месторождениям БПП. В относительно недавно опубликованных работах (Prokof'ev et al., 2019; Чугаев и др., 2020) представлены результаты изучения вариаций изотопного состава углерода в углекислом газе из газово-жидких включений жильного кварца месторожлений Ирокинда и Урях, а также данные о вариациях изотопного состава серы в сульфидных минералах месторождения Ирокинда. В работе (Prokof'ev et al., 2019) показано, что флюидные включения кварца месторождений Ирокинда и Урях характеризуются гомогенным изотопным составом углерода и отличаются по этому параметру между собой: для месторождения Ирокинда $\delta^{13}C_{CO2} = -0.6 - +0.6\%$ (11 анализов) и для месторождения Урях $\delta^{13}C_{CO2} = -2.6$ и -2.9% (2 анализа). Эти данные, а также особенности химического состава флюида, по мнению авторов, свидетельствуют об участии двух типов гидротермальных растворов. Один из них, доминирующий для месторождения Ирокинда, сформировался в результате декарбонатизации карбонатов морского происхождения, тогда как второй имел магматогенную природу (гранитоидные расплавы) и его участие устанавливается для месторождения Урях.

По результатам анализа 35 образцов галенита, отобранных из 8 рудных тел, установлена существенная неоднородность изотопного состава серы ($\delta^{34}S = -2.4 \dots +10.9\%$) в золоторудной минерализации на месторождении Ирокинда (Чугаев и др., 2020). Совместная интерпретация этих результатов с Pb-Pb данными позволило авторам прийти к вы-

ГЕОХИМИЯ том 69 № 9 2024

воду о поступлении минералообразующих компонентов из нескольких источников, среди которых ведущая роль принадлежала вмещающим докембрийским метаморфическим породам. Отметим, что значительным масштабом вариации δ³⁴S также характеризуются и другие объекты БМП. Это следует из результатов изучения сульфидов (пирит, галенит) из золоторудных кварцевых жил месторождений и рудопроявлений Кедровское. Юбилейное. Ирбо. Урях, Верхнеянское, Мукадек и Каралонского рудного поля (см. электронное приложение, табл. 2). Совместно с данными для месторождения Ирокинда они представлены на рисунке 23. Как можно видеть, фиксируемый размах значений δ³⁴S для изученных объектов весьма велик и достигает, например, для пирита из месторождения Юбилейное, почти 14‰, что схоже по масштабу (~13‰) с вариациями δ^{34} S на месторождении Ирокинда. На фоне этих вариаший золоторудная минерализация месторождения Урях обладает в среднем более «тяжелым» изотопным составом серы. Это месторождение по своему геологическому строению отличается от других золоторудных объектов БМП более широким распространением в районе метаосадочных пород. В последних отмечается присутствие зон метаморфогенной вкраплено-прожилковой сульфидной (пирит, пирротин) минерализации, которая могла быть источником «тяжелой» серы.

В целом эти данные не позволяют напрямую идентифицировать источник поступления серы во флюид, поскольку они охватывают области значений δ^{34} S, характерные для месторождений как магматогенного, так и метаморфогенного происхождения (Ohmoto, Rye, 1979; Shanks, 2013; Hutchison et al., 2020; Rollinson, Pease, 2021).

Следует отметить, что неоднородность изотопного состава серы в сульфидах на орогенных месторождениях золота, локализованных в различных по возрасту метаморфических комплексах, отмечена во многих работах (Liu et al., 2016; Kresse et al., 2018; Li et al., 2020). Она проявлена как на локальном уровне (отдельные зерна сульфидов и минеральные ассоциации), так и в масштабе рудных тел и месторождений в целом. Эти вариации обнаруживают схожие закономерности, что и на месторождениях «сухоложского» типа и объясняются исследователями, в первую очередь, изотопным фракционированием серы в минералообразующей системе вследствие изменения в ней физико-химических параметров.

Приведенный выше обзор δ^{18} O, δ^{13} C и δ^{34} S результатов исследований золоторудной минерализации месторождений Северного Забайкалья показывает дискуссионность их интерпретации в отношении источников минералообразующих компонентов и флюидов. В значительной мере это

Рис. 23. Вариации δ^{34} S в сульфидах из золоторудной минерализации месторождений Байкало-Муйского пояса (Северное Забайкалья) по данным (Чугаев и др., 2020, настоящая работа (см. электронное приложение, табл. 2)).

обусловлено объективно существующей сложностью в оценке вклада фактора фракционирования в общий масштаб вариаций изотопного состава «легких» элементов, что, в свою очередь, затрудняет определение «исходных» изотопных параметров для источника/источников. Кроме того, приводимые изотопные характеристики для рудообразующих флюидов не позволяют надежно идентифицировать их природу. Так, например, оценка величины δ¹⁸О = +10.0±0.5‰ (Кряжев, 2017) для флюидов, принимавших участие в образовании золоторудной минерализации БПП, соответствует интервалам значений δ^{18} O во флюидах как магматогенной ($\delta^{18}O = +6 - +10\%$), так и метаморфогенной ($\delta^{18}O = +3 - +25\%$) природы (Hoefs, 2009; Rollinson, Pease, 2021 и цитируемые в них работы). В то же время большинством исследователей признается участие вещества вмещающих пород в рудообразующих процессах, тогда как роль магматического источника остается неопределенной.

Вариации изотопного состава Sr, Nd и Pb в гидротермально-метасоматических образованиях на месторождениях Северного Забайкалья

В контексте обсуждения вопроса источника/источников вещества золоторудной минерализации наиболее информативными являются результаты изучения вариаций изотопного состава Sr, Nd и Pb в гидротермальных и метасоматических образованиях месторождений Северного Забайкалья. Данные, позволяющие судить о величинах изотопных отношений ⁸⁷Sr/⁸⁶Sr и ¹⁴³Nd/¹⁴⁴Nd в рудообразующих флюидах, опубликованы в ограниченном объеме и только для отдельных месторождений Северного Забайкалья: Сухой Лог (Лаверов и др., 2007; Дубинина и др., 2014), Урях (Чугаев и др., 2015), Кедровское (Чугаев и др., 2017б) и Ирокинда (Чугаев и др., 2020). Настоящая работа дополняет их новыми результатами Rb-Sr и Sm-Nd изотопно-геохимических исследований, выполненными для месторождений Вернинское, Голец Высочайший и Урях (см. электронное приложение, табл. 3).

Наибольшей детальностью как по количеству изученных месторождений, так и по объему аналитических данных характеризуются Pb-Pb изотопные исследования, которые представлены в серии работ (Неймарк и др., 1993; Meffre et al., 2008; Чернышев и др., 2009; Чугаев и др., 2013, 2017б, 2020; Чугаев, Чернышев, 2017; Тагазоva et al., 2020; Chugaev et al., 2022; Будяк и др., 2024а,б). Поскольку Sr, Nd и Pb отличаются между собой по геохимическому поведению в гидротермальных процессах, а также нельзя исключать и вероятность поступления этих элементов в минералообразующие системы из разных источников, то представляется целесообразным независимое рассмотрение данных о вариациях ⁸⁷Sr/⁸⁶Sr, ¹⁴³Nd/¹⁴⁴Nd и изотопного состава Pb в гидротермально-метасоматических образованиях месторождений Северного Забайкалья.

Изотопный состав Sr в рудообразующих гидротермальных системах месторождений Северного Забайкалья

Рис. 24. Величины отношения (⁸⁷Sr/⁸⁶Sr), в гидротермально-метасоматических образованиях золоторудных месторождений «сухоложского» типа БПП (Северное Забайкалье). Данные заимствованы из работ: Лаверов и др., 2007; Дубинина и др., 2014; Chugaev et al., 2022а; настоящая работа (см. электронное приложение, табл. 3).

Имеющиеся Rb-Sr данные для гидротермально-метасоматических образований золоторудных месторождений Северного Забайкалья можно разделить на две группы. Первая из них — это оценки начального отношения ⁸⁷Sr/⁸⁶Sr во флюиде, которые следуют из изохронных построений. Вторая группа объединяет результаты изучения гидротермальных минералов (преимущественно карбонатов), характеризующихся низкими величинами ⁸⁷Rb/⁸⁶Sr отношения. Для них, как правило, не требуется существенной коррекции измеренных величин изотопного отношения на добавку in situ радиогенного изотопа ⁸⁷Sr, что позволяет надежно судить об изотопном составе Sr во флюиде.

Месторождения и рудопроявления БПП

Данные о вариациях изотопного состава Sr в гидротермальных растворах, которые обобщены на рисунке 24, демонстрируют существенную неоднородность рудообразующих систем месторождений БПП по величине ⁸⁷Sr/⁸⁶Sr: от 0.710 до 0.745. Для большей части месторождений БПП диапазон

ГЕОХИМИЯ том 69 № 9 2024

⁸⁷Sr/⁸⁶Sr является более узким и составляет 0.710– 0.720. На примере месторождений Сухой Лог, Вернинское и Голец Высочайший, которые наиболее детально были охарактеризованы, видно, что неоднородность ⁸⁷Sr/⁸⁶Sr, хотя и в меньшем масштабе проявлена как для отдельных месторождений, так и для разновозрастных минеральных ассоциаций.

В целом нет зависимости между величиной (⁸⁷Sr/⁸⁶Sr), и положением месторождений в стратиграфическом разрезе неопротерозойских толщ Бодайбинского рудного района.

Приведенные выше значения изотопного состава Sr для флюидов, сформировавших золоторудную минерализацию на месторождениях Бодайбинского рудного района БПП, указывают на преимущественное поступление этого элемента из корового источника. Значения (⁸⁷Sr/⁸⁶Sr), в минералообразующих флюидах существенно выше таковых для мантийного источника и любых производных магматических расплавов мантийного происхождения (Zindler, Hart, 1986;

Salters, Stracke, 2004; Workman, Hart, 2005). Эти значения ближе к изотопному составу стронция верхнекорового источника, под которым подразумеваются терригенные осадочные породы (Taylor, McLennan, 1985; McDermott, Hawkesworth, 1990; Rudnick, Gao, 2003), а также к стронцию гранитоидных расплавов. При этом необходимо отметить, что установленные значения (⁸⁷Sr/⁸⁶Sr). в рудообразующем флюиде выше, чем в гранитах І-типа, для которых величина (⁸⁷Sr/⁸⁶Sr), варьирует в диапазоне от 0.704 до 0.710 с модальными значениями $({}^{87}Sr/{}^{86}Sr)_{t} = 0.706 - 0.707$ (McCulloch, Chappell, 1982; Pankhurst et al., 1988; Collins, 1996), и попадает в область значений, характерных для гранитов S-типа (~0.710-0.726, Peucat et al., 1988; Collins, 1996: Champion, Bultitude, 2013).

Прямое сопоставление изотопного состава Sr флюида с таковым в породах региона дает возмож-

ность детализировать общий вывод о коровой природе источника. В этом отношении наибольший интерес представляют неопротерозойские метаосадочные породы Бодайбинского района и присутствующие в регионе палеозойские гранитоиды, участие вешества которых в рудообразующих процессах предполагается исследователями. RbSr изотопная систематика неопротерозойских осадочных пород Бодайбинского синклинория обсуждается в ограниченном числе работ (Чугаев и др., 2017а, 2018; Покровский и др., 2021). В них приведены данные по изотопному составу Sr в карбонатных и терригенных породах разреза дальнетайгинской, жуинской и юдомской серий. Результаты представлены на рисунке 25 в виде линий (серый цвет) эволюции изотопного состава Sr.

Rb-Sr характеристики для позднепалеозойских гранитоидов Ангаро-Витимского батолита

Т, млн лет

Рис. 25. Сопоставление величин (⁸⁷Sr/⁸⁶Sr), в гидротермально-метасоматических образованиях месторождений «сухоложского» типа, неопротерозойских карбонатных (Покровский и др., 2021) и терригенных (настоящая работа, см. электронное приложение, табл. 4) пород БПП, а также поздне- среднепалеозойских гранитоидов конкудеро-мамаканского комплекса (Litvinovsky et al., 2011; настоящая работа (см. электронное приложение, табл. 4)). На диаграмме также приведены линии (зеленый цвет) эволюции изотопного состава Sr в мантийном резервуаре DM-типа (Salters, Stracke, 2004; Workman, Hart, 2005) и (черный цвет) в верхней коре (McDermott, Hawkesworth, 1990). наиболее полно приведены в работе (Litvinovsky et al., 2011), согласно которой значения (⁸⁷Sr/⁸⁶Sr)_i в гранитах конкудеро-мамаканского комплекса лежат в узких пределах 0.7059–0.7072 (5 образцов). Несколько больший диапазон величин (⁸⁷Sr/⁸⁶Sr)_i (0.7066–0.7093) для магматических образований этого же комплекса, был получен автором по результатам изучения 9 образцов гранитоидов, включая гранит-порфиры Константиновского штока и даек риолитов (см. электронное приложение, табл. 4).

Сравнительный анализ (⁸⁷Sr/⁸⁶Sr)_t характеристик гидротермально-метасоматических образований, метаосадков и гранитоидов позволяет заключить, что главным источником Sr во флюидах, сформировавших как прожилково-вкрапленную, так и золото-кварцевую жильную минерализацию на месторождениях «сухоложского» типа являлись неопротерозойские метаосадочные толщи (рис. 25). На это указывает не только близость изотопного состава Sr флюидов и вмещающих пород, но и сходство масштабов вариаций этого параметра в гидротермальных растворах и осадочных толщах.

Месторождения и рудопроявления БМП

Rb-Sr данные для гидротермально-метасоматических образований месторождений Кедровское и Ирокинда БМП приведены в работах (Чугаев и др., 20176; 2020). Их дополняют результаты Rb-Sr

изучения гидротермальных минералов из золотоносных кварцевых жил месторождения Урях (Чугаев и др., 2015; настоящая работа (см. электронное приложение, табл. 3)). В целом они определяют широкий диапазон значений отношения (⁸⁷Sr/⁸⁶Sr)₁₌₂₈₅ = 0.705-0.723 в рудообразующих флюидах этих месторождений (рис. 26). При этом основной вклад в общий разброс вносят данные, полученные для карбонатов из рудных тел месторождения Урях. Они отличаются не только систематически более высокими значениями $({}^{87}Sr/{}^{86}Sr)_{t=285}$, но и большим масштабом вариаций (0.712-0.723) этого параметра. Напротив, гидротермальные образования из рудных тел месторождений Кедровское и Ирокинда отличаются большей однородностью изотопного состава Sr и близостью величин отношения (⁸⁷Sr/⁸⁶Sr)_{t=285}: 0.7060–0.7088 и 0.7050–0.7084 соответственно (рис. 26).

Как и в случае месторождений «сухоложского» типа, полученные оценки изотопного состава Sr для гидротермальных растворов месторождений БМП указывают на ведущую роль корового источника. Однако, если месторождение Урях по величине (⁸⁷Sr/⁸⁶Sr) и степени его неоднородности сходно с месторождениями БПП, что может указывать на метаосадочные породы как на основной источник стронция во флюиде, то месторождения Кедровское и Ирокинда отличаются от них более низкими и однородными

Рис. 26. Величины отношения (⁸⁷Sr/⁸⁶Sr), в гидротермально-метасоматических образованиях золоторудных месторождений БМП (Северное Забайкалье). Данные заимствованы из работ: Чугаев и др., 20176, 2020; настоящая работа (см. электронное приложение, табл. 3).

ГЕОХИМИЯ том 69 № 9 2024

Рис. 27. Сопоставление величин (⁸⁷Sr/⁸⁶Sr), в гидротермально-метасоматических образованиях месторождений Ирокинда, Кедровское и Урях (Чугаев и др., 2017б, 2020; настоящая работа (см. электронное приложение, табл. 3)), в докембрийских магматических и метаморфических породах (Чугаев и др., 2020; настоящая работа (см. электронное приложение, табл. 4)), неопротерозойских морских известняках БПП (Покровский и др., 2021), в поздне- среднепалеозойских гранитоидах конкудеро-мамаканского комплекса (Litvinovsky et al., 2011; настоящая работа (см. электронное приложение, табл. 4)) и в позднепалеозойских дайках (настоящая работа (см. электронное приложение, табл. 4)). На диаграмме также приведены линии эволюции изотопного состава Sr в мантийном резервуаре DM-типа (Salters, Stracke, 2004; Workman, Hart, 2005) и в верхней коре (McDermott, Hawkesworth, 1990).

величинами (87 Sr/ 86 Sr)_{t=285}, которые соответствуют изотопному составу стронция в магматических расплавах гранитоидов І-типа (McCulloch, Chappell, 1982; Pankhurst et al., 1988; Collins, 1996), в том числе и для гранитоидов конкудеро-мамаканского комплекса (рис. 27а,6) (Litvinovsky et al., 2011; настоящая работа (см. электронное приложение, табл. 4).

Сравнительный анализ изотопного состава Sr золоторудной минерализации месторождений Ирокинда, Кедровское и Урях, с одной стороны, и разновозрастных магматических и метаморфических пород, присутствующих в пределах этих месторождений, с другой, представлен на рисунке 27. Для месторождения Ирокинда большинство величин (⁸⁷Sr/⁸⁶Sr)_{t=285} для гидротермально-метасоматических образований попадают в область значений, характерных для архейско-раннепротерозойских гнейсов и гранито-гнейсов киндиканской толщи и тонийских гранитоидов бамбукойского комплекса. Эти породы являются вмещающими для рудных тел, из которых были отобраны карбонаты. По сравнению с гидротермальными карбонатами меньшее значение (⁸⁷Sr/⁸⁶Sr)_{t=285} = 0.7050±0.0024 дает изохрона по околорудным метасоматитам жилы Тулинская. Однако в пределах погрешности оно близко к $({}^{87}\mathrm{Sr}/{}^{86}\mathrm{Sr})_{t=285} = 0.7077$ во вмещающих рудную минерализацию гнейсах киндиканской толщи.

Похожая ситуация в распределении изотопного состава Sr наблюдается и для золоторудной минерализации месторождения Кедровское. Устанавливается близость значений (⁸⁷Sr/⁸⁶Sr). между гидротермальным карбонатом и шеелитом (0.7060-0.7069), с одной стороны, и тонийскими гранитоидами Кедровского массива (0.7066-0.7069), с другой. Только в карбонате ((⁸⁷Sr/⁸⁶Sr)₌₂₇₇ = 0.7088) из кварцевых жил, локализованных в углеродистых сланцах кедровской толщи, а также в развитых по ним околорудных $(({}^{87}\mathrm{Sr}/{}^{86}\mathrm{Sr})_{t=277} = 0.7075 \pm 0.0013)$ метасоматитах были получены выше значения, которые могут указывать на поступление стронция с более радиогенным изотопным составом из вмещающих метаосадочных пород ((87 Sr/ 86 Sr)_{t=277} = 0.7135).

Присутствующие в районе месторождения Урях магматические и метаморфические породы на момент формирования золоторудной минерализации характеризовались высокой степенью неоднородности отношения $({}^{87}Sr/{}^{86}Sr)_{t}$ от 0.705 в неопротерозойских метагаббро и метабазальтах до 0.762 в раннепротерозойских гранитах. Столь существенная их контрастность, по-видимому, определила, в свою очередь, значительный масштаб вариаций по изотопному составу стронция в гидротермально-метасоматических образованиях месторождения. При этом основной вклад в поступлении стронция в рудообразующие растворы принадлежал вмещающим породам района, прежде всего, неопротерозойским метаосадочным толщам и раннепротерозойским гранитам коларского комплекса.

Обобщая данные о вариациях (⁸⁷Sr/⁸⁶Sr)_t в гидротермально-метасоматических образованиях золоторудных месторождений Северного Забайкалья можно заключить следующее. Изотопный состав Sr в гидротермальных системах этих месторождений в первую очередь определялся Rb-Sr изотопными характеристиками пород, вмещающих золоторудную минерализацию в регионе. Хотя такой вывод во многом элиминируют доминирующую роль магматического источника гранитоидов и/или долеритов в формировании месторождений, однако эти данные не позволяют полностью исключить его участие на позднепалеозойском этапе рудообразования.

Изотопный состав Nd в рудообразующих гидротермальных системах месторождений Северного Забайкалья

Месторождения и рудопроявления БПП

Гидротермально-метасоматические образования на месторождениях «сухоложского» типа весь-

ма контрастны по изотопному составу Nd (Приложение, табл. 3). Общий размах вариаций величины ε_{Nd(T)} достигает примерно 16 единиц. Минимальные значения $\varepsilon_{Nd(T)}$ (-18.8 ... -17.6) установлены в валовых пробах прожилково-вкрапленных руд на месторождении Угахан, тогда как максимальные — на месторождении Сухой Лог ($\epsilon_{Nd(T)} = -3.2$) и Вернинское ($\epsilon_{Nd(T)} = -3.6$) (рис. 28). Полученные данные также показывают, что значительная неоднородность руд по величине $\varepsilon_{Nd(T)}$ проявлена и на отдельных месторождениях. При этом по размаху величин є_{Nd(T)} месторождения отличаются между собой. Так, например, для руд месторождений Сухой Лог и Вернинское диапазоны є_{маст}, достигают примерно 9 и 5 единиц соответственно, тогда как для месторождения Угахан и Невское не превышают 1.5 единиц. Отмеченные особенности могут указывать на поступление Nd во флюид либо из одного регионального источника, неоднородного по величине є_{Nd(T).} либо из нескольких источников, различающихся по своим Sm-Nd изотопным характеристикам.

Неопротерозойские метаосадочные поролы Бодайбинской зоны, а также позднепалеозойские гранитоиды конкудеро-мамаканского комплекса, которые многими исследователями рассматриваются в качестве вероятных региональных источников для золоторудной минерализации, характеризуются высокой неоднородностью по величинам ε_{Nd(T)} (Ярмолюк и др., 1999; Litvinovsky et al., 2011; Дубинина и др., 2014; Чугаев и др., 2017а, 2018; настоящая работа (см. электронное приложение, табл. 4)). Например, на момент формирования ранней прожилково-вкрапленной минерализации (450-430 млн лет назад) рассчитанные значения зоны изменяются в диапазоне от -21.5 до -3.6, что согласуется с диапазоном $\varepsilon_{Nd(T)}$ (-18.8 ... -3.2), установленном для прожилково-вкрапленных руд. Соответственно, столь же высокая вариативность $\varepsilon_{Nd(T)}$ (-22.6 ... -4.5) наблюдается в этих метаосадках и на время (340-330 млн лет назад) формирования поздних золоторудных кварцевых жил, для которых є_{Nd(T)} = -12.4 ... -4.1. Близкий к метаосадкам и поздним кварцевым жилам диапазон значений є_{ма(т)} (-16.8 ... -3.0) демонстрируют средне- позднекаменноугольные гранитоиды конкудеро-мамаканского комплекса (Ярмолюк и др., 1999; Litvinovsky et al., 2011; настоящая работа (см. электронное приложение, табл. 4).

Вследствие значительной неоднородности метаосадочных пород и позднепалеозойских гранитоидов по величинам $\varepsilon_{Nd(T)}$ прямое сравнение их с гидротермально-метасоматическими образованиями месторождений «сухоложского» типа не позволяет надежно определить роль каждого из этих источников в рудообразующих процессах (рис. 29а).

Рис. 28. Величины ε_{Nd(T)} в гидротермально-метасоматических образованиях золоторудных месторождений «сухоложского» типа БПП (Северное Забайкалье). По данным: Дубинина и др., 2014; настоящая работа (см. электронное приложение, табл. 3).

 $\boldsymbol{\epsilon}_{Nd(T)}$

В то же время, обнаруживается закономерность в распределении є_{Nd(T)} на месторождениях «сухоложского» типа, которая выражается в корреляции этого изотопного параметра со стратиграфической позицией рудных тел и соответствие его значений в рудах и вмещающих метаосадочных породах (рис. 29б). Наиболее хорошо это видно на примере месторождения Голец Высочайший, для прожилково-вкрапленных руд которого имеются две группы значений є_{ма(т.)} -8.6 ... -7.7 и -6.4 ... -5.6. Из них минимальные величины $\varepsilon_{Nd(T)}$ получены для рудных тел, локализованных в карбонатных породах угаханской свиты ($\varepsilon_{Nd(T)} = -7.1$), а максимальные для руд, приуроченных к углеродистым сланцам и алевролитам хомолхинской свиты ($\varepsilon_{Nd(T)} = -6.2...$ —4.5). Схожая зависимость наблюдается и для карбонатов из поздних кварцевых жил на месторождении Сухой Лог, для которых установлен широкий диапазон $\varepsilon_{Nd(T)}$ (-12.4 ... -4.1). При этом крайние значения $\epsilon_{Nd(T)}$ близки или совпадают с таковыми во вмещающих породах хомолхинской (-6.2 ... -4.5) и имняхской (-13.9) свит. Высокая контрастность неопротерозойских метаосадочных пород Бодайбинского рудногой района по величинам $\varepsilon_{Nd(T)}$,

с одной стороны, и наблюдаемое соответствие по этому изотопному параметру гидротермально-метасоматических образований и вмещающих их пород, с другой, дают основание рассматривать метаосадочные толщи в качестве единственного источника Nd в минералообразующих флюидах. Исключением является месторождения Benнинское, для которого прожилково-вкрапленные руды и карбонаты из поздних кварцевых жил обладают систематически более высокими значениями $\varepsilon_{\text{Nd(T)}}$ (-8.3 ... -3.5) по сравнению с вмещающими их породами аунакитской свиты (-11.6 ... —8.1). Данный факт может указывать на наличие неточности в определении стратиграфической позиции изученных рудных тел месторождения Вернинское. Однако наиболее вероятным объяснением является преимущественное поступление Nd в гидротермальную систему этого месторождения из нижележащих толщ хомолхинской свиты. Породы последней характеризуются в среднем более высоким содержанием Nd (36 ± 25 мкг/г) по сравнению с породами аунакитской свиты (15±7 мкг/г) (Чугаев и др., 2017а, 2018; настоящая работа (см. электронное приложение, табл. 4)).

ЗОЛОТОРУДНЫЕ МЕСТОРОЖДЕНИЯ ОРОГЕННОГО ТИПА

Рис. 29. Сопоставление величин $\varepsilon_{Nd(T)}$ в гидротермально-метасоматических образованиях месторождений «сухоложского» типа (Дубинина и др., 2014; настоящая работа (см. электронное приложение, табл. 3)), неопротерозойских терригенно-карбонатных пород БПП (Дубинина и др., 2014; Чугаев и др., 2017а, 2018; настоящая работа (см. электронное приложение, табл. 4)), а также поздне- среднекаменноугольных гранитоидов конкудеро-мамаканского комплекса (Ярмолюк и др., 1999; Litvinovsky et al., 2011; настоящая работа (см. электронное приложение, табл. 4)).

Месторождения и рудопроявления БМП

Результаты Sm-Nd изучения гидротермальной минерализации золоторудных месторождений Ирокинда, Кедровское и Урях БМП (Чугаев и др., 2017б, 2020; настоящая работа (см. электронное приложение, табл. 3)) свидетельствуют о неоднородности изотопного состава Nd во флюиде. При этом по величинам $\varepsilon_{Nd(T)}$ (-13.5 ... -5.4) эти месторождения близки к месторождениям БПП, хотя масштаб вариаций этого параметра меньше и составляет около 8 единиц (рис. 30). В пределах упомянутых выше месторождений неоднородность $\varepsilon_{Nd(T)}$ в разной степени также проявлена. На месторождениях Ирокинда и Урях

ГЕОХИМИЯ том 69 № 9 2024

значения $\varepsilon_{Nd(T)}$ изменяются в относительно широких диапазонах соответственно: от -11.9 до -5.4 и от -13.5 до -8.2. В пределах указанного выше диапазона $\varepsilon_{Nd(T)}$ карбонатов из рудных тел месторождения Ирокинда находятся значения $\varepsilon_{Nd(T)}$ гидротермальных образований месторождения Кедровское. Изученные месторождения не обнаруживают существенных различий между собой по величинам $\varepsilon_{Nd(T)}$.

На рисунке 31 приведено сопоставление $\varepsilon_{Nd(T)}$ для гидротермальных образований золоторудных месторождений, а также разновозрастных метаморфических и магматических пород БМП. Породы докембрийской коры, а также присутствующие

Рис. 30. Величины ε_{Nd(T)} в гидротермально-метасоматических образованиях золоторудных месторождений БМП (Северное Забайкалье). По данным: Чугаев и др., 2017а, 2020; настоящая работа (см. электронное приложение, табл. 3).

в регионе позднепалеозойские магматические породы демонстрируют вариации є_{Nd(T)} (от -30 $_{\rm дo}$ +10), которые по своему масштабу существенно превосходят вариации этого же изотопного параметра в гидротермальных образованиях изученных месторождений. В то же время, полученные для карбонатов и шеелита величины є_{мd(т)} тяготеют к полям значений, которым соответствуют докембрийским породам корового происхождения (гранито-гнейсы, гнейсы, гранитоиды, а также терригенные метаосадки). В целом, Nd-изотопные данные определенно указывают на широкое вовлечение вещества древней (докембрийского возраста) континентальной коры БМП в рудообразующие процессы. При этом на месторождениях Урях и Ирокинда отмечается корреляция между геологической позицией рудных тел и величиной $\varepsilon_{Nd(T)}$ в гидротермальных образованиях, а также согласованность величин є_{Nd(T)} в рудах и вмещающих их породах. Можно предполагать два основных механизма поступления Nd в гидротермальные растворы. Первый из них реализовывается при взаимодействии флюида с вмещающими породами, тогда как второй допускает поступление Nd во флюид из магматических расплавов, прежде всего, гранитоидного состава, образованных в результате плавления докембрийской коры БМП, как это

обосновывается, например, в работах (Ярмолюк и др., 1999; Litvinovsky et al., 2011). Широкое перекрытие величин $\varepsilon_{Nd(T)}$ докембрийских коровых пород БМП и палеозойских интрузий не позволяет в рамках имеющихся пока данных надежно решить вопрос участия магматического источника в образовании золоторудной минерализации БМП.

Изотопный состав Pb в рудообразующих гидротермальных системах месторождений Северного Забайкалья

Первым системным исследованием вариаций изотопного состава Рb в золоторудной минерализации Северного Забайкалья стала работа Л.А. Неймарка с соавторами (Неймарк и др., 1993), в которой представлены результаты 55 анализов сульфидов из месторождений трех рудных районов: Бодайбинского (БПП), Октокит-Читчиковского (БМП) и Правомамского (БМП). Из приведенных Рb-Рb данных следует, что палеозойская золоторудная минерализация Северного Забайкалья характеризуются значительной неоднородностью изотопного состава Pb. При этом месторождения Байкало-Патомского и Байкало-Муйского пояса контрастны по своим Pb-Pb характеристикам, что может указывать на участие в их генезисе разных источников вещества. Авторами работы (Неймарк

ЗОЛОТОРУДНЫЕ МЕСТОРОЖДЕНИЯ ОРОГЕННОГО ТИПА

Рис. 31. Сопоставление величин ε_{Nd(T)} в гидротермальных образованиях золоторудных месторождений БМП (Чугаев и др., 2017а, 2020; настоящая работа (см. электронное приложение, табл. 3)), докембрийских метаморфических и магматических (Чугаев и др., 2020; настоящая работа (см. электронное приложение, табл. 4)), а также поздне-среднекаменноугольных гранитоидов конкудеро-мамаканского комплекса (Ярмолюк и др., 1999; Litvinovsky et al., 2011; настоящая работа (см. электронное приложение, табл. 4)).

и др., 1993) сделан общий вывод о геохимической природе этих источников. Для месторождений «сухоложского» типа предполагается участие в рудообразующих процессах свинца из источников орогенного и верхнекорового типов, тогда как для золоторудных месторождений Байкало-Муйского пояса — поступление свинца в гидротермальные растворы из источников нижнекорового и мантийного типов. Использование данных из работы (Неймарк и др., 1993) для решения вопроса об источнике вещества и оценки достоверности существующих генетических моделей затруднительно. Прежде всего, отсутствует геологическая привязка изученных образцов к конкретным рудопроявле-

ГЕОХИМИЯ том 69 № 9 2024

ниям и месторождениям региона. Сами результаты получены методом TIMS (0.2-0.3%, 2σ). Они по точности на порядок уступают Pb-Pb данным, которые опубликованы в более поздних исследованиях (Чернышев и др., 2009; Чугаев и др., 2014, 20176, 2020; Belogub et al., 2014; Чугаев, Чернышев, 2017; Tarasova et al., 2020; Chugaev et al., 2022b; Будяк и др., 2024a,6), выполненных с помощью высокоточного метода MC-ICP-MS (0.02-0.03% 2σ). Кроме того, как было показано в работах (Чугаев и др., 2014; Чугаев, Чернышев, 2017), сульфиды из ранних прожилково-вкрапленных руд месторождений БПП характеризуются сильно варьирующими содержаниями U, Th и Pb и, соответственно, свинец в них может содержать существенную радиогенную добавку изотопов ²⁰⁶Pb и ²⁰⁸Pb, накопленную in situ. Это предполагает обязательную коррекцию измеренных изотопных отношений Pb в образцах.

Следует упомянуть работу (Meffre et al., 2008). в которой опубликованы результаты изучения изотопного состава Рb в сульфидах руд месторождения Сухой Лог. Они были получены с помощью метода многоколлекторной масс-спектрометрии с ионизацией вещества в индуктивно связанной плазме с отбором проб лазерной абляцией (LA-MC-ICP-MS). В этом методе достигается высокая локальность и производительность измерений. Однако в силу различных методических причин такой подход обладает существенно более низкой (~0.5%, 2 σ) точностью при измерении изотопных отношений свинца по сравнению с традиционными методами TIMS и MC-ICP-MS. Значительный масштаб вариаций изотопного состава Pb в рудах этого месторождения, установленный авторами (Meffre et al., 2008), позднее не был подтвержден в работе (Чернышев и др., 2009), в которой для изотопного анализа 33 проб сульфидов применялся МС-ІСР-МЅ метод. Существующее противоречие в этих работах по оценке масштаба вариаций изотопного состава рудного Pb, в первую очередь, объясняется отличием методов LA-MC-ICP-MS и MC-ICP-MS по точности. Отсюда, полученные в работе (Meffre et al., 2008) данные не отражают реальную геохимическую неоднородность, что не позволяет рассматривать их совместно с результатами других Pb-изотопных исследований.

Таким образом, в дальнейшем при обсуждении вопроса источника/источников свинца для золоторудной минерализации Северного Забайкалья использовались, преимущественно, Pb-Pb данные, полученные с помощью высокоточного MC-ICP-MS метода.

Месторождения и рудопроявления БПП

Изотопный состав Рb с разной степенью детальности изучен в рудах 11 месторождений и рудопроявлений Бодайбинского района: Сухой Лог, Вернинское, Голец Высочайший, Красное, Ожерелье, Угахан, Ыкан, Кавказ, Копыловское, Догалдынская жила и Невское. Имеющиеся данные объединяют 125 анализов сульфидов как из прожилково-вкрапленной, так и жильной минерализации. Особенности распределения изотопного состава Рb в рудах отдельных месторождений подробно обсуждаются в работах (Чернышев и др., 2009; Чугаев и др., 2014; Tarasova et al., 2020; Будяк и др., 2024а,б). В настоящем разделе рассмотрим лишь общие закономерности в вариациях изотопного состава Pb, проявленные для всех месторождений «сухоложского» типа. Прежде

всего, отметим значительный размах изотопных отношений Рb. Скорректированные на возраст оруденения они изменяются в диапазонах: для (²⁰⁶Pb/²⁰⁴Pb) = 17.55-18.71, для $(^{207}\text{Pb}/^{204}\text{Pb})_{1} =$ = 15.55-15.69 и для (²⁰⁸Pb/²⁰⁴Pb) = 37.82-38.86. Соответственно, величины коэффициента вариации (v, %) составляют: для отношения (²⁰⁶Pb/²⁰⁴Pb). — $\upsilon_{6/4} = 1.2\%$, для (²⁰⁷Pb/²⁰⁴Pb)_t — $\upsilon_{7/4} = 0.21\%$ и для (²⁰⁸Pb/²⁰⁴Pb)_t — $\upsilon_{8/4} = 0.56\%$. Неоднородность изотопного состава Рb, хотя и в меньшем масштабе, проявлена и в пределах отдельных месторождений «сухоложского» типа. Например, для наиболее изученных месторождений Сухой Лог ($v_{6/4} = 0.87\%$ изученных месторождении сухон лог ($v_{6/4} = 0.07\%$) $v_{7/4} = 0.17\%$, $v_{8/4} = 0.34\%$, 33 анализа), Вернинское ($v_{6/4} = 0.72\%$ $v_{7/4} = 0.13\%$, $v_{8/4} = 0.40\%$, 23 анализа), Красное ($v_{6/4} = 0.42\%$ $v_{7/4} = 0.07\%$, $v_{8/4} = 0.51\%$, 12 анализов) и Голец Высочайший ($v_{6/4} = 0.12\%$ $\upsilon_{7/4} = 0.05\%$, $\upsilon_{8/4} = 0.25\%$, 15 анализов) величины коэффициента вариации существенно превышают (от 2 до 40 раз) аналитическую погрешность метода MC-ICP-MS. При этом не обнаруживается какойлибо корреляции между изотопным составом Рb месторождений и их геологической позицией или минералого-геохимическими особенностями руд.

Pb-Pb данные для месторождений и рудопроявлений «сухоложского» типа суммированы на диаграммах в координатах ²⁰⁶Pb/²⁰⁴Pb vs ²⁰⁷Pb/²⁰⁴Pb и ²⁰⁶Pb/²⁰⁴Pb vs ²⁰⁸Pb/²⁰⁴Pb (рис. 32a,б), на которых также показаны эволюционные кривые для источников с различными величинами $\mu_2 = {}^{238}U/{}^{234}Pb$ и $\omega_{2} = {}^{232}\text{Th}/{}^{204}\text{Pb}$ согласно двухстадийной модели Стейси-Крамерса (1975). Несмотря на значительные вариации изотопных отношений Pb, большинство месторождений и рудопроявлений БПП не обнаруживают контрастных отличий между собой. Поля их изотопного состава Pb частично или полностью перекрываются. Большинство точек сульфидов образуют линейный тренд на диаграмме в координатах ²⁰⁶Pb/²⁰⁴Pb-²⁰⁷Pb/²⁰⁴Pb (рис. 32а) с величиной достоверности аппроксимации $R^2 = 0.9$. Тренд имеет более пологий угол наклона по отношению к Pb-Pb изохронам модели Стейси-Крамерса. Исключением является только месторождение Угахан. Отвечающие ему точки изотопного состава Pb лежат левее от общего тренда и формируют собственный более пологий тренд $(R^2 = 0.73)$. Повышенный разброс точек наблюдается на диаграмме с участием торогенного изотопа ²⁰⁸Рb (рис. 32б). При этом расположение большей части точек может быть аппроксимировано двумя расходящимися трендами. Один из них полого ориентирован и субсогласен среднекоровой эволюционной кривой (S-K, ω, = 36.84) модели Стейси-Крамерса, тогда как второй тренд имеет более крутой наклон и смещен в область изотопного состава Pb, характерного для источника с повышенным Th/U (~4.0) отношением. Отдельное поле формируют точки сульфидов месторождения Угахан. Они расположены вдоль эволюционной кривой Стейси-Крамерса, описывающей эволюцию свинца в источнике с высокими значениями отношений 232 Th/ 204 Pb =42.0 и Th/U = 4.2 (рис. 32б). Отметим, что рудные тела месторождения Угахан локализованы в более древних породах бужуихтинской свиты. Их формирование происходило в условиях пассивной континентальной окраины при доминировании сноса терригенного материала с Сибирского кратона, что отличает эти отложения от лежащих выше по разрезу пород хомолхинской, аунакитской и догалдынской свит, вмещающих другие месторождения и рудопроявления «сухоложского» типа. В образовании последних принимало участие как вещество древней, так и новообразованной (неопротерозойской) коры (Немеров и др., 2010; Чугаев и др., 2018)

Существенный масштаб вариаций изотопного состава Pb и наличие положительной корреляционной зависимости между изотопными отношениями Pb (прежде всего, ²⁰⁶Pb/²⁰⁴Pb и ²⁰⁷Pb/²⁰⁴Pb) для золоторудной минерализации Бодайбинского района могут указывать на поступление этого металла в рудообразующие флюиды либо из одного неоднородного по своим U-Th-Pb характеристикам регионального резервуара, либо из нескольких источников.

Дополнительно к этому важна интерпретация геохимической природы линейного тренда. проявленного для большинства месторождений и рудопроявлений «сухоложского» типа на диаграмме в координатах ²⁰⁶Pb/²⁰⁴Pb vs ²⁰⁷Pb/²⁰⁴Pb. В работах (Чернышев и др., 2009; Чугаев, Чернышев, 2017) данный тренд обосновывается как линия смешения свинца различного типа. Авторами отмечено, что он объединяет точки анализов сульфидов из разных по возрасту руд. Кроме того, величина тангенса наклона исключает его интерпретацию как «вторичной» Pb-Pb изохронны. В этом случае получаемая оценка времени (~2.2 млрд лет) перераспределения U, Th и Pb в изначально геохимически однородном источнике противоречит геологическим и геохронологическим данным (Юдовская идр., 2011; Powerman et al., 2015; Rud'ko et al., 2021).

Вследствие значительной неоднородности изотопного состава Pb в месторождениях «сухоложского» типа величины модельных параметров μ_2 и ω_2 в источнике и модельного ²⁰⁷Pb-²⁰⁶Pb-возраста (Tм), рассчитанные по двухстадийной эволюционной модели Стейси-Крамерса (1975), существенно варьируют: $\mu_2 = 9.60-9.99$, $\omega_2 = 35.57-41.87$ и Tм = 704–102 млн лет. Систематически высокое ω_2 (40–42) и наиболее древние Tм (704–513 млн

Месторожления и рудопроявления БПП

Рис. 32. Pb–Pb диаграммы для сульфидов из золоторудных месторождений и рудопроявлений «сухоложского» типа Байкало-Патомского пояса (Северное Забайкалье) по данным (Чернышев и др., 2009; Чугаев и др., 2014; Belogub et al., 2014; Чугаев, Чернышев, 2017; Тагаsova et al., 2020; Будяк и др., 2024а,6; настоящая работа (см. электронное приложение, табл. 5)). На диаграммы нанесены эволюционные кривые (пунктирные линии) по модели (Stacey, Kramers, 1975). Серым цветом показаны тренды изотопного состава Pb сульфидов из золоторудной минерализации.

лет) получены для золоторудной минерализации месторождения Угахан (Будяк и др., 2024а). Напротив, для месторождения Красное по сравнению с другими рудными объектами Бодайбинского района характерно в среднем высокие величины $\mu_2 = 9.92 \pm 0.03$ (SD) и более «молодые» значения TM = 220 ± 40 млн лет (Tarasova et al., 2020). Представленные выше оценки модельных параметров позволяет сделать общий вывод о том, что по своим U-Th-Pb изотопным характеристикам источник/ источники рудного свинца месторождений «сухоложского» типа имели коровую природу. На это указывают, прежде всего, величины μ_2 , которые в большинстве своем либо близки, либо выше

среднекорового значения $\mu_2 = 9.74$ (Stacey, Kramers, 1975). Такой вывод находит подтверждение при сопоставлении изотопного состава Рb золоторудной минерализации БПП с эволюционными кривыми глобальных геохимических резервуаров Земли по модели Зартман-Доу (Zartman, Doe, 1981). Положение линейного тренда на диаграмме с ураногенными изотопами ²⁰⁶Pb и ²⁰⁷Pb (рис. 33) относительно эволюционных кривых указывают на участие в рудообразующих процессах свинца «верхнекорового» и «орогенного» типов (Неймарк и др., 1993; Чернышев и др., 2009; Чугаев, Чернышев, 2017).

Идентифицировать региональные источники рудного свинца «верхнекорового» и «орогенного» типов позволяют Pb-Pb данные, полученные для непротерозойских метаосадочных толщ и палеозойских магматических пород кислого и основного составов БПП (Неймарк и др., 1993; Чугаев, Чернышев, 2017; Чугаев и др., 2018). Сопоставление этих данных приведено на рисунке 33. Палеозойские магматические породы формируют несколько дискретных полей. Ближе всего к области значений рудного свинца расположены палеозойские гранитоиды конкудеро-мамаканского и мамского комплексов. Их точки также находятся в поле значений изотопного состава Pb метаосадков. Собственно на тренд изотопного состава рудного Pb попадают только точки даек гранитпорфиров конкудеро-мамаканского комплекса и мусковитовых пегматитов мамского комплекса. тогда как породы гранитоидных массивов этих же комплексов расположены левее тренда и образуют единое компактное поле. Такое соотношение изотопного состава Рb объясняется большей степенью контаминации расплавов кислых даек веществом осадочных пород (Чугаев, Чернышев, 2017). В свою очередь, положение точек палеозойских гранитоидов относительно тренда рудного свинца исключает ведущую роль магматических расплавов, как источника минералообразующих компонентов при образовании месторождений и рудопроявлений «сухоложского» типа. Такой же вывод можно сделать и в отношении даек лампрофиров кодали-бутуинского комплекса, точки которых расположены существенно ниже и левее тренда изотопного состава рудного Pb (рис. 33).

Рис. 33. Изотопная диаграмма Pb-Pb, на которой приведено сопоставление изотопного состава Pb золоторудной минерализации Бодайбинского рудного района (Чернышев и др., 2009; Чугаев и др., 2014; Belogub et al., 2014; Чугаев, Чернышев, 2017; Tarasova et al., 2020; Будяк и др., 2024а,б; настоящая работа (см. электронное приложение, табл. 5)), метаморфогенного пирита и валовых проб безрудных неопротерозойских метаосадочных пород (Чугаев, Чернышев, 2017; Чугаев и др., 2018) и палеозойских магматических комплексов (Неймарк и др., 1993; Чугаев, Чернышев, 2017). На диаграмму нанесены сплошными линиями кривые эволюции изотопного состава Pb в различных геохимических резервуарах Земли по модели Зартман-Доу (Zartman, Doe, 1981).

Напротив, свинец рудной минерализации по величинам изотопных отношений и характеру их вариаций сходен со свинцом неопротерозойских метаосадочных пород на время развития рудообразующих процессов в регионе. На диаграмме поля рудного свинца и свинца метаосадков практически полностью перекрываются и по ориентировке хорошо согласуются между собой. Аналогичное соотношение наблюдается и на диаграмме в координатах ²⁰⁶Pb/²⁰⁴Pb vs ²⁰⁸Pb/²⁰⁴Pb (в статье не приведено). Такое сходство свидетельствует о том, что ведущим источником свинца, поступавшего в гидротермальные системы месторождений, являлись неопротерозойские терригенно-карбонатные толщи Байкало-Патомского пояса. Таким образом, значительные вариации изотопных отношений Pb, характерные в целом для золоторудной минерализации Бодайбинского района, отражают первичную свинцово-изотопную неоднородность общего для них регионального источника, которая обусловлена присутствием в нем свинца «верхнекорового» и «орогенного» типов. Причиной этой неоднородности является смешение в зоне осадконакопления Бодайбинского палеобассейна терригенного материала двух геохимических типов континентальной коры древней (раннедокебрийской) коры Сибирского кратона, прошедшей длительную геохимическую эволюцию, и новообразованной позднедокембрийской коры Байкало-Муйского пояса (Чугаев и др., 2018).

Месторождения и рудопроявления БМП

Pb-Pb изотопные данные, полученные по сульфидам (117 образцов), опубликованы для более десятка различных по масштабу оруденения и геологической позиции золоторудных объектов Байкало-Муйского пояса. Это месторождения Ирокинда, Кедровское, Юбилейное, Урях, Мукадек, рудопроявления Ирбо, Еленинское, Верхнекаралонское, Верхнеянское, Октокитское, Огеми, Арбун (Неймарк и др., 1993; Чугаев и др., 2017б; Ванин и др., 2018; Чугаев и др., 2020; Chugaev et al., 2022b). По сравнению с месторождениями «сухоложского» типа золоторудная минерализация БМП характеризуется в целом менее радиогенным изотопным составом Рb и большим масштабом его вариаций. Изотопные отношения Рь изменяются в широких пределах: для ²⁰⁶Pb/²⁰⁴Pb от 16.63 до 18.29, для ²⁰⁷Pb/²⁰⁴Pb от 15.33 до 15.61 и для ²⁰⁸Pb/²⁰⁴Pb от 36.74 до 38.42, а соответствующие им величины коэффициента вариации равны
 $\upsilon_{_{6/4}}-$ 1.8%, $\upsilon_{_{7/4}}-$ 0.38% и $v_{6/4} - 0.97\%$. Наименее радиогенные изотопные составы Рь имеют сульфиды золоторудной минерализации рудопроявлений Ирбо и Верхнеянское, приуроченные к тонийским вулканогенно-

ГЕОХИМИЯ том 69 № 9 2024

осадочным комплексам, тогда как высокие значения изотопных отношений Pb получены для руд месторождения Урях, локализованных в неопротерозойских углеродистых терригенно-карбонатных породах. В пределах отдельных месторождений неоднородность изотопного состава Pb сохраняется, хотя масштаб этих вариаций по сравнению с региональным масштабом в несколько раз меньше. Например, для месторождений Ирокинда и Кедровское, для которых получены наиболее детальные Pb-Pb данные, величины коэффициента вариации для отношения 206 Pb/ 204 Pb составляют соответственно 0.4% и 0.13%, а для отношения 206 Pb/ 204 Pb — 0.33% и 0.11%.

Результаты изучения золоторудной минерализации месторождений и рудопроявлений Бакало-Муйского пояса обобшены на Рb-Рb диаграммах (рис. 34). Точки изотопного состава рудного Pb со значительным разбросом лежат в координатах с ураногенными изотопами ²⁰⁶Pb и ²⁰⁷Рb в близи или ниже среднекоровой эволюционной кривой Стейси-Крамерса (рис. 34а), тогда как в координатах с торогенным изотопом ²⁰⁸Рb подавляющее большинство расположено выше нее (рис. 34б). В отличие от золоторудной минерализации БПП общее распределение точек на диаграммах не подчинено единой линейной зависимости. Напротив, характерно дискретное распределение полей изотопного состава Рb для месторождений и рудопроявлений БМП, а также наличие в пределах этих полей коротких трендов, отличающихся по своей протяженности и наклону. Согласно работам (Zartman, 1974; Macfarlane et al., 1990; Чернышев, Шпикерман, 2001; Чугаев и др., 2013; Chugaev et al., 2020), такие особенности в вариациях изотопного состава Pb в рудных провинциях, где расположены месторождения близкого возраста и генезиса, объясняются, в первую очередь, неоднородностью геологического строения (и, как следствие, изотопного состава Pb) континентальной коры, вмещающей эти месторождения. Это согласуется не только с геологическими данными, свидетельствующими о сложном блоковом строении БМП (Kröner et al., 2014; Ярмолюк, Дегтярев, 2019), но и подтверждается результатами детального изучения вариаций изотопного состава Рь в пределах отдельных рудных тел на месторождениях Ирокинда и Кедровское (Чугаев и др., 2017б, 2020). На примере этих месторождений показано, что существует корреляция между изотопным составом Рb и геологической позицией рудных тел.

Поступление свинца в минералообразующие флюиды из разных по своим U-Th-Pb изотопным характеристикам пород также следует

808

Рис. 34. Pb–Pb диаграммы для сульфидов из золоторудных месторождений и рудопроявлений Байкало-Муйского пояса (Северное Забайкалье) по данным (Неймарк и др., 1993; Чугаев и др., 20176, 2020; Ванин и др., 2018; Chugaev et al., 2022b). На диаграммы нанесены эволюционные кривые (пунктирные линии) по модели (Stacey, Kramers, 1975). Серым цветом показаны тренды изотопного состава Pb сульфидов.

из результатов расчетов величин модельных параметров (μ₂, ω₂, Тм). Значения μ₂ и ω₂ изменяются в широких интервалах от 9.02 до 9.78 и от 35.2 до 43.5 соответственно (рис. 34). Большая часть данных показывает, что эволюция рудного свинца до момента его отделения в результате гидротермального раннепермского события, происходила в источниках, характеризующихся пониженными относительно среднекоровых значений величинами µ₂ ≤ 9.4 и, напротив, повышенными величинами $\omega_2 \ge 36.84$ (Th/U ≥ 3.8). Такие параметры типичны для пород нижней континентальной коры (Rudnik, Goldstein, 1990; Rudnik, Gao, 2003).

В свою очередь, наличие древних Pb-Pb модельный возрастов ($T_{m_{cp}} = 725 \pm 150$ млн лет при диапазоне от 280 до 1200 млн лет), свидетельствует о вовлечении в рудообразующие процессы свинца из докембрийской (неопротерозойской) коры, что согласуется с геологическими и геохронологическими данными для пород БМП. Отсюда можно заключить, что докембрийской коре БМП принадлежал основной вклад в поступлении свинца в минералообразующие системы золоторудных месторождений и рудопроявлений региона.

Однако характер наблюдаемых вариаций изотопного состава Рb на месторождениях, а именно наличие коротких трендов, не может быть объяснен только поступлением свинца из докембрийской континентальной коры БМТ. Рb-Рb данные указывают на участие и другого потенциального источника Pb. В качестве такого источника могли выступать магматические расплавы основного или кислого составов, с которыми связано формирование позднекарбоновых и раннепермских интрузий (Митрофанов и др., 1983; Кучеренко, 2004, 2007, 2014; Корольков, 2007; Попов и др., 2017; Prokof'ev et al., 2019; Чугаев и др., 2020; Chugaev et al., 2022b). Для оценки возможной роли магматического источника в образовании золоторудной минерализации БМП на рисунке 35 приведено сопоставление изотопного состава рудного Рb и свинца позднепалеозойских магматических пород, а также поля, отвечающие породам докембрийской коры этого региона.

Большая часть трендов изотопного состава рудного Pb расположено в поле пород докембрийской коры БМП. Генерализация имеющихся Pb-Pb данных позволяет выделить на диаграмме два главных тренда, объединяющих большинство месторождений и рудопроявлений БМП (рис. 35). На нижних продолжениях этих трендов расположены поля изотопного состава Pb гранито-гнейсов и гранитов, образованных за счет переработки в неопротерозойское время раннедокембрийской коры Аманакит-Муйской зоны.

Вдоль этих трендов с разбросом расположены точки палеозойских гранитов качойского и конкудеро-мамаканского комплекса, а также даек гранит-порфиров. Несмотря на близость изотопного состава Pb гранитоидов к таковому в золоторудной минерализации, участие кислых магматических расплавов в рудообразующих процессах можно исключить. В пользу этого свидетельствуют, прежде всего, геологические данные, согласно которым золоторудная минерализация наложена на гранитоиды (месторождение Юбилейное). Кроме того, изотопной состав Pb гранитоидов отклоняется

Рис. 35. Сопоставление изотопного состава свинца золотоносной минерализации, пород докембрийской коры и каменноугольных и пермских интрузий БМП. Кроме того, приведены поля изотопного состава Pb девонских и триасовых ультраосновных и основных щелочных пород южной окраины Сибирского кратона, триасовых базальтов Сибирского потопа. Кривые эволюции орогена и верхней коры (сплошная линия) приведены по модели Zartman и Doe (1981), а кривые эволюции (пунктирная линия S-K) — по модели Stacey и Kramers (1975).

от трендов свинца золоторудной минерализации на месторождениях Ирокинда и Юбилейное (Чугаев и др., 2020; Chugaev et al., 2022b). Общее сходство изотопного состава Pb гранитоидов и золоторудной минерализации объясняется широким участием в их генезисе вещества протерозойской континентальной коры БМП (Ярмолюк и др., 1999; Цыганков и др., 2010; 2017; Litvinovsky et al., 2011;).

Особенность трендов рудного свинца состоит в том, что, обладая разным наклоном и положением, они сходятся в единую для них область значений изотопных отношений ²⁰⁶Pb/²⁰⁴Pb и ²⁰⁷Pb/²⁰⁴Pb. В этой области находятся точки раннепермских пород Сыннырского дифференцированного щелочного массива, а также внутрирудных долеритовых даек месторождения Урях. Такое соотношение дает основание предполагать участие источника свинца щелочных расплавов не только в магматических процессах, но и в процессах рудообразования. С таким выводом согласуются и результаты Pb- изотопного изучения руд и магматических пород месторождения Ирокинда, согласно которым в рудообразующие флюиды поступал свинец из субщелочных магматических расплавов, с которыми связан петрогенезис монцодиторитовых даек на месторождении. Отметим, что поле изотопного состава Рь пород Сыннырского

массива близко к полям мантийных источников щелочных и субщелочных пород ультраосновного и основного состава, проявленных пределах Сибирского кратона в девонское и триасовое время (рис. 35).

ГЕОХРОНОЛОГИЧЕСКИЕ И ИЗОТОПНО-ГЕОХИМИЧЕСКИЕ ОГРАНИЧЕНИЯ НА ГЕНЕЗИС ЗОЛОТОРУДНОЙ МИНЕРАЛИЗАЦИИ СЕВЕРНОГО ЗАБАЙКАЛЬЯ

Обобщение результатов геохронологических и изотопно-геохимических исследований позволяет сформулировать ряд ограничений в отношении времени образования и источников вещества золоторудной минерализации Северного Забайкалья.

Корреляция рудообразующих событий и основных этапов развития БПП и БМП в палеозое

Комплекс геохронологических данных, полученных с помощью K-Ar, ⁴⁰Ar-³⁹Ar, Rb-Sr и U-Pb методов, свидетельствуют о наличии в палеозойской истории развития Северного Забайкалья трех разновозрастных рудообразующих событий. Наиболее ранние из них проявлены в пределах Бодайбинского синклинория (БПП). В течение позднеордовикско-силурийского события (450– 430 млн лет назад) произошло образование прожилково-вкрапленных сульфидных руд, имеющих основное экономическое значение на месторождениях «сухоложского» типа. Со среднекарбоновым событием (340–330 млн лет назад) в Бодайбинском синклинории связана реактивизация гидротермальных процессов, что привело к формированию золотоносных кварцевых жил. Палеозойский этап рудообразования в Северном Забайкалье завершает раннепермское событие (около 285 млн лет назад), которое маркируется золотоносной кварцево-жильной минерализацией в пределах БМП.

Представленные оценки возрастов выделенных рудообразующих событий позволяют провести их корреляцию с геотектоническими этапами развития Северного Забайкалья в палеозое. Основываясь на работах (Зоненшайн и др., 1990; Жмодик и др., 2006; Кузьмин и др., 2006: Зорин и др., 2009), ранее рудообразующее событие (450-430 млн лет) приходится на завершающую фазу аккреции Баргузино-Витимского микроконтинента к Сибирскому кратону. С этой же фазой большинство исследователей связывают формирование основных складчатых структур Бодайбинского синклинория, а также развитие зонального регионального метаморфизма и становление синметаморфических гранитов. Геологические и геохронологические данные допускают возможность того, что эти процессы по времени были достаточно длительными и могли протекать в течение первых десятков миллионов лет. Например, по результатам структурных исследований на месторождении Сухой Лог выделено две синметаморфические фазы складкообразования (Вуд, Попов, 2006; Large et al., 2007). Региональные исследования также свидетельствуют о наличии нескольких разделенных по времени тектонических эпизодов, с которыми связано формирование складчатых структур БПП (Чумаков и др., 2016 и цитируемые в ней работы). На продолжительность метаморфических процессов может указывать широкий диапазон опубликованных геохронологических датировок для метаморфогенных образований (пород и минералов) БПП. При этом среди них выделяется относительно узкий интервал ордовикско-раннесирурийских значений, которые, по мнению некоторых исследователей, фиксируют пик процессов регионального метаморфизма (Зорин и др., 2008; Meffre et al., 2008; Юдовская и др., 2011; Donskaya et al., 2013). Возрасты ранних прожилково-вкрапленных руд на месторождениях «сухоложского» типа близок или совпадает с оценками верхней границы регионального

метаморфизма. Отметим, что результаты минералогических и микроструктурных исследований прожилково-вкрапленных руд месторождений Сухой Лог, Угахан, Голец Высочайший свидетельствуют о сопряженности процессов пластической деформации метаосадочных пород и отложения золотоносной сульфидной минерализации (Large et al., 2007; Тарасова и др., 2021; Будяк и др., 2024а). Таким образом, раннее рудообразующее событие по времени коррелирует с метаморфическим преобразованием неопротерозойских терригенно-карбонатных толщ Бодайбинского синклинория БПП.

Образование поздних золоторудных кварцевых жил (340-330 млн лет назад) в Бодайбинском синклинории приходится на герцинский цикл развития Северного Забайкалья. С этим периодом связана масштабная переработка литосферы южной окраины Сибирского континента, которая сопровождалась широким развитием в регионе, прежде всего, постколлизионного гранитоидного магматизма, проявившегося в интервале времени от 340 до 280 млн лет (Цыганков и др., 2010, 2017; Ковач и др., 2012; Донская и др., 2013; Рыцк и др., 2021; Ткачев и др., 2022). Его пик попадает на возраст 300-290 млн лет. В это время происходит формирование крупномасштабных автохтонных и аллохтонных интрузий гранитов известково-щелочной серии конкудеро-мамаканского комплекса. Рудообразующее событие, с которым связаны золоторудные кварцевые жилы, по времени совпадает с наиболее ранними проявлениями каменноугольного гранитного магматизма (Цыганков и др., 2017; Ткачев и др., 2022).

На рубеже позднего карбона и ранней перми произошла смена геотектонических условий развития магматизма в регионе с постколлизионных на внутриплитные (Цыганков и др., 2010, 2017). Это сопровождалось мощным внутриконтинентальным рифтогенезом, обусловленным воздействием конвектирующей мантии на литосферу БМП (Ярмолюк и др., 1997; Donskaya et al., 2013). Раннепермское рудообразующее событие (~285 млн лет) по времени совпадает с развитием в регионе субщелочного и щелочного высококалиевого магматизма, с которым связано формирование серии дифференцированных щелочных массивов, а также дайковых комплексов базитового состава (Владыкин и др., 2014; Vladykin, Sotnikova, 2017; Рыцк и др., 2017б).

Источники вещества золоторудной минерализации

При разработке проблемы генезиса орогенных золоторудных месторождений многие исследования направлены, прежде всего, на идентифи-

кацию геологической формации пород — потенциальных источников золота (Frimmel, 2008; Frei et al., 2009; Pitcairn, 2011; Tomkins, 2013а; Чугаев, Знаменский, 2018; Gaboury, 2019; Meyer et al., 2023; Чугаев и др., 2024 и цитируемые в них работы). Несмотря на дискуссионность полученных выводов, результаты этих исследования указывают на важную роль вмещающих пород в поступлении минералообразующих компонентов в гидротермальные системы мезотермальных золоторудных месторождений. Широкое вовлечение вещества вмещающих пород при образовании золоторудной минерализации Северного Забайкалья также отмечено в большинстве работ, в которых представлены многочисленные результаты изотопно-геохимических исследований (Гаврилов, Кряжев; 2008; Кряжев и др., 2009; Русинов и др., 2008; Чернышев и др., 2009; Дубинина и др., 2010, 2014; Кряжев, 2017; Чугаев и др., 2017б, 2020; Prokof'ev et al., 2019; Tarasova et al., 2020; Chugaev et al., 2022b; Будяк и др., 2024а, б и цитируемые в них работы). В то же время основным дискуссионным вопросом в этих работах остается участие/неучастие магматического источника флюида и рудных элементов. В этой связи в обсуждении Sr. Nd и Pb изотопных данных, имеющихся для золоторудной минерализации Северного Забайкалья, наибольший интерес представляет оценка роли магматического источника в рудообразующих процессах, и идентификация его геохимической природы.

Месторождения и рудопроявления БПП

В первую очередь, следует отметить значительный масштаб вариаций изотопного состава Sr, Nd и Pb в гидротермальных образованиях месторождений «сухоложского» типа. Высокая степень неоднородности изотопного состава Sr и Pb установлена и для других мезотермальных золоторудных месторождений, локализованных в метаосадочных породах (например, Хоумстейк, США (Frei et al., 2009), группа месторождений Балларат Вест, Австралия (Bierlein, McNaughton, 1998), Ведуга, Россия (Чугаев и др., 2001), Чертово Корыто, Россия (Чугаев и др., 2010а).

Этот геохимический факт исключает главенство магматического источника в их генезисе. Многочисленные исследования показывают, что рудно-магматические системы, с которыми связано образование, например, Си-порфировых, колчеданных, оловорудных, полиметаллических, а также золоторудных месторождений, отличаются высокой степенью однородности изотопных характеристик (Чернышев и др., 2008, 2011, 2014, 2023; Грабежев, 2009; Plotinskaya et al., 2017; Чугаев и др., 2013; Chugaev et al., 2020). Из Sr и Nd изотоп-

ГЕОХИМИЯ том 69 № 9 2024

ных данных для гидротермальных образований также следует, что в рудообразующих процессах раннего и позднего этапов, проявленных в пределах БПП, не принимали участие магматические расплавы мантийного происхождения. На это непосредственно указывают высокие значения изотопного отношения ⁸⁷Sr/⁸⁶Sr, превышающие величину 0.710, и, напротив, относительно низкие значения $\varepsilon_{Nd(T)} \leq -3.2$. К аналогичному заключению можно прийти и в результате прямого сопоставления изотопного состава рудного Рb и свинца даек лампрофиров кодали-бутуинского комплекса (рис. 33).

В целом Sr, Nd и Pb изотопные «метки» золоторудной минерализации БПП типичны для источников корового типа: осадочных или магматических пород, образовавшихся в результате плавления корового протолита. Если участие вещества неопротерозойских метаосадочных толщ в рудообразующих процессах уверенно доказывается (рис. 25, 29, 33), то оценка гранитоидных расплавов как потенциального источника, затруднительна. Формирование палеозойских гранитоидов мамского и конкудеро-мамаканского комплексов связано с масштабным плавлением континентальной коры. Как следствие, они обладают Sr, Nd и Pb изотопными характеристиками близкими к таковым в метаосадках и, соответственно, к золоторудной минерализации. В то же время проявленные закономерности в вариациях є_{м(т)} (корреляция величины этого параметра со стратиграфической позицией рудных тел) и изотопного состава Рb на месторождениях «сухоложского» типа ограничивают возможность поступления этих элементов из гранитоидных расплавов. На примере Рb-Рb данных видно, что поле изотопного состава Рь полевых шпатов из палеозойских гранитоидных пород расположено в стороне (левее) от тренда рудного Pb (рис 33). На тренд попадают только точки позднепалеозойских даек пегматитов и гранит-порфиров, в которых присутствуют признаки ассимиляции расплавами вмещающих метаосадочных пород. Кроме того, соответствие изотопного состава Рь как ранней, так и поздней золоторудной минерализации единому тренду свидетельствует о том, что свинец в сульфидах поздних кварцевых жил был заимствован преимущественно из ранней прожилково-вкрапленной минерализации без поступления этого элемента из внешнего магматического источника. Такой вывод согласуется с геологическим фактом о пространственной сопряженности ранних прожилково-вкрапленных руд и поздних золотоносных кварцевых жил на месторождениях «сухоложского» типа (Иванов, 2014; Кряжев, 2017).

В качестве обоснования возможного участия магматического источника в генезисе золоторудной минерализации БПП ряд исследователей приводят результаты изучения изотопного состава кислорода и серы на месторождении Сухой Лог (Русинов и др., 2008; Кряжев, 2017 и цитируемые в них работы). Однако приводимая в этих работах оценка величины $\delta^{18}O = +10.0 \pm 0.5\%$ в минералообразующем флюиде не позволяют надежно определить его природу, поскольку данное значение близко к таковому во флюидах как магматогенного $(\delta^{18}O = +5.5 - +9.0\%)$, так и метаморфогенного $(\delta^{18}O = +3 - +25\%)$ происхождения (Hoefs, 2009; Rollinson et al., 2021). Другим аргументом является закономерное распределение изотопного состава S в рудных зонах месторождения Сухой Лог, которое выражается, с одной стороны, в высокой степени гомогенности величины $\delta^{34}S = +9 \pm 3\%$ в рудной зоне, а, с другой, «утяжеление» изотопного состава серы вплоть до $\delta^{34}S = +25\%$ на переферии (Дубинина и др., 2010; Кряжев, 2017 и цитируемые в них работы). При этом предполагается поступление серы из эндогенного источника еще на этапе осадконакопления.

Проблема источника серы в орогенных месторождениях золота, локализованных в метаосадочных углерод содержащих породах, широко обсуждается в современной литературе (Tomkins, 2010; Pitcairn et al., 2010; Gaboury, 2019; Li et al., 2020). В соответствии с термодинамическими расчетами процессы диагенетического и метаморфического преобразования углеродсодержащих осадочных толщ способствуют высвобождению не только Н₂О и СО,, но и существенных количеств серы в виде H_2S и, в меньшей степени, SO₂ (Tomkins, 2010). При этом в качестве источника серы рассматривается присутствующий в осадочных породах аутигенный пирит (Large et al., 2007; Tomkins, 2010; Pitcairn et al., 2010), который в условиях прогрессивного метаморфизма перекристаллизовывается в пирротин с потерей серы (Toulmin, Barton 1964). С учетом этих данных, а также принимая во внимание результаты минералогических исследований, свидетельствующих о широком присутствии в неопротерозойских осадочных толщах БПП диагенетического пирита (Large et al., 2007; Паленова и др., 2015; Tarasova et al., 2020; Будяк и др., 2024а,б), метаосадки представляются более вероятным источником серы, чем поступление ее из магматического источника. В свою очередь, значительный масштаб вариаций величин $\delta^{34}S$ на месторождениях «сухоложского» типа (рис. 22), вероятнее всего, обусловлен не только изотопным фракционированием в результате эволюции физико-химических условий в минералообразующей

системе (Дубинина и др., 2010; Будяк и др., 2024), но является следствием исходной неоднородности диагенетических и метаморфогенных сульфидов по изотопному составу серы (δ^{34} S = -15...+10%), что подтверждается результатами исследований, включая применение локального LA-ICP-MS метода изотопного анализа серы (Дубинина и др., 2010; Чугаев и др., 2018; Tarasova et al., 2020; Будяк и др., 2024а).

Результаты изотопных исследований (прежде всего, Sr, Nd и Pb данные) дают основание предполагать, что метаосадочные неопротерозойские породы являлись не только источником целого ряда минералообразующих элементов, но и главного компонента руд — золота. Микроскопические исследования, сопровождаемые LA-ICP-MS анализом, свидетельствуют о присутствии в диагенетическом пирите химически связанного и самородного золота (Large et al., 2007; Паленова и др., 2015; Tarasova et al., 2020; Тарасова и др., 2022 и цитируемые в них работы). Кроме того, исследователями было отмечено наличие стратиграфического контроля в размещении золоторудных месторождений и рудопроявлений в Бодайбинском синклинории (Буряк, 1982; Иванов, 2014; Юдовская и др., 2011; Tarasova et al., 2020). В целом, эти факты доказывают, что золото поступало в терригенно-карбонатные толщи уже на этапе осадконакопления в Бодайбинском палеобассейне.

В работах (Немеров и др., 2010; Будяк и др., 2016; Кряжев, 2017; Тагазоvа et al., 2020) образование ранней золотоносной сульфидной минерализации в осадочных толщах связывают с деятельностью субмаринных гидротермальных систем, функционирование которых происходило в условиях задугового осадочного палеобассейна одновременно с развитием в нем рифтогенных процессов. На возможность такого механизма указывает присутствие в Байкало-Патомском складчатом поясе протяженной палеорифтовой структуры — Олокитская зона. В ее пределах известны колчеданно-полиметаллические месторождения и рудопроявления, среди которых наиболее крупным является месторождение Холоднинское (Дистанов и др., 1977). Их генезис связывают с развитием рифтогенного бимодального вулканизма, проявившегося в Олокитской зоне около 600 млн лет назад (Дистанов и др., 1977; Рыцк и др., 2002; Будяк и др., 2019; Тарасова, Будяк, 2023). Другим косвенным свидетельством возможной генетической связи золоторудной минерализации БПП с источником рифтогенного магматизма является присутствие в рудах свинца «орогенного» типа (рис. 33).

Оценить достоверность такого предположения позволяют Pb-Pb изотопные данные, опубликованные для руд месторождения Холоднинское (Чугаев, Чернышев, 2017). Их сопоставление с результатами изучения месторождений и рудопроявлений «сухоложского» типа приведено на рисунке 36. По изотопному составу Рь руды Холоднинского месторождения существенно отличаются от золоторудной минерализации БПП. На диаграмме в координатах ²⁰⁶Pb/²⁰⁴Pb vs ²⁰⁷Pb/²⁰⁴Pb, отвечающая этому месторождению область значений изотопных отношений расположена в стороне от «сухоложского» тренда, что исключает участие в генезисе золоторудной минерализации источника свинца колчеданно-полиметаллической минерализации. Однако такая возможность весьма вероятна для руд месторождения Угахан, поскольку наблюдается близость его изотопного состава Pb с таковым в рудах месторождения Холодненское. Сходные соотношения изотопного состава Pb для золоторудной и колчеданно-полиметаллической минерализации устанавливаются и на диаграмме в координатах ²⁰⁶Pb/²⁰⁴Pb vs ²⁰⁸Pb/²⁰⁴Pb (не приведено).

Различие в Рb-изотопных характеристиках между колчеданно-полиметаллической и золоторудной минерализации БПП предполагает альтернативный механизм поступления золота в осадочный палеобассейн. В качестве такого механизма как для древних, так и для современных морских отложений среди исследователей рассматривается привнос речным стоком в зону осадконакопления золота в виде разных хими-

Рис. 36. Сопоставление изотопного состава Рь золоторудных месторождений и рудопроявлений Бодайбинского рудного района (Чернышев и др., 2009; Чугаев и др., 2014; Belogub et al., 2014; Чугаев, Чернышев, 2017; Tarasova et al., 2020; Будяк и др., 2024а,б), а также колчеданно-полиметаллического месторождения Холоднинское (Чугаев, Чернышев, 2017). На диаграмме нанесена среднекоровая эволюционная кривая по (Stacey, Kramers, 1975).

ческих соединений (коллоидные формы, хлоридные и цианидные комплексы), а также в виде тонкодисперстной фазы (Reznik, Fedoronchuk, 2000; Pitcairn et al., 2006; Large et al., 2007, 2016; Tomkins, 2013b; Nwaila, Frimmel, 2019). Осаждение металла вместе с диагенетическими сульфидами в нелитифицированных осадках связывают с геохимическими барьерами восстановительного характера совместно с активным участием биологического вещества (Fairbrother et al., 2012, 2013; Craw, Lilly, 2016; Shuster et al., 2017). По результатам изучения содержаний примесных элементов, включая и золото, в диагенетическом пирите из разновозрастных (от архея до четвертичного периода) осадочных пород морского происхождения, было показано, что максимальные концентрации металла характерны для сульфида из осадков, накопление которых происходило во время глобальных кислородных событий Земли (Large et al., 2015, 2017). Одним из таких известных событий, с которым связывают фундаментальные изменения окислительно-восстановительных условий на поверхности Земли, является неопротерозойское кислородное событие (NEO) (Canfield et al., 2007; Lyons et al., 2014; Sahoo et al., 2016). Согласно недавним работам (Sahoo et al., 2012, 2016), оно проявилось в эдиакарское время после Маринского олединения, возраст которого по U-Pb геохронологическим данным (ID-TIMS) определен как 634.57 ± 0.88 млн лет (Zhou et al., 2019). Нарастание окислительных условий в атмосфере и в мировом океане Земли, по мнению (Sahoo et al., 2016), происходило не монотонно. Существовало несколько импульсов с резким увеличением содержания кислорода, среди которых наиболее значимые пришлись на возрасты ~635, ~580, ~560 и 540 млн лет. Особо выделен импульс 580 млн лет назад, с которым связывают самое масштабное окисление глубинных вод Мирового Океана в эдиакарское время (Tostevin et al., 2019; Zhang et al., 2019).

Золоторудная минерализация Бодайбинского района локализована в четырех стратиграфических горизонтах, которым соответсвуют свиты (снизу вверх): бужуихтинская, хомолхинская, аунакитская и догалдынская. Геологические, геохронологические и изотопно-геохимические данные свидетельствуют, что их накопление происходило в эдиакарское время после Маринского олединения, т.е. во время NEO. Несмотря на существующие объективные ограничения в отношении точности возраста стратиграфических границ, наблюдается грубое совпадение между временем накопления отложений этих свит и упомянутых выше кислородных импульсов NEO. Так, породы бужуихтинской свиты были сформированы непосредственно после Маринского олединения. Накопление пород хомолхинской свиты, которые вмещают основные запасы золота в регионе (месторождения Сухой Лог и Голец Высочайший), происходило около 600–580 млн лет назад, а пород аунакитской свиты, с которыми пространственно ассоциируют месторождения Вернинское, Красное, Невское, Ыкан около 570–560 млн лет назад. Наконец, породы догалдынской свиты, к которым приурочены небольшие по масштабу оруденения месторождения Ожерелье, Догалдынская жила, Копыловское и Кавказ, отлагались около 550– 540 млн лет назад.

На границу 600-580 млн лет назад также приходится фундаментальная геотектоническая перестройка Бодайбинского палеоосадочного бассейна. В результате аккрекции неопротерозойских структур Байкало-Муйского пояса к Сибирскому кратону к этому время сформировался полуизолированный от мирового океана задуговой бассейн (Жмодик и др., 2006; Немеров и др., 2010; Станевич и др., 2010), что подтверждается результатами геохронологического изучения детритовых цирконов и изотопно-геохимических исследований пород (Юдовская и др., 2011; Покровский, Буякайте, 2015; Powerman et al., 2015; Чугаев и др., 2017а, 2018; Покровский и др., 2021). Кроме того, около 580 млн лет назад произошло кардинальное изменение окислительно-восстановительных условий в палеобассейне. Оно выразилось в масштабном окислении вод и в резком (почти 10-кратном) сокращении участков дна бассейна с восстановительной обстановкой (Чугаев и др., 2019а,б). По данным (Немеров и др., 2010; Станевич и др., 2010), в палеобассейне преобладали стагнационные условия, что способствовало появлению групп сульфатредуцирующих микрофоссилий, характерных для мезобатиальных и афотических обстановок. На наличие в это время на дне палеобассейна локальных участков с восстановительными (auxenic) условиями непосредственно указывают данные о вариациях δ^{238} U в осадках этого возраста (Чугаев и др., 2019а,б).

Таким образом, образование золотоносной сульфидной минерализации на этапе седиментагенеза обусловлено особенностями геотектонического и геохимического развития Бодайбинского осадочного палеобассейна и связано с общей геохимической эволюцией атмосферы и гидросферы Земли в эдиакарское время. Отсюда можно заключить, что золото имело тот же источник, что и кластогенный материал, поступавший в это время в палеобассейн. По мнению многих исследователей (Немеров и др., 2010; Powerman et al., 2015; Чугаев и др., 2017а, 2018), начиная с стратиграфичекого уровня хомолхинской свиты. одним из ведущих поставщиков кластогенного материала являлись неопротерозойские островодужные комплексы Байкало-Муйского пояса, что позволяет рассмотривать их в качестве возможного источника золота. В пользу такого вывода свидетельствуют Рb-изотопные данные. Они показывают, что на диаграмме в координатах ²⁰⁶Pb/²⁰⁴Pb vs²⁰⁷Pb/²⁰⁴Pb поле, отвечающее изотопному составу Рь в неопротерозойских породах БМП на 600-550 млн лет назал. расположено на нижнем продолжении «сухоложского» тренда рудного свинца (рис. 37). Аналогичные соотношения наблюдаются на диаграмме в координатах ²⁰⁶Pb/²⁰⁴Pb vs ²⁰⁸Pb/²⁰⁴Pb (не приведено).

Месторождения и рудопроявления БМП

Несмотря на контрастность Sr, Nd и Pb-изотопных характеристик золоторудной минерализации, обусловленную, в первую очередь, вовлечением в рудообразующие процессы вещества разнородных блоков континентальной коры БМП, изотопные данные не исключают участие общего для этих месторождений и рудопроявлений регионального источника, связанного с позднекарбон-раннепермским магматизмом. В качестве такого магматического источника исследователи рассматривают либо гранитоидные либо базитовые расплавы щелочной направленности (Митрофанов и др., 1983; Кучеренко, 2004, 2007, 2014; Корольков, 2007; Попов и др., 2017; Чугаев и др., 2020; Chugaev et al., 2022b). Из-за ограниченного объема Sr и Nd

Рис. 37. Сопоставление изотопного состава Pb золоторудных месторождений и рудопроявлений Бодайбинского рудного района (Чернышев и др., 2009; Чугаев и др., 2014; Чугаев, Чернышев, 2017; Tarasova et al., 2020; Будяк и др., 2024) и докембрийских магматических породах БМП (Чугаев и др., 2020; Chugaev et al., 2022b). Значения изотопных отношений ²⁰⁶Pb/²⁰⁴Pb и ²⁰⁷Pb/²⁰⁴Pb для пород БМП приведены на возраст 600–550 млн лет назад.

ГЕОХИМИЯ том 69 № 9 2024

изотопных данных нет возможности достоверно идентифицировать геохимическую природу магматического источника и оценить его роль в рудообразующих процессах. В решении этого вопроса более информативными представляются Pb-Pb данные. Они получены для широкого круга рудных объектов, а также по разновозрастным магматическим и метаморфическим породам БМП, включая и позднепалеозойские магматические образования.

Из общего сопоставления Рb-Рb данных видно, что золоторудная минерализация и позднепалеозойские гранитоиды весьма близки между собой по изотопному составу Рb (рис. 35). Большая часть точек гранитоидов расположены вблизи или в поле изотопного состава рудного Pb, что можно интерпретировать как свидетельство участия вещества кислых расплавов в образовании золоторудной минерализации. Однако более обоснованный вывод позволяют сделать результаты детальных исследований, выполненных для руд и магматических пород в пределах отдельных месторождений. Так, из Pb-Pb данных для месторождения Ирокинда и Юбилейное следует, что кислые расплавы, сформировавшие позднепалеозойские гранитоиды и дайки гранит-порфиров, не принимали участие в генезисе золоторудной минерализации (Чугаев и др., 2020; Chugaev et al., 2022b). Об этом же свидетельствует наложенный характер золоторудной минерализации по отношению к гранитам конкудеро-мамаканского комплекса на месторождении Юбилейное.

Напротив, выявленные зависимости в региональных и локальных вариациях изотопного состава рудного Pb позволяют предположить, что щелочные магмы базитового состава вносили определенный вклад в поступлении этого металла в рудообразующие системы. Помимо Pb-Pb данных этот вывод дополнительно обосновывается сопряженностью по времени рудообразующих процессов и щелочного магматизма в пределах БМП, а также присутствием в рудных зонах месторождений и рудопроявлений синрудных даек лампрофиров и долеритов и метасоматитов лиственитовой формации (Кучеренко, 2004, 2007, 2014; Чугаев и др., 2015).

Ключевой остается проблема источника золота. Отметим, что, обладая близким возрастом и минералого-геохимическими чертами, месторождения и рудопроявления БМП демонстрируют контрастные Sr, Nd и Pb изотопные характеристики. Эти отличия логично объяснить участием в рудообразовании вещества разнородных блоков докембрийской коры, в пределах которых они локализованы, тогда как существование для каждого из них уникального источника золота представляется маловероятным. В свою очередь, наличие общего регионального источника свинца, который соотносится со щелочными базитовыми расплавами, допускает возможность поступление из них также и золота. Формирование щелочными базитовыми расплавами золоторудной минерализации доказывается в работах (Угрюмов и др., 1996; Mao et al., 2008; de Boorder, 2012; Hronsky et al., 2012; Рябчиков и др., 2016; González-Jiménez et al., 2020; Wang et al., 2022).

Внутриплитный щелочной магматизм основного состава, проявленный в пределах континентальных литосферных блоков, традиционно связывают с мантийными расплавами, источниками для которых являлось вещество астеносферной и/или подкоровой литосферной мантии (Liegeois et al., 1998; Когарко, 2006; Когарко, Зартман, 2011; Ackerman et al., 2013; Тарре et al., 2012). При обсуждении генезиса палеозойских и мезозойских щелочных массивов (включая и Сыннырский массив), локализованных в пределах ЦАОП в западном и южном обрамлении Сибирского кратона, большинством исследователей обосновывается участие мантийного источника обогащенного типа (Donskaya et al., 2013; Владыкин и др., 2014; Врублевский и др., 2018; Рыцк и др., 2017б, 2018б Nosova et al., 2020). Для раннепалеозойского шелочного магматизма БМП в качестве такого источником вещества рассматривается SCLM, метасоматизированная в результате раннепалеозойских субдакционных процессов (Donskaya et al., 2013; Yarmolyuk et al., 2014). В метасоматических и магматических процессах золото ведет себя как несовместимый элемент (Tassara et al., 2020), что способствует его накоплению в окисленных базитовых расплавах глубинного происхождения. Подъем магм и отделение от них флюида, миграция которого в дальнейшем происходила по транслитосферным проницаемым зонам, обеспечивало транспортировку золота и его отложение на коровых уровнях.

ЗАКЛЮЧЕНИЕ

Северное Забайкалье относится к числу немногих примеров металлогенических провинций мира, в пределах которых расположены многочисленные золоторудные месторождения и рудопроявления орогенного типа. Их формирование происходило в различных геотектонических обстановках и связано с несколькими рудообразующими событиями, имевших место в палеозойское время. Обобщение геохронологических данных позволяет выделить три главных этапа рудообразования в этом регионе. Первый из них соответствует позднеордовикско-раннесилурийскому (450—430 млн лет назад) интервалу времени и приходится на завершающую стадию аккреции неопротерозойских структур Байкало-Муйского складчатого пояса к Сибирскому кратону. Этот процесс сопровождался региональным метаморфизмом неопротерозойских осадочных толщ Байкало-Патомского складчатого пояса, что привело к активизации гидротермальной деятельности и образованию прожилкововкрапленной золото-сульфидной минерализации в углеродистых терригенно-карбонатных породах БПП.

Следующая активизация рудообразующих процессов в БПП, с которыми связано формирование золото-кварцевой жильной минерализации, была в среднекаменноугольный (340—330 млн лет назад) период и по времени совпала с ранними фазами постколлизионного гранитоидного магматизма в Северном Забайкалье. Гранитоидные расплавы выступали источником тепла и, возможно, флюидов. Рудные компоненты, включая золото, жильной минерализации были заимствованы гидротермальными растворами из более ранних прожилково-вкрапленных руд.

В случае месторождений и рудопроявлений «сухоложского» типа следует выделить дополнительный этап, игравший важную роль в их генезисе. Он был продолжительным (от 600 до 550 млн лет назад) и по времени отвечает накоплению и диагенетическому преобразованию углеродистых осадочных толщ в Бодайбинском палеобассейне. Одновременно с седиментационными процессами в зонах осалконакопления, характеризующихся восстановительными условиями, происходило отложение золотоносной сульфидной минерализации. Дальнейшие палеозойские гидротермальные события приводили к перекристаллизации и перераспределению диагенентической сульфидной минерализации в осадочных толщах и вовлечение вещества пород в рудообразующие процессы.

Третий рудообразующий этап был проявлен в докембрийских структурах Байкало-Муйского складчатого пояса Северного Забайкалья. Инициализация гидротермальных процессов произошла в раннепермское время (290—280 млн лет назад) и была обусловлена развитием в регионе внутриплитного щелочного и субщелочного магматизма. Субщелочные и щелочные (высококалиевые) базитовые магмы, сформировавшиеся в результате парциального плавления метасоматизированной подкоровой субконтинентальной литосферной мантии Байкало-Муйского пояса, могли являться транспортерами ряда минералообразующих компонентов, включая золото. Их подъем на коровые уровни приводил к появлению локальных тепловых полей и вызывал циркуляцию флюидов в высокопроницаемых тектонических зонах. В результате взаимодействия флюида, имевшего, по-видимому, смешанную природу, с расплавами и докембрийскими породами континентальной коры БМП происходило его обогащение рудными компонентами, которые в дальнейшем отлагались в виде жильной золото-кварцевой минерализации.

Мезотермальные минералообразующие системы, с которыми связана палеозойская золоторудная минерализация орогенного типа в Северном Забайкалье, обнаруживают сушественную неолнородность по своим δ^{34} S, Sr, Nd и Pb-изотопным характеристикам, что отличает их от рудно-магматических (intrusion related type) систем. Изотопные составы Sr, Nd и Pb, а также масштаб их вариаций гидротермально-метасоматических образовав ниях в орогенных золоторудных месторождениях и рудопроявлениях этого региона в значительной степени контролировались соответствующими изотопными характеристиками пород континентальных блоков, в пределах которых происходило функционирование рудообразующих систем и отложение рудного вещества.

Оригинальные геохронологические и изотопно-геохимические данные настоящей статьи приведены в Приложении.

Автор благодарен В.В. Ярмолюку и А.Е. Будяку за их конструктивную критику и предложения, которые позволили улучшить статью, а также научному редактору Б.Г. Покровскому.

Автор глубоко признателен И.В. Чернышеву за постановку задач, многолетнюю поддержку и вклад в проведение геохронологических и изотопно-геохимических исследований. Автор благодарен Ю.О. Ларионовой, Ю.В. Гольцману, К.Н. Шатагину, Н.И. Сердюку, Т.И. Олейниковой и А.В. Травину, опыт и профессионализм которых позволил получить надежные возрасты и Sr, Nd и Pb изотопные «метки» для многих орогенных золоторудных месторождений и рудопроявлений, Е.О. Дубининой, А.С. Авдеенко, С.А. Коссовой и Ю.Н. Чижовой за их неоценимый вклад в изучение изотопных характеристик $\delta^{13}C$, $\delta^{18}O$, $\delta^{34}S$ золоторудной минерализации Северного Забайкалья.

Исследования выполнены в рамках Государственного задания ИГЕМ РАН (НИР № 124022400138-5).

СПИСОК ЛИТЕРАТУРЫ

Амелин Ю.В., Рыцк Е.Ю., Крымский Р.Ш., Неймарк Л.А., Скублов С.Г. (2000). Вендский возраст эндербитов гранулитового комплекса Байкало-Муйского офиолитового по-

ГЕОХИМИЯ том 69 № 9 2024

яса (Северное Прибайкалье): U-Pb-и Sm-Nd-изотопные свидетельства. ДАН. 371 (5), 652–654.

Арискин А.А., Данюшевский Л.В., Конников Э.Г., Маас Р., Костицын Ю.А., Мак-Нил Э., Меффре С., Николаев Г.С., Кислов Е.В. (2015) Довыренский интрузивный комплекс (Северное Прибайкалье, Россия): изотопно-геохимические маркеры контаминации исходных магм и экстремальной обогащенности источника. *Геология и геофизика*. **56** (3), 528–556.

Бабяк В.Н., Блинов А.В., Тарасова Ю.И., Будяк А.Е. (2019) Новые данные о геолого-структурных особенностях золоторудных месторождений Ожерелье, Ыканское, Угахан и Голец Высочайший. *Науки о Земле и недропользование*. **42** (4), 388–412.

Бондарь Д.Б., Чугаев А.В., Полеховский Ю.С., Кошлякова Н.Н. (2018) Минералогия руд месторождения золота Кедровское (Муйский район, Республика Бурятия, Россия). Вестник Московского университема, Серия 4. Геология. 3, 60–69.

Бортников Н.С. (2006) Геохимия и происхождение рудообразующих флюидов в гидротермально-магматических системах в тектонически активных зонах. *Геология рудных месторождений*. **48** (1), 3–28.

Бортников Н.С., Гамянин Г.Н., Викентьева О.В., Прокофьев В.Ю., Алпатов В.А., Бахарев А.Г. (2007) Состав и происхождение флюидов в гидротермальной системе Нежданинского золоторудного месторождения (Саха-Якутия, Россия). *Геология рудных месторождений*. **49** (2), 99–145.

Будяк А.Е., Горячев Н.А., Скузоватов С.Ю. (2016) Геодинамические предпосылки формирования масштабного оруденения южного обрамления Сибирского кратона в протерозое. *ДАН*. **470** (5), 562–565.

Будяк А.Е., Скузоватов С.Ю., Тарасова Ю.И., Ванг К.-Л., Горячев Н.А. (2019) Единая неопротерозойская — раннепалеозойская эволюция рудоносных осадочных комплексов юга Сибирского кратона. *ДАН*. **484** (3), 335–339.

Будяк А.Е., Тарасова Ю.И., Горячев Н.А., Блинов А.В., Игнатьев А.В., Веливецкая Т.А., Абрамова В.Д., Щербаков Д.Ю. (2023) Рудная минерализация месторождения Ожерелье: сопоставление с объектами «сухоложского» типа. Доклады Российской академии наук, Науки о Земле. **509** (2), 198–207.

Будяк А.Е., Чугаев А.В., Тарасова Ю.И., Горячев Н.А., Блинов А.В., Абрамова В.Д., Рассохина И.В., Реутский В.Н., Игнатьев А.В., Веливецкая Т.А., Ванин В.А. (2024а) Геолого-минералогические и геохимические особенности золоторудного месторождения Угахан «сухоложского» типа *Геология и геофизика*. **65** (3), 446–470.

Будяк А.Е., Тарасова Ю.И., Чугаев А.В., Горячев Н.А., Веливецкая Т.А., Игнатьев А.В. (2024б) Особенности формирования золоторудной минерализации в условиях амфиболитовой фации метаморфизма: месторождение Ыкан (Байкало-Патомский пояс). *Тихоокеанская геология.* **43** (3), 64–87.

Буряк В.А. (1965) Зависимость оруденения древних (докембрийских) формаций от региональной метаморфической зональности (Витимо-Патомское нагорье). ДАН. **163** (2), 435–438.

Буряк В.А. (1975) Метаморфогенно-гидротермальный промышленный тип золотого оруденения. Новосибирск: Наука. 47 с.

Буряк В.А. (1982) Метаморфизм и рудообразование М: Недра, 256 с.

Буряк В.А., Бакулин Ю.И. (1998) Металлогения золота. Владивосток: Дальнаука, 402 с.

Буряк В.А., Попов Н.П. (1969) Морфолого-генетические разновидности сульфидной минерализации Гольца Высочайшего. Вопросы геологии и золотоносности Ленского района (сборник статей) (Под ред. Беляев А.П., Бессолицын Е.П., Блинников И.И.) Иркутск: Б.и., 188–198.

Буряк В.А., Хмелевская Н.М. (1997) Сухой Лог — одно из крупнейших золоторудных месторождений мира (генезис, закономерности размещения оруденения, критерии прогнозирования). Владивосток: Дальнаука, 156 с.

Буряк В.А., Гончаров В.И., Горячев Н.А. (2002) Эволюционный ряд крупнообъемных золото-платиноидных месторождений в углеродистых толщах. *ДАН*, **387**(4), 512–515.

Бухаров А.А., Халилов В.А., Страхова Т.М., Черников В.В. (1992) Геология Байкало-Патомского нагорья по новым данным уран-свинцового датирования акцессорного циркона. *Геология и геофизика*. (12), 29–39.

Ванин В.А., Татаринов А.В., Гладкочуб Д.П., Мазукабзов А.М., Молочный В.Г. (2017) Роль динамометаморфизма в формировании золоторудного поля Мукадек (Северное Прибайкалье) *Геодинамика и тектонофизика*. **8** (3), 643–653.

Ванин В.А., Чугаев А.В., Демонтерова Е.И., Гладкочуб Д.П., Мазукабзов А.М. (2018) Геологическое строение золоторудного поля Мукодек, Северное Забайкалье и источники вещества (Pb–Pb и Sm–Nd данные). *Геология и геофизика*. **59** (9), 1345–1356.

Викентьев, И.В., Тюкова, Е.Э., Мурзин, В.В., Викентьева, О.В., Павлов, Л.Г. (2016). Воронцовское золоторудное месторождение. Геология, формы золота, генезис. Екатеринбург: Форт ДиалогИсеть, 207 с.

Виноградов В.И., Пичугин Л.П., Быховер В.Н., Головин Д.И., Муравьев В.И., Буякайте М.И. (1996) Изотопные признаки и время эпигенетических преобразований верхнедокембрийских отложений Уринского поднятия. *Литология и полезные ископаемые*. (1), 68–78.

Владыкин Н.В., Сотникова И.А., Котов А.Б., Ярмолюк В.В., Сальникова Е.Б., Яковлева С.З. (2014) Строение, возраст и рудоносность Бурпалинского редкометального щелочного массива (Северное Прибайкалье). *Геология рудных месторождений*. **56** (4), 272–290.

Волков А.В., Мурашов К.Ю., Сидоров А.А. (2016). Геохимические особенности руд месторождения золота Наталкинское — крупнейшего на Северо-Востоке России. *ДАН*. **466** (5), 574–574.

Врублевский В.В., Гертнер И.Ф., Чугаев А.В. (2018) Источники вещества высокоглиноземистых щелочных магм по данным изотопной (Nd, Sr, Pb O) геохимии пород Ки-я-Шалтырского габбро-уртитового интрузива девонского возраста, Южная Сибирь. ДАН. **479** (6), 666–672.

Воробьева Н.Г., Сергеев В.Н., Чумаков Н.М. (2008) Новые находки ранневендских микрофоссилий в уринской свите: пересмотр возраста патомского комплекса средней Сибири. *ДАН.* **419** (6), 782–787.

Вуд Б.Л., Попов Н.П. (2006) Гигантское месторождение золота Сухой Лог (Сибирь). *Геология и геофизика*. **47** (3), 315–341.

Гаврилов А.М., Кряжев С.Г. (2008) Минералого-геохимические особенности руд месторождения Сухой Лог. *Разведка и охрана недр.* (8), 3–16. Гамянин Г.Н. (2001) Минералого-генетические аспекты золотого оруденения Верхояно-Колымских мезозоид. М.:ГЕОС, 222 с.

Гамянин Г.Н., Бортников Н.С., Алпатов В.А. (2000) Нежданинское золоторудное месторождение — уникальное месторождение Северо-Востока России. М.: ГЕОС, 230 с.

Гибшер Н.А., Томиленко А.А., Сазонов А.М., Бульбак Т.А., Рябуха М.А., Сильянов С.А., Некрасова Н.А., Хоменко М.О., Шапаренко Е.О. (2019). Олимпиадинское золоторудное месторождение (Енисейский кряж): температура, давление, состав рудообразующих флюидов, δ³⁴S сульфидов, ³Не/⁴Не флюидов, Аг-Аг возраст и продолжительность формирования. *Геология и геофизика*. **60** (9), 1310–1329.

Гладкочуб Д.П., Станевич А.М., Мазукабзов А.М. (2013) Ранние этапы развития Палеоазиатского океана: данные по LA-ICP-MS датированию детритовых цирконов из позднедокембрийских толщ южного фланга Сибирского кратона. *Геология и геофизика.* **54** (10), 1472–1490.

Голубев С.Ю. (2008). Условия локализации рудных тел Наталкинского месторождения золота. *Руды и металлы*. (6), 72–76.

Гордиенко И.В. (2006) Геодинамическая эволюция поздних байкалид и палеозоид складчатого обрамления Сибирской платформы. *Геология и геофизика*. **47** (1), 53–70.

Гордиенко И.В., Рощектаев П.А., Гороховский Д.В. (2016). Окинский рудный район Восточного Саяна: геологическое строение, структурно-металлогеническое районирование, генетические типы рудных месторождений, геодинамические условия их образования и перспективы освоения. *Геология рудных месторождений*. **58** (5), 405–429.

Государственная геологическая карта геологическая карта Российской Федерации (2010) Масштаб 1 : 1 000 000. Серия Алдано-Забайкальская. Лист N-50 — Сретенск. Объяснительная записка. СПб.: Картографическая фабрика ВСЕ-ГЕИ, 377 с.

Государственная геологическая карта геологическая карта Российской Федерации (2011) Масштаб 1 : 1 000 000. Серия Алдано-Забайкальская. Лист N-49 — Чита. Объяснительная записка. СПб.: Картографическая фабрика ВСЕГЕИ, 632 с.

Государственная геологическая карта Российской Федерации. (2012) Масштаб 1 : 1 000 000 (третье поколение). Серия Алдано-Забайкальская. Лист О-49 –Киренск. Объяснительная записка. — СПб.: Картфабрика ВСЕГЕИ, 607 с.

Государственная геологическая карта Российской Федерации (2013). Масштаб 1: 200 000. Муйская серия. Лист О-50-XXXII. Объяснительная записка. М.: МФ ВСЕГЕИ, 201 с.

Горячев Н.А. (2003) Происхождение золото-кварцевых жильных поясов Северной Пацифики. Магадан. СВКНИИ ДВО РАН, 143 с.

Горячев Н.А., Викентьева О.В., Бортников Н.С., Прокофьев В.Ю. (2008) Наталкинское золоторудное месторождение мирового класса: распределение РЗЭ, флюидные включения, стабильные изотопы кислорода и условия формирования руд (Северо-Восток России). *Геология рудных месторождений*. **50** (5), 414–444.

Грабежев А.И. (2009) Sr-Nd-COHS изотопно-геохимическая характеристика медно-порфировых флюидно-магматических систем Южного Урала: вероятные источники вещества. *Литосфера*. (6), 66–89.

Грудинин М.И., Мазукабзов А.М., Демин И.А. (2002) Ультрабазит-базитовый магматизм обрамления Муйской глыбы (Средневитимская горная область). Бюл. МОИП. Отд. геол. 77 (4), 77–86. Гусев Г.С., Хаин В.Е. (1995) О соотношениях Байкало-Витимского, Алдано-Станового и Монголо-Охотского террейнов (юг Средней Сибири). *Геотектоника*. (5) 68–82.

Дистанов Э.Г., Ковалев К.Р., Шобогоров П.Ч. (1977) Особенности формирования метаморфизованных гидротермально-осадочных колчеданно-полиметаллических руд Холоднинского месторождения. Вопросы генезиса стратиформных свинцово-цинковых месторождений Сибири. Новосибирск: Наука, 5–43.

Дистлер В.В., Митрофанов Г.Л., Немеров В.К., Коваленкер В.А., Мохов А.В., Семейкина Л.К., Юдовская М.А. (1995) Формы нахождения металлов платиновой группы и их генезис в золоторудном месторождении Сухой Лог (Россия). *Геология рудных месторождений*. **38** (6), 467–484.

Добрецов Н.Л. (1983) Офиолиты и проблемы Байкало-Муйского офиолитового пояса. Магматизм и метаморфизм зоны БАМ и их роль в формировании полезных ископаемых. (Под ред. Соболев В.С.) Новосибирск: Наука, Сибирское отделение, 11–19.

Добрецов Н.Л., Буслов М.М., де Граве Й., Скляров Е.В. (2013) Взаимосвязь магматических, осадочных и аккреционно-коллизионных процессов на Сибирской платформе и ее складчатом обрамлении *Геология и геофизика*. **54** (10), 1451–1471.

Дольник Т.А. (2000) Строматолиты и микрофитолиты в стратиграфии рифея и венда складчатого обрамления юга Сибирской платформы. Новосибирск: Изд-во СО РАН, филиал «Гео», 320 с.

Дубинина Е.О., Иконникова Т.А., Чугаев А.В. (2010) Неоднородность изотопного состава серы пирита на месторождении Сухой Лог и определяющие ее факторы. *ДАН*, **435**(6), 786–790.

Дубинина Е.О., Чугаев А.В., Иконникова Т.А., Авдеенко А.С., Якушев А.И. (2014) Источники вещества и флюидный режим формирования кварц-карбонатных жил на месторождении золота Сухой Лог, Байкало-Патомское нагорье. *Петрология*. **22** (4), 347–379.

Жиляева А.И., Наумов В.Б., Кудрявцева Г.П. (2000) Минеральный состав и флюидный режим формирования золоторудного месторождения Юбилейное (Забайкалье, Россия). *Геология рудных месторождений*. **42** (1), 63–73

Жмодик С.М., Постников А.А., Буслов М.М., Миронов А.Г. (2006) Геодинамика Саяно-Байкало-Муйского аккреционно-коллизионного пояса в неопротерозое–раннем палеозое, закономерности формирования и локализации благороднометального оруденения. *Геология и геофизика*. (1), 183–197.

Журавлева З.А., Комар В.А., Чумаков Н.М. (1969) Строение и корреляция верхнедокембрийских отложений западной Якутии. Труды Межведомственного совещания по разработке унифицированных стратиграфических схем Якутской АССР. Материалы по геологии и полезным ископаемым Якутской АССР. (13), 53–69.

Заири Н.М., Шер С.Д., Стрижов В.П., Батрак В.Н., Панкратьева Л.Д. (1977) Изотопный состав серы из зоны золотоносной сульфидной вкрапленности. *Советская гео*логия. (1), 90–98.

Знаменский С.Е., Знаменская Н.М. (2011) Рудовмещающие транстенсивные дуплексы золото-кварцевых и золото-сульфидно-кварцевых месторождений Южного Урала. *Литосфера*. (1), 94–105.

Знаменский С.Е., Пучков В.Н., Мичурин С.В. (2015) Источники рудообразующих флюидов и условия формирования

ГЕОХИМИЯ том 69 № 9 2024

орогенных месторождений золота зоны Главного Уральского разлома на Южном Урале. ДАН. 464 (3), 313–316.

Золоторудное месторождение Мурунтау. (1998) Гл. ред. Шаякубов Т.Ш. Ташкент: ФАН, 539 с.

Зоненшайн Л.П., Кузьмин М.И., Наталов Л.М. (1990) Тектоника литосферных плит территории СССР. Кн. 1. М.: Недра, 328 с.

Зорин Ю.А., Беличенко В.Г., Турутанов Е.Х., Мазукабзов А.М., Скляров Е.В., Мордвинова В.В. (1997) Строение земной коры и геодинамика Байкальской складчатой области. Отечественная геология. (10), 37–44.

Зорин Ю.А., Мазукабзов А.М., Гладкочуб Д.П., Донская Т.В., Пресняков С.Л., Сергеев С.А. (2008) Силурийский возраст главных складчатых деформаций рифейских отложений Байкало-Патомской зоны. ДАН. **423** (2), 1–6.

Зорин Ю.А., Скляров Е.В., Беличенко В.Г., Мазукабзов А.М. (2009) Механизм развития системы островная дуга — задуговый бассейн и геодинамика Саяно-Байкальской складчатой области в позднем рифее — раннем палеозое. *Геология и геофизика*. **50** (3), 209–226.

Иванов А.И. (2014) Золото Байкало-Патома (геология, оруденение, перспективы). М.: ФГУП ЦНИГРИ, 215 с.

Иванов А.И., Лившиц В.И., Перевалов О.В. Страхова Т.М., Яблоновский Б.В., Грайзер М.И., Ильинская Х.Г., Головенок В.К. (1995) Докембрий Патомского нагорья. М.: Недра, 352 с.

Иконникова Т.А., Дубинина Е.О., Сароян М.Р., Чугаев А.В. (2009) Изотопный состав кислорода жильного кварца и вмещающих пород на месторождении Сухой Лог (Россия). *Геология рудных месторождений*. **51** (6), 560–567.

Кадашникова А.Ю., Сорокин А.А., Пономарчук А.В., Травин А.В., Пономарчук В.А. (2022) Возраст золотого оруденения месторождения Эльгинское (Монголо-Охотский складчатый пояс): ⁴⁰Ar/³⁹Ar геохронологические ограничения *Тихоокеанская геология*. **41** (2), 89–100.

Казакевич Ю.П., Шер С.Д., Жаднова Т.П., Стороженко А.А., Кондратенко А.К., Николаева Л.А., Аминев В.Б. (1971) Ленский золоторудный район. М.: Недра, **1**. 163 с.

Ковач В.П., Сальникова Е.Б., Рыцк Е.Ю. Ярмолюк В.В., Котов А.Б., Анисимова И.В., Яковлева С.З., Федосеенко А.М., Плоткина Ю.В. (2012) Длительность формирования Ангаро-Витимского батолита: результаты геохронологических U-Pb-исследований. ДАН. 444 (2), 184–189.

Когарко Л.Н. (2006) Щелочной магматизм и обогащенные мантийные резервуары: механизмы возникновения, время появления и глубины формирования. *Геохимия*. (1), 5–13.

Kogarko L.N. (2006). Alkaline magmatism and enriched mantle reservoirs: Mechanisms, time, and depth of formation. *Geochem. Int.* **44** (1), 3–10.

Когарко Л.Н., Зартман Р.Э. (2011) Новые данные о возрасте Гулинской интрузии и проблема связи щелочного магматизма Маймеча-Котуйской провинции с Сибирским суперплюмом (данные по изотопии U-Th-Pb системы). *Геохимия.* (5), 462–472.

Kogarko L.N., Zartman R.E. (2011). New data on the age of the Guli intrusion and implications for the relationships between alkaline magmatism in the Maymecha-Kotuy province and the Siberian superplume: U-Th-Pb isotopic systematics. *Geochem. Int.* **49** (5), 439–448.

Константинов М.М. (2010а) Ленская золоторудная провинция. Золоторудные месторождения России (под ред. Константинов М.М.) М.: Акварель, 15–32.

Константинов М.М. (2010б) Рудно-формационные и геолого-промышленные типы месторождений. Золоторудные месторождения России (под ред. Константинов М.М.) М.: Акварель, 12–15.

Константинов М.М. (2010в) Саяно-Енисейская провинция. Золоторудные месторождения России (под ред. Константинов М.М.) М.: Акварель, 32–60.

Кориковский С.П., Федоровский В.С. (1980) Ранний докембрий Патомского нагорья. М.: Наука, 468 с.

Корольков А.Т. (2007) Геодинамика золоторудных районов юга Восточной Сибири. Иркутск.: ИГУ, 251 с.

Кряжев С.Г., (2017) Генентические модели критерии прогноза золоторудных месторождений в углеродисто-терригенных комплексах. Дис. ... док. геол.-мин. наук. Москва: ФГУП ЦНИГРИ, 301 с.

Кряжев С.Г., Устинов В.И., Гриненко В.А. (2009) Особенности флюидного режима формирования золоторудного месторождения Сухой Лог по изотопно-геохимическим данным. *Геохимия*. (10), 1108–1118.

Kryazhev S.G., Ustinov V.I., Grinenko V.A. (2009). Fluid regime at the Sukhoi Log gold deposit: isotopic evidence. *Geochem. Int.* **47** (10), 1041.

Кузьмин М.И., Ярмолюк В.В., Спиридонов А.И., Немеров В.К., Иванов А.И., Митрофанов Г.Л. (2006) Геодинамические условия формирования золоторудных месторождений Бодайбинского неопротерозойского прогиба. *ДАН*. **407** (6), 793–797.

Кучеренко И.В. (1989) Позднепалеозойская эпоха золотого оруденения в докембрийском обрамлении Сибирской платформы. Известия АН СССР. Серия геологическая, (6), 90–102.

Кучеренко И.В. (2004) Петрологические и металлогенические следствия изучения малых интрузий в мезотермальных золоторудных полях. Известия Томского политехнического университета. **307** (1), 49–57.

Кучеренко И.В. (2007) Фемофильные химические элементы в околорудных метасоматических ореолах Кедровского золоторудного месторождения (Северное Забайкалье). Известия Томского политехнического университета. **310** (3), 6–10.

Кучеренко И.В. (2014) Петрология гидротермального метасоматоза долеритов внутрирудных даек мезотермальных месторождений золота. Ч. 1. Кедровское месторождение (Северное Забайкалье). Известия Томского политехнического университета. **325** (1), 155–165.

Кучеренко И.В. (2016) Петролого-геохимические черты рудовмещающего субстрата в гидротермальных месторождениях золота. Часть 1. Петрология околорудного метасоматизма. Известия Томского политехнического университета. Инжиниринг георесурсов. **327** (4), 55–68.

Кучеренко И.В. (2017) Проблемы рудной геологии и человеческий фактор. Часть 1. Минералого-петрохимическая зональность околожильных метасоматических ореолов в мезотермальных месторождениях золота: теория, эксперимент, природа. Известия Томского политехнического университета. Инжиниринг георесурсов. **328** (7), 105–118.

Лаверов Н.П., Лишневский Э.Н., Дистлер В.В., Чернов А.А. (2000) Модель рудно-магматической системы зо-

ГЕОХИМИЯ том 69 № 9 2024

лото-платинового месторождения Сухой Лог (Восточная Сибирь, Россия). *ДАН*. **375** (5), 652–656.

Лаверов Н.П., Чернышев И.В., Чугаев А.В., Баирова Э.Д., Гольцман Ю.В., Дистлер В.В., Юдовская М.А. (2007) Этапы формирования крупномасштабной благороднометалльной минерализации месторождения Сухой Лог (Восточная Сибирь): результаты изотопно-геохронологического изучения. *ДАН*. **415** (2), 236–241.

Ланда, Э.А.; Макарьев, Л.Б.; Былинская, Л.В.; Сергеев, С.А.; Павлов, М.В.; Прасолов, Э.М.; Прилепский, Э.Б.; Лохов, К.И.; Капитонов, И.Н.; Матуков, Д.И. (2006) Изтопно-геохимические особенности золоторудного месторождения Ходокан (В. Сибирь). *Региональная геология и металлогения*. **28**, 144–153.

Ларин А.М. (2011) Граниты рапакиви и ассоциирующие породы. СПб.: Наука, 402 с.

Ларионова Ю.О., Самсонов А.В., Шатагин К.Н., Носова А.А. (2013). Изотопно-геохронологические свидетельства палеопротерозойского возраста золоторудной минерализации в архейских зеленокаменных поясах Карелии (Балтийский щит). *Геология рудных месторождений*. **55** (5), 374–396.

Литвиновский Б.А., Занвилевич А.Н., Алакшин А.М., Подладчиков Ю.Ю. (1993) Ангаро-Витимский батолит крупнейший гранитоидный плутон. Новосибирск, ОИГГМ СО РАН, 141 с.

Львова Н.А. (1969) К изучению стратификации бодайбинской подсерии. Вопросы геологии и золотоносности Ленского района. Иркутск, 11–77.

Ляхов Ю.В., Попивняк И.В. (1977) О физико-химических условиях развития золотого оруденения Северной Бурятии. *Известия АН СССР. Серия геологическая*. (6), 9–18.

Макагон В.М. (1977) Пегматоидные граниты зон регионального метаморфизма высоких давлений. Новосибирск: Наука, 205 с.

Макрыгина В.А., Беличенко В.Г., Резницкий Л.З. (2007) Типы палеоостровных дуг и задуговых бассейнов северо-восточной части Палеоазиатского океана (по геохимическим данным). *Геология и геофизика.* **48** (1), 141–155.

Митрофанов Г.Л., Левицкий В.В., Митрофанова Н.Н. (1983) О связи магматизма и эндогенной металлогении с блоковым строением фундамента в Котеро-Уакитском и Муйском районах западного сектора БАМ. *Магматизм* и метаморфизм зоны БАМ и их роль в формировании полезных ископаемых. Новосибирск: Наука, 73–80.

Митрофанов Г.Л., Немеров В.К., Коробейников Н.К., Семейкина Л.К. (1994) Платиноносный потенциал позднедокембрийских углеродистных формаций Байкало-Патомского нагорья. *Платина России. Проблема развития минерально-сырьевой базы платиновых минералов* Москва: Геоинформмарк, 150–154.

Неелов А.Н., Глебовицкий В.А., Бушмин С.А. и др. (1987) Метаморфические фации зоны Байкало-Амурской магистрали. (Под ред. Глебовицкий В.А.) Л.: Наука, 75 с.

Неймарк Л.А., Соколов Ю.М., Друбецкой Е.Р. (1990) Возраст регионального метаморфизма и мусковитового пегматитообразования в Мамско-Бодайбинском прогибе (Байкальская горная область). Изотопное датирование эндогенных рудных формаций. Киев: Наук. думка, 130–131.

Неймарк Л.А., Рыцк Е.Ю., Гороховский Б.М., Амелин Ю.В., Овчиникова Г.В., Смирнов М.Ю., Грачева Т.В. Геохронологическое и изотопно-геохимическое изучение золото-

ГЕОХИМИЯ том 69 № 9 2024

рудных месторождений Байкальской складчатой области. Изотопное датирование эндогенных формаций. М.: Наука, 124–146.

Немеров В.К., Станевич А.М., Развозжаева Э.А. Будяк А.Е., Корнилова Т.А. (2010) Биогенно-седиментационные факторы рудообразования в неопротерозойских толщах Байкало-Патомского региона. *Геология и геофизика*. **51** (5), 729–747.

Никишин А.М., Соборно2 К.О., Прокопьев А.В., Фролов С.В. (2010) Тектоническая история Сибирской платформы в венде-фанерозое. Вестнник Московского Университета. Сер. 4. Геология. (1), 3–16.

Онищенко С.А., Сокерина Н.В. (2021). Особенности формирования золоторудного Черносланцевого месторождения Голец Высочайший (Бодайбинский рудный район). *Геология рудных месторождений*. **63** (2), 154—173.

Паленова Е.Е., Белогуб Е.В., Плотинская О.Ю., Новоселов К.А., Масленников В.В., Котляров В.А., Блинов И.А., Кузьменко А.А., Грибоедова И.Г. (2015) Эволюция состава пирита на золоторудных месторождениях Копыловское и Кавказ в черносланцевых толщах (Бодайбинский район, Россия) по данным РСМА и ЛА-ИСП-МС. *Геология рудных месторождений*. **57** (1), 71–92.

Петров Б.В., Макрыгина В.А. (1975) Геохимия регионального метаморфизма и ультраметаморфизма. (Под ред. Б.М. Шмакин) Новосибирск: Наука, 1975, 342 с.

Петровская Н.В., Сафонов Ю.Г., Шер С.Д. (1976) Формации золоторудных месторождений. *Рудные формации эндогенных месторождений*. М.: Наука, 3–110.

Плотинская О.Ю., Чугаев А.В., Бондарь Д.Б., Абрамова В.Д. (2019) Минералого-геохимические особенности руд Кедровско-Ирокиндинского рудного поля (Северное Забайкалье). *Геология и геофизика*. **60** (10), 1407–1432.

Покровский Б.Г., Буякайте М.И. (2015) Геохимия изотопов С, О и Sr в неопротерозойских карбонатах юго-западной части Патомского палеобассейна, юг Средней Сибири. Литология и полезные ископаемые. (2), 159–159.

Покровский Б.Г., Мележик В.А., Буякайте М.И. (2006) Изотопный состав С, О, Sr и S в позднедокембрииских отложениях патомского комплекса, Центральная Сибирь. Сообщение 1. Результаты, изотопная стратиграфия и проблемы датирования. Литология и полезные ископаемые. (5), 505–530.

Покровский Б.Г., Чумаков Н.М., Мележик В.А., Буякайте М.И. (2010) Геохимические особенности неопротерозойских "венчающих доломитов" патомского палеобассейна и проблема их генезиса. Литология и полезные ископаемы. (6), 644–661.

Покровский Б.Г., Буякайте М.И., Колесникова А.А., Петров О.Л., Хлебников М.С. (2021) С-, О- и Sr-изотопная геохимия вендской аномалии Шурам-Вонока и ассоциирующих метаосадочных толщ внутренней части Патомского нагорья (Центральная Сибирь). Литология и полезные ископаемые. (5), 406–435.

Попов Г.Г., Попов Б.Г., Мизиряк Д.Г. (2017) Кедровское золоторудное поле (геологическое строение и рудоносность). *Региональная геология и металлогения*. **69** (1), 80–87.

Прокофьев В.Ю., Бортников Н.С., Зорина Л.Д., Куликова З.И., Матель Н.Л., Колпакова Н.Н., Ильина Г.Ф. (2000). Генетические особенности золото-сульфидного месторождения Дарасун (Восточное Забайкалье, Россия). *Геология рудных месторождений*. **42** (6), 526–548. Пэк А.А., Мальковский В.И., Сафонов Ю.Г. (2011) Гипотеза микроструктурного контроля отложения тонковкрапленной золоторудной минерализации в черносланцевых толщах. *Геология рудных месторождений*. **53** (3), 250–266.

Рундквист И.К., Бобров В.А., Смирнова Т.Н., Смирнов М.Ю., Данилова М.Ю., Ащеулов А.А. (1992) Этапы формирования Бодайбинского золоторудного района. *Геология рудных месторождений.* **34** (6), 3–15.

Русинов В.Л., Русинова О.В., Кряжев С.Г., Щегольков Ю.В., Алышева Э.И., Борисовский С.Е. (2008) Околорудный метасоматизм терригенных углеродистых пород в Ленском золоторудном районе. *Геология рудных месторождений*. **50** (1), 3–46.

Рыцк Е.Ю., Амелин Ю.В., Ризванова Н.Г., Крымский Р.Ш., Митрофанов Г.Л., Митрофанова Н.Н., Переляев В.И., Шалаев В.С. (2001) Возраст пород Байкало-Муйского складчатого пояса. *Стратиграфия. Геологическая корреляция.* **9** (4), 3–15.

Рыцк Е.Ю., Шалаев В.С., Ризванова Н.Г., Крымский Р.Ш., Макеев А.Ф., Риле Г.В. (2002) Олокитская зона Байкальской складчатой области: новые изотопно-геохронологические и петрогеохимические данные. *Геотектоника*. (1), 29–41.

Рыцк Е.Ю., Макеев А.Ф. Глебовицкий В.А., Федосеенко А.М. (2004) Вендский (590±5 млн лет) возраст падринской серии Байкало-Муйского складчатого пояса: U-Pb данные по циркону. *ДАН*. **397** (4), 517–519.

Рыцк Е.Ю., Ковач В.П., Ярмолюк В.В., Коваленко В.И. (2007а) Структура и эволюция континентальной коры Байкальской складчатой области. *Геотектоника*. (6), 23–51.

Рыцк Е.Ю., Макеев А.Ф., Глебовицкий В.А., Федосеенко А.Ф. (20076) Ранневендский возраст многофазных габбро-гранитных комплексов Каралон-Мамаканской зоны Байкало-Муйского пояса: новые U-Pb изотопные данные. *ДАН.* **415** (4), 535–538.

Рыцк Е.Ю., Ковач В.П., Ярмолюк В.В., Коваленко В.И., Богомолов Е.С., Котов А.Б. (2011). Изотопная структура и эволюция континентальной коры Восточно-Забайкальского сегмента Центрально-Азиатского складчатого пояса. *Геотектоника*. (5), 17–51.

Рыцк Е.Ю., Сальникова Е.Б., Глебовицкий В.А., Великославинский С.Д., Алексеев И.А., Федосеенко А.М., Плоткина Ю.В. (2017а) Вендский возраст гранодиоритов и плагиогранитов таллаинского комплекса (Байкало-Муйский пояс): U-Pb изотопные данные. ДАН. 474 (2), 214–219.

Рыцк Е.Ю., Великославинский С.Д., Смыслов С.А., Котов А.Б., Глебовицкий В.А., Богомолов Е.С., Толмачева Е.В., Ковач В.П. (20176) Геохимические особенности и источники позднепалеозойских высококалиевых и ультракалиевых сиенитов Сыннырского и Тасского массивов (Восточная Сибирь). *ДАН*. **476** (1), 93–97.

Рыцк Е.Ю., Великославинский С.Д., Алексеев И.А., Богомолов Е.С., Ковач В.П., Саморуков В.И. (2018а) Геологическое строение Каралонского золоторудного поля (Средневитимская горная страна). *Геология рудных месторождений*. **60** (4), 342–370.

Рыцк Е.Ю., Федосеенко А.М., Анисимова И.В., Ковач В.П., Андреев А.А., Богомолов Е.С., Великославинский С.Д., Сальникова Е.Б. (2018б) Позднепермский внутриплитный магматизм Байкало-Муйского пояса: геохронологические U–Pb-и изотопные Nd-данные. *ДАН*. **483** (2), 193–197.

Рыцк Е.Ю., Толмачева Е.В., Великославинский С.Д., Кузнецов А.Б., Родионов Н.В., Андреев А.А., Федосеенко А.М. (2021) Результаты исследования циркона (SIMS) из гранитоидов Константиновского штока (район золоторудного месторождения Сухой Лог): возраст, источники и геологические следствия. *ДАН*. **496** (2), 169–175.

Рябчиков И.Д., Когарко Л.Н., Сазонов А.М., Кононкова Н.Н. (2016). Условия формирования золоторудной минерализации в щелочно-ультраосновных магматических комплексах. *ДАН*. **468** (6), 680–683.

Савчук Ю.С., Волков А.В. (2019) Крупные и суперкрупные орогенные золотые месторождения: геодинамика, структура, генетические следствия. *Литосфера.* **19** (6), 813–833.

Сазонов В.Н., Огородников В.Н., Коротеев В.А., Поленов Ю.П. (1999) Месторождения золота Урала. Екатеринбург, 570 с.

Сазонов А.М., Звягина Е.А., Сильянов С.А., Лобанов К.В., Леонтьев С.И., Калинин Ю.А., Савичев А.А., Тишин П.А. (2019) Рудогенез месторождения золота Олимпиада (Енисейский Кряж), Россия. *Геосферные исследования*. (1), 17–3.

Салоп Л.И. (1964) Геология Байкальской горной области. Т.І.М.: Недра, 586 с.

Салоп Л.И. (1967) Геология Байкальской горной области. Т. II. — М.: Недра, 699 с.

Сафонов Ю.Г. (1988) Условия залегания и внутреннее строение золоторудных тел КГФ. Золоторудное поле Колар (Индия) (Под ред. Чухров Ф.В.) М.: Наука, 81–94.

Сафонов Ю.Г. (1997) Гидротермальные золоторудные месторождения: распространенность — геолого-генетические типы — продуктивность рудообразующих систем. *Геология рудных месторождений*.**39** (1), 25–40.

Сафонов Ю.Г. (2010). Актуальные вопросы теории образования золоторудных месторождений. *Геология рудных месторождений*. **52** (6), 487–511.

Сафонов Ю.Г., Волков А.В., Вольфсон А.А., Генкин А.Д., Крылова Т.Л., Чугаев А.В. (2003) Золото-кварцевое месторождение Майское (Северная Карелия): геологические и минералого-геохимические особенности, вопросы генезиса. *Геология рудных месторождений*. **45** (5), 429–451.

Семихатов М.А. (1985) Строматолиты в стратиграфии докембрия: анализ'84. Изв. АН СССР. Серия геология. (4), 3–21.

Скузоватов С.Ю., Скляров Е.В., Шацкий В.С., Ванг К.Л., Куликова К.В., Зарубина О.В. (2016) Возраст метаморфизма и природа протолита гранулитов Южно-Муйской глыбы (Байкало-Муйский складчатый пояс). *Геология и геофизика*. 57 (3), 575–591.

Соболев А.Е. (2008). К вопросу о разработке универсальной классификации рудных формаций. *Региональная геолосия и металлогения*. (35), 98–104.

Сопко П.Ф. (1977) Типы золоторудных месторождений Башкирии и некоторые закономерности их размещения Условия локализации рудных месторождений на Южном Урале. (Под ред. Б.Д. Магадеев), Уфа: БФАН СССР, 59–72.

Срывцев Н.Л., Халилов В.А., Булдыгеров В.В., Переляев В.И. (1992) Геохронология гранитоидов Байкало-Муйского пояса. *Геология и геофизика*. (9), 72–78.

Станевич А.М., Мазукабзов А.М., Постников А.А., Немеров В.К., Писаревский С.А., Гладкочуб Д.П., Донская Т.В, Корнилова Т.А. (2007). Северный сегмент Палеоазиатского океана в неопротерозое: история седиментогенеза и геодинамическая интерпретация. *Геология и геофизика.* **48** (1), 60–79.

Станевич А.М., Машук И.М., Мазукабзов А.М., Постников А.А., Корнилова Т.А. (2010). Южный фрагмент Сибир-

ГЕОХИМИЯ том 69 № 9 2024

ского кратона: ландшафтная история за два миллиарда лет. *Геодинамика и тектонофизика*. **1** (1), 103–118.

Тарасова Ю.И., Соцкая О.Т., Скузоватов С.Ю., Ванин В.А., Куликова З.И., Будяк А.Е. (2016) Минералого-геохимические свидетельства полистадийности формирования месторождения Чертово Корыто. *Геодинамика и тектонофизика*. 7 (4), 663–677.

Тарасова Ю.И., Будяк А.Е., Иванов А.В., Горячев Н.А., Игнатьев А.В., Веливецкая Т.А., Радомская Т.А., Блинов А.В., Бабяк В.Н. (2021) Типоморфизм, типохимизм и изотопно-геохимические характеристики сульфидов железа месторождения Голец Высочайший (Восточная Сибирь). Записки Российского минералогического общества. (1), 1–14.

Тарасова Ю.И., Будяк А.Е., Горячев Н.А., Игнатьев А.В., Веливецкая Т.А., Блинов А.В., Горячева Е.М. (2022) Типоморфизм сульфидов золоторудного месторождения Угахан (Байкало-Патомское Нагорье). ДАН. **503** (1), 12–17.

Тарасова Ю.И., Будяк А.Е. (2023) Стадийность формирования рудной зоны Холоднинского колчеданно-полиметаллического месторождения. *Науки о Земле и недропользование.* **46** (2), 201–211.

Таусон В.Л., Акимов В.В., Липко С.В., Спиридонов А.М., Будяк А.Е., Белозерова О.Ю., Смагунов Н.В. (2015). Типоморфизм пирита месторождения Сухой Лог (Восточная Сибирь). *Геология и геофизика*. **56** (10), 1773–1796.

Ткачев А.В., Сальникова Е.Б., Рыцк Е.Ю., Котов А.Б., Иванова А.А., Толмачева Е.В., Плоткина Ю.В. (2022) О возрасте формирования пегматитов мамской слюдоносной провинции: новые U-Pb (ID-TIMS) данные по циркону. Доклады Российской академии наук. Науки о Земле. 507 (2), 163–170.

Томиленко А.А., Сазонов А.М., Бульбак Т.А., Хоменко М.О., Рябуха М.А., Шапаренко Е.О., Сильянов С.А., Некрасова Н.А. (2018). Рудоносные флюиды золоторудного месторождения Эльдорадо (Енисейский кряж, Россия). *Геология и геофизика*. **59** (8), 1220–1237.

Угрюмов А.Н., Дворник Г.П., Балахонов В.С. (1996). Метасоматическая зональность и золотое оруденение Ыллымахского щелочного массива (Алданский щит). Известия Уральского государственного горного университета. (5), 82–87.

Устинов В.И., Гриненко В.А., Кряжев С.Г. (2007) Физикохимические условия метаморфогенного рудообразования в Ленском золотоносном районе. Вестник Отделения наук о Земле РАН. (1), 25.

Хоментовский В.В. (1990) Байкалий — принципиальный этап истории геологического развития Сибири. *Геология и геохронология докембрия Сибирской платформы и ее обрамления*. (Под ред. Отв. ред. В.М. Шемякин) Л.: Наука,. 222–237.

Хоментовский В.В. (2008) Юдомий Сибири, венд и эдиакарская система Международной стратиграфической шкалы. *Стратиграфии. Геологическая корреляция.* **16** (6), 3–21.

Хоментовский В.В., Постников А.А., Карлова Г.А., Кочнев Б.Б., Якшин М.С., Пономарчук В.А. (2004). Венд Байкало-Патомского нагорья (Сибирь). *Геология и геофизика.* **45** (4), 465–484.

Хомич В.Г., Борискина Н.Г. (2011). Основные геолого-генетические типы коренных месторождений золота Забайкалья и Дальнего Востока России. *Тихоокеанская геология*. **30** (1), 70–96. Хрусталёв В.К., Хрусталёва А.В. (2006) Особенности вещественного состава и прогнозная оценка золоторудных метасоматитов Забайкалья. Улан-Удэ.: БНЦ СО РАН, 287 с.

Цыганков А.А. (2005) Магматическая эволюция Байкало-Муйского вулканоплутонического пояса в позднем докембрии. Новосибирск: Изд-во СО РАН, 303 с.

Цыганков А.А., Врублевская Т.Т., Конников Э.Г., Посохов В.Ф. (1998) Геохимия и петрогенезис гранитоидов муйского интрузивного комплекса (Восточная Сибирь) *Геология и геофизика*. **39**(3), 361–375.

Цыганков А.А., Литвиновский Б.А., Джань Б.М., Рейков М., Лю Д.И., Ларионов А.Н., Пресняков С.Л., Лепехина Е.Н., Сергеев С.А. (2010) Последовательность магматических событий на позднепалеозойском этапе магматизма Забайкалья (результаты U-Pb изотопного датирования). *Геология и геофизика.* **51** (9), 1249–1276.

Цыганков А.А., Бурмакина Г.Н., Хубанов В.Б., Буянтуев М Д. (2017) Геодинамика позднепалеозойского батолитообразования в западном Забайкалье. *Петрология*. **25** (4), 395– 418.

Чернышев И.В., Шпикерман В.И. (2001) Изотопный состав рудного свинца как отражение блокового строения Центральной части Северо-Востока Азии. *ДАН*. **377** (4), 530–533.

Чернышев И.В., Викентьев И.В., Чугаев А.В., Шатагин К.Н., Молошаг В.П. (2008) Источники вещества колчеданных месторождений Урала по результатам высокоточного MC-ICP-MS изотопного анализа свинца галенитов. ДАН. **418** (4), 530–535.

Чернышев И.В., Чугаев А.В, Сафонов Ю.Г., Сароян М.Р., Юдовская М.А., Еремина А.В. (2009) Изотопный состав свинца по данным высокоточного MC-ICP-MS-метода и источники вещества крупномасштабного благороднометального месторождения Сухой Лог (Россия). Геология рудных месторождений. **51** (6), 550–559.

Чернышев И.В., Бортников Н.С., Чугаев А.В., Гамянин Г.Н., Бахарев А.Г. (2011) Источники металлов крупного орогенного золоторудного Нежданинского месторождения (Якутия, россия): результаты высокоточного изучения изотопного состава свинца (MC-ICP-MS) и стронция. *Геология рудных месторождений*. **53** (5), 395–418.

Чернышев И.В., Прокофьев В.Ю., Бортников Н.С., Чугаев А.В., Гольцман Ю.В., Лебедев В.А., Ларионова Ю.О., Зорина Л.Д. (2014) Возраст гранодиорит-порфиров и березитов Дарасунского золоторудного поля (Восточное Забайкалье, Россия). *Геология рудных месторождений*. **56** (1), 3–18.

Чернышев И.В., Чугаев А.В., Бортников Н.С., Гамянин Г.Н., Прокопьев А.В. (2018) Изотопный состав свинца и источники металлов в месторождениях золота и серебра Южного Верхоянья (Якутия, Россия): по данным высокоточного МС-ICP-MS метода. *Геология рудных месторождений*. **60** (5), 448–471.

Чернышев И.В., Викентьев И.В., Чугаев А.В., Дергачев А.Л., Раткин В.В. (2023) Источники металлов колчеданных месторождений Рудного Алтая по данным высокоточного MC-ICP-MS изучения изотопного состава свинца. *Геохимия.* **68** (6), 545–569.

Chernyshev I.V., Vikentyev I.V., Chugaev A.V., Dergachev A.L., Ratkin V.V. (2023). Sources of Metals for the Rudny Altai VMS Deposits: Results of High-Precision MC-ICP-MS Lead Isotope Study. *Geochem. Int.* **61** (6), 539–561.

823

ГЕОХИМИЯ том 69 № 9 2024
Чугаев А.В. (2007) Rb-Sr изотопная система гидротермального кварца, возраст и источники вещества золоторудных месторождений Сухого Лога (Россия) и Колар (Индия). Автореф. дис. канд. геол.-мин. наук. М.: ИГЕМ РАН, 179 с.

Чугаев А.В., Белов А.Н., Чернышев И.В. (2001) Изотопный состав Sr и эволюция источника гидротермальных растворов (на примере золоторудного месторождения Ведуга, Енисейский Кряж). ДАН. 377 (5), 680–683.

Чугаев А.В., Знаменский С.Е. (2018) Свинцово-изотопные характеристики месторождения золота Миндяк (Южный Урал): к вопросу об источниках металлов. *Геология рудных месторождений*. **60** (1), 57–67.

Чугаев А.В., Чернышев И.В. (2017) Рb-Рb изотопная систематика орогенных месторождений золота Байкало-Патомского складчатого пояса (Северное Забайкалье, Россия) и оценка роли неопротерозойской коры в их формировании. *Геохимия*. (11), 1027–1040.

Chugaev A.V., Chernyshev I.V. (2017). Pb–Pb isotopic systematics of orogenic gold deposits of the Baikal–Patom fold belt (Northern Transbaikalia, Russia) and estimation of the role of neoproterozoic crust in their formation. *Geochem. Int.* **55** (11), 1010-1021.

Чугаев А.В., Чернышев И.В., Сафонов Ю.Г., Сароян М.Р. (2010а) Свинцово-изотопные характеристики сульфидов крупных месторождений золота Байкало-Патомского нагорья (Россия) по данным высокоточного изотопного МС-ICP-MS анализа свинца. *ДАН*. **434** (5), 677–680.

Чугаев А.В., Чернышев И.В., Гамянин Г.Н., Бортников Н.С., Баранова А.Н. (2010б) Rb-Sr изотопная систематика гидротермальных минералов, возраст и источники вещества золоторудного месторождения Нежданинское (Якутия). ДАН. **434** (4), 534–539.

Чугаев А.В., Чернышев И.В., Бортников Н.С., Коваленкер В.А., Киселева Г.Д., Прокофьев В.Ю. (2013). Изотопносвинцовые рудные провинции Восточного Забайкалья и их связь со структурами региона (по данным высокоточного MC-ICP-MS-изучения изотопного состава Рb). *Геология рудных месторождений*. **55** (4), 282–294.

Чугаев А.В., Плотинская О.Ю., Чернышев И.В., Котов А.А. (2014) Неоднородность изотопного состава Рb в сульфидах различных парагенетических ассоциаций на золоторудном месторождении Вернинское (Байкало-Патомское нагорье, Россия). ДАН. **457** (3), 337–342.

Чугаев А.В., Носова А.А., Абрамов С.С., Чернышев И.В., Бортников Н.С., Ларионова Ю.О., Гольцман Ю.В., Моралев Г.В., Вольфсон А.А. (2015) Раннепермский этап формирования золоторудных месторождений Северо-Восточного Забайкалья: изотопно-геохронологические (Rb-Sr и ³⁹Ar-⁴⁰Ar) данные по Уряхскому рудному полю. *ДАН*. **463** (6), 700–704.

Чугаев А.В., Будяк А.Е., Чернышев И.В., Шатагин К.Н., Олейникова Т.И., Тарасова Ю.И., Скузоватов С.Ю. (2017а) Источники обломочного материала неопротерозойских метаосадочных пород Байкало-Патомского пояса (Северное Забайкалье) по Sm-Nd изотопным данным. *Геохимия*. (1), 17–25.

Chugaev A.V., Budyak A.E., Chernyshev I.V., Shatagin K.N., Oleinikova T.I., Tarasova Y.I., Skuzovatov S.Y. (2017). Sources of clastic material of the Neoproterozoic metasedimentary rocks of the Baikal–Patom Belt, Northern Transbaikalia: evidence from Sm-Nd isotope data. *Geochem. Int.* **55** (1), 60–68.

Чугаев А.В., Плотинская О.Ю., Чернышев И.В., Лебедев В.А., Белогуб, Е.В. Гольцман Ю.В., Ларионова Ю.О., Олейникова Т.И. (20176) Возраст и источники вещества золоторудного месторождения Кедровское (республика Бурятия, Северное Забайкалье): геохронологические и изотопно-геохимические ограничения. *Геология рудных* месторождений. **59** (4), 281–297.

Чугаев А.В., Будяк А.Е., Чернышев И.В., Дубинина Е.О., Гареев Б.И., Шатагин К.Н., Тарасова Ю.И., Горячев Н.А., Скузоватов С.Ю. (2018) Изотопные (Sm-Nd, Pb-Pb и δ^{34} S) и геохимические характеристики метаосадочных пород Байкало-Патомского пояса (Северное Забайкалье) и эволюция осадочного бассейна в неопротерозойское время. *Петрология*. **26** (3), 213–244.

Чугаев А.В., Чернышев И.В., Рыцк Е.Ю., Сальникова Е.Б., Носова А.А., Травин А.В., Котов А.Б., Федосеенко А.М., Анисимова И.В. (2019а) Соотношение магматических, метаморфических и гидротермальных процессов в пределах Байкало-Муйского террейна (Восточная Сибирь): данные высокоточного геохронологического изучения Кедровского гранитоидного массива. *ДАН.* **489** (3), 292–297.

Чугаев А.В., Чернышев И.В., Будяк А.Е., Манджиева Г.В., Садасюк А.С., Гареев Б.И. (2019б) Вариации изотопного отношения ²³⁸U/²³⁵U в метаосадочных породах и свидетельство изменения условий осадконакопления в неопротерозое в эдиакарское время. *ДАН*. **484** (4), 472–477.

Чугаев А.В., Чернышев И.В., Покровский Б.Г., Манджиева Г.В., Гареев Б.И., Садасюк А.С., Баталин Г.А. (2019в) Изотопное отношение $^{238}U/^{235}U$ как индикатор окислительно-восстановительных условий в эдиакарском палеобассейне (разрез р. Чая, Байкало-Патомское нагорье, юг Средней Сибири). ДАН. **485** (3), 356–360.

Чугаев А.В., Дубинина Е.О., Чернышев И.В., Травин А.В., Коссова С.А., Ларионова Ю.О., Носова А.А., Плотинская О.Ю., Олейникова Т.И., Садасюк А.С. (2020) Источники и возраст золоторудной минерализации месторождения Ирокинда (Северное Забайкалье): результаты изучения изотопного состава Pb, S, Sr, Nd и данные ³⁹Ar– ⁴⁰Ar геохронометрии. *Геохимия*. **65** (11), 1059–1079.

Chugaev A.V., Dubinina E.O., Chernyshev I.V., Travin A.V., Kossova S.A., Larionova Y.O., .Nosova A.A., Plotinskaya O.Yu., Oleinikova T.I., Sadasyuk A.S. (2020). Sources and Age of the gold mineralization of the Irokinda Deposit, Northern Transbaikalia: evidence from Pb, S, Sr, and Nd isotopegeochemical and ³⁹Ar–⁴⁰Ar geochronological data. *Geochem. Int.* **58** (3), 1208–1227.

Чугаев А.В., Аникина Е.Ю., Бортников Н.С., Аристов В.В., Травин А.В., Бондарь Д.Б., Рассохина И.В., Олейникова Т.И. (2024) Мантийно-плюмовая модель образования орогенного месторождения золота Зун-Холба (Восточный Саян, Россия): результаты минералогических, Rb-Sr и ⁴⁰Ar-³⁹Ar геохронологических и Pb-Pb изотопных исследований. *Геология рудных месторождений*. **66** (3), 276–303.

Чумаков Н.М. (2016) Ранневендский эпизод складкообразования в Патомской складчатой зоне: синскладчатые кластические дайки в дальнетайгинской серии, Средняя Сибирь. Стратиграфия. Геологическая корреляция. 24 (32), 113–118.

Чумаков Н.М., Покровский Б.Г., Мележек В.А. (2007) Геологическая история патомского комплекса, поздний докембрий, Средняя Сибирь. *ДАН*. **413** (3), 379–383.

Чумаков Н.М., Капитонов И.Н., Семихатов М.А., Леонов М.В., Рудько С.В. (2011) Вендский возраст верхней части патомского комплекса Средней Сибири: U-Pb LA-ICPMS датировки обломочных цирконов никольской и жербинской свит. Стратиграфия. Геологическая корреляция. **19** (2), 115–119. Чумаков Н.М., Семихатов М.А., Сергеев В.Н. (2013) Опорный разрез вендских отложений юга Средней Сибири. Стратиграфия. Геологическая корреляция. 21 (4), 26–52.

Шацкий В.С., Ситникова Е.С., Томиленко А.А., Рагозин А.Л., Козьменко О.А., Ягоутц Э. (2012) Эклогит-гнейсовый комплекс Муйской глыбы (Восточная Сибирь): возраст, минералогия, геохимия, петрология. *Геология* и геофизика. **53** (6), 657–682

Юдовская М.А., Дистлер В.В., Родионов Н.В., Мохов А.В., Антонов А.В., Сергеев С.А. (2011). Соотношение процессов метаморфизма и рудообразования на золотом черносланцевом месторождении Сухой Лог по данным U-Th-Pb-изотопного SHRIMP-датирования акцессорных минералов. *Геология рудных месторождений*. **53** (1), 32–64.

Ярмолюк, В.В., Дегтярев, К.Е. (2019). Докембрийские террейны Центрально-Азиатского орогенного пояса: сравнительная характеристика, типизация и особенности тектонической эволюции. *Геотектоника*. (1), 3–43.

Ярмолюк В.В., Ковач В.П., Козаков И.К., Козловский А.М., Котов А.Б., Рыцк Е.Ю. (2012) Механизмы формирования континентальной коры Центрально-Азиатского складчатого пояса. *Геотектоника*. (4), 3–27.

Ярмолюк В.В., Будников С.В., Коваленко В.И., Антипин В.С., Горегляд А.В., Сальникова Е.Б., Котов А.Б., Козаков И.А., Ковач В.П., Яковлева З.С., Бережная Н.Г. (1997) Геохронология и геодинамическая позиция Ангаро-Витимского батолита. *Петрология*. **5** (5), 451–466.

Ярмолюк В.В., Коваленко В.И., Ковач В.П., Будников С.В., Козаков И.К., Котов А.Б., Сальникова Е Б. (1999) Nd- изотопная систематика коровых магматических протолитов Западного Забайкалья и проблема рифейского корообразования в Центральной Азии. *Геотектоника*. (4), 3–20.

Ankusheva N.N., Palenova E.E., Shanina S.N. (2020). Fluid inclusion evidences for the P-T conditions of quartz veins formation in the black shale-hosted gold deposits, Bodaybo ore region, Russia. *J. Asian Earth Sci.* **31** (3), 514–522.

Ackerman L., Spacek P., Magna T., Ulrych J., Svojtka M., Hegner E., Balogh K. (2013). Alkaline and carbonate-rich melt metasomatism and melting of subcon-tinental lithospheric mantle: evidence from mantle xenoliths, NE Bavaria, Bohemian Massif. *J. Petrol.* **54** (12), 2597–2633.

Arima M., Kerrich R. (1988) Jurassic kimberlites from Picton and Varty Lake, geochemical and stable isotopic characteristics. *Contr. Mineral. and Petrol.* **99**, 385–391

Balakrishnan S., Hanson G.N., Rajamani V. (1990) Pb and Nd isotope constraints on the origin of high Mg and tholeiitic amphibolites, Kolar Schist Belt, South India. *Contr. Mineral. Petrol.* **107**, 279–292.

Baumgartner L.P., Valley J.W. (2001) Stable isotope transport and contact metamorphic fluid flow // Stable Isotope Geochemistry. *Rev. Mineral. Geochem.* **43** (1), 415–468.

Belogub E.Y, Palenova E.E., Chugaev A.V, Plotinskaya O.Yu. (2014) Origin of gold ores in black-shale hosted deposits of the Bodaybo region, Russia. *Acta Geol. Sinica*, **88** (2), 252–253.

Berge J. (2011). Paleoproterozoic, turbidite-hosted, gold deposits of the Ashanti gold belt (Ghana, West Africa): Comparative analysis of turbidite-hosted gold deposits and an updated genetic model. *Ore Geol. Rev.* **39** (1-2), 91–100.

Bierlein F.P., Crowe D.E. (2000) Phanerozoic orogenic lode gold deposits. In Gold in 2000. *Reviews in Economic Geology*, **13**, 103–139.

Bierlein F.P., McNaughton N.J. (1998). Pb isotope fingerprinting of mesothermal deposits from central Victoria, Australia: implications for ore genesis. *Mineral. Deposita*, **33**, 633–638.

Bierlein F.P., Pisarevsky S. (2008) Plume-related oceanic plateaus as a potential source of gold mineralization. *Econ. Geol.* **103** (2), 425–430.

Bohlke J.K. (1982) Orogenic (metamorphic-hosted) gold-quartz veins. US Geological Survey Open-File Report. **795**, 70–76.

de Boorder H. (2012). Spatial and temporal distribution of the orogenic gold deposits in the Late Palaeozoic Variscides and Southern Tianshan: How orogenic are they? *Ore Geol. Rev.* **46**, 1–31.

Champion D.C., Bultitude R.J. (2013). The geochemical and Sr-Nd isotopic characteristics of Paleozoic fractionated S-types granites of north Queensland: Implications for S-type granite petrogenesis. *Lithos.* **162**, 37–56.

Canfield D.E., Poulton S.W., Narbonne G.M. (2007) Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. *Science.* **315** (5808), 92–95.

Cartwright I., Oliver N.H.S. (2000) Metamorphic fluids and their relationship to the formation of metamorphosed and metamorphogenic ore deposits. In *Metamorphosed and Metamorphogenic Ore Deposits* (Eds: Spry P., Marshal B., Vokes F.M). *Econ. Geol.* **11**, 81–96.

Chang Z., Large R.R., Maslennikov V. (2008) Sulfur isotopes in sediment-hosted orogenic gold deposits: Evidence for an early timing and a seawater sulfur source *Geology*. **38** (12), 971–974.

Cliff[°] R.A. (1985) Isotopic dating in metamorphic belts. J. Geol. Soc. Lond. **142** (1), 97–110.

Chugaev A.V., Safonov Y.G., Chernyshev I.V. (2001) Age of Kolar Au-deposits (India): Rb-Sr, Sm-Nd and K-Ar age constraints. *J. Appl. Geochem.* **4** (2), 384 – 396.

Chugaev A.V., Chernyshev I.V., Ratkin V.V., Gonevchuk V.G., Eliseeva O.A. (2020). Contribution of crustal and mantle sources to genesis of Sn, B and Pb-Zn deposits in South Sikhote-Alin subprovince (Russian Far East): Evidence from high–precision MC-ICP-MS lead isotope study. *Ore Geol. Rev.* **125**, 103683. https://doi.org/10.1016/j.oregeorev.2020.103683

Chugaev A.V., Budyak A.E., Larionova Y.O., Chernyshev I.V., Travin A.V., Tarasova Yu.I., Gareev B.I., Batalin G.A., Rassokhina I.V., Oleinikova T.I. (2022 a) ⁴⁰Ar-³⁹Ar and Rb-Sr age constraints on the formation of Sukhoi-Log-style orogenic gold deposits of the Bodaibo District (Northern Transbaikalia, Russia). *Ore Geol. Rev.* **144**, 104855. DOI: 10.1016/j. oregeorev.2022.104855

Chugaev A.V., Vanin V.A., Chernyshev I.V., Shatagin K.N., Rassokhina I.V., Sadasyuk A.S. (2022b) Lead Isotope Systematics of the Orogenic Gold Deposits of the Baikal-Muya Belt (Northern Transbaikalia): Contribution of the Subcontinental Lithospheric Mantle in Their Genesis. *Geochem. Int.*, **60** (13), 1352–1379.

Collins W.J. (1996) Lachlan Fold Belt granitoids: products of three-component mixing. *Earth Environ. Sci. Trans. R. Soc. Edinburgh*, **87** (1-2), 171–181.

Connolly J.A.D. (2010) The mechanics of metamorphic fluid expulsion. *Element.* **6** (3), 165–172.

Cozzi A., Allen P.A., Grotzinger J.P. (2004) Understanding carbonate ramp dynamics from C profiles: examples from the Neoproterozoic Buah Formation of Oman *Terra Nova*. **16** (2), 62–67.

ГЕОХИМИЯ том 69 № 9 2024

Craw D., Lilly K. (2016) Gold nugget morphology and geochemical environments of nugget formation, southern New Zealand. *Ore Geol. Rev.* **79**, 301–315.

Damdinov B.B., Goryachev N.A., Moskvitina M.L., Damdinova L.B., Izvekova A.D., Reutsky V.N., Posokhov V.F., Artemyev D.A. (2022) Zun-Kholba orogenic gold deposit, Eastern Sayan, Russia: geology and genesis. *Minerals.* **12** (4), 395. https://doi.org/10.3390/min12040395

Distler V.V., Yudovskaya M.A., Mitrofanov G.L., Prokof'ev V.Y., Lishnevskii E.N. (2004). Geology, composition, and genesis of the Sukhoi Log noble metals deposit, Russia. *Ore Geol. Rev.* 24 (1-2), 7–44.

Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., Ivanov A.V. (2013) Late Paleozoic–Mesozoic subduction-related magmatism at the southern margin of the Siberian continent and the 150 million-year history of the Mongol–Okhotsk Ocean *J. Asian Earth Sci.* **62**, 79–97.

Dodson M.H. Theory of cooling ages. In *Lectures in isotope geology* (Eds. Jager E., Hunziker J.C.), Springel-Vergal, New-York, 1979. 194–202.

Fairbrother L., Brugger J., Shapter J., Laird J.S., Southam G., Reith F. (2012). Supergene gold transformation: biogenic secondary and nanoparticulate gold from arid Australia. *Chem. Geol.* **320–321**, 17–31.

Fairbrother L., Etschmann B., Brugger J., Shapter J., Southam G., Reith, F. (2013) Biomineralization of gold in biofilms of Cupriavidus metallidurans. *Environmental Science and Technology*, **47** (6), 2628–2635.

Frei R., Dahl P.S., Frandsson M.M., Jensen L.A., Hansen T.R., Terry M.P., Frei K.M. (2009) Lead-isotope and trace-element geochemistry of Paleoproterozoic metasedimentary rocks in the Lead and Rochford basins (Black Hills, South Dakota, USA): implications for genetic models, mineralization ages, and sources of leads in the Homestake gold deposit *Precambrian Res.* **172** (1-2), 1–24.

Frimmel H.E. (2008) Earth's continental crustal gold endowment. *Earth Planet. Sci. Lett.* **267** (1-2), 45–55.

Fu B., Kendrick M.A., Fairmaid A.M., Phillips D., Wilson C.J.L., Mernagh T.P. (2012) New constraints on fluid sources in orogenic gold deposits, Victoria, Australia. *Contrib. Mineral. Petrol.* **163**, 427–447.

Gaboury D. (2019). Parameters for the formation of orogenic gold deposits. *Appl. Earth Sci.*, **128** (3), 124–133.

Goldfarb, R.J., Groves, D.I. (2015). Orogenic gold: Common or evolving fluid and metal sources through time. *Lithos.* **233**, 2–26.

Goldfarb R.J., Pitcairn I. (2023). Orogenic gold: is a genetic association with magmatism realistic? Miner. Deposita, **58** (1), 5-35.

Goldfarb R.J., Groves D.I., Gardoll S. (2001). Orogenic gold and geologic time: a global synthesis. *Ore Geol. Rev.* **18** (1-2), 1–75.

Goldfarb R.J., Baker, T. Dub'e B., Groves D.I., Hart C.J. Gosselin P., (2005). Distribution, character, and genesis of gold deposits in metamorphic Terranes. *Econ. Geol.* **100**, 407–450.

Goldfarb R.J., Taylor R.D., Collins G.S., Goryachev N.A., Orlandini O.F. (2014) Phanerozoic continental growth and gold metallogeny of Asia. *Gondwana Res.* **25** (1), 48–102.

Goldfarb R.J., Qiu K.F., Deng J., Chen Y.J., Yang L.Q. (2019) Orogenic gold deposits of China. In *Mineral Deposits of China* (Eds Chang, Z.S., Goldfarb, R.J), Society of Economic Geologists Special Publication, **22**, 263–324. González-Jiménez J.M, Tassara S., Schettino E., Roqué-Rosell J., Farré-de-Pablo J., Saunders J.E., Deditius A.P., Colás V., Rovira-Medina J.J., Dávalos M.G., Schilling M., Jimenez-Franco A., Marchesi C., Nieto F., Proenza J.A., Gervilla F. (2020) Mineralogy of the HSE in the subcontinental lithospheric mantle — An interpretive review. *Lithos.* **372–373**, 105681 https://doi.org/10.1016/j.lithos.2020.105681

Groves D.I. (1993) The crustal continuum model for late Archaean lode-gold deposits of the Yilgarn Block, Western Australia. *Miner. Deposita.* **28**, 366–374.

Groves D.I., Santosh M. (2016) The giant Jiaodong gold province: the key to a unified model for orogenic gold deposits? *Geosci. Front.* **7** (3), 409–417.

Groves D.I., Ridley J.R., Bloem E.M.J., Gebre-Mariam M., Hagemann S.G., Hronsky J.M.A., Knight J.T., McNaughton N.J., Ojala J., Vielreicher R.M., McCuaig T.C., Holyland P.W. (1995) Lode-gold deposits of the Yilgarn block: products of Late Archaean crustal-scale overpressured hydrothermal systems. In *Early Precambrian Processes* (Eds. Coward M.P., Ries A.C.Ž.), Geol. Soc. London Spec. Publ., London, Bath, UK. **95**, 155–172.

Groves D.I., Goldfarb R.J., Gebre-Mariam H., Hagemann S.G., Robert F. (1998). Orogenic gold deposits — a proposed classification in the context of their crustal distribution and relationship to other gold deposit type. *Ore Geol. Rev.* **13**, 7–27.

Groves D.I., Hart C.J.R., Goldfarb R.J., Robert F. (2003) Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research, and exploration significance. *Econ. Geol.* **98** (1), 1–29.

Groves D.I., Santosh M., Deng J., Wang Q.F., Yang L.Q., Zhang L. (2020a) A holistic model for the origin of orogenic gold deposits and its implications for exploration. *Miner. Deposita*. **55**, 275–292.

Groves D.I., Zhang L., Santosh M. (2020b). Subduction, mantle metasomatism, and gold: A dynamic and genetic conjunction. *Bulletin.* **132** (7-8), 1419–1426.

Groves D.I., Santosh M., Zhang, L. (2020c). A scale-integrated exploration model for orogenic gold deposits based on a mineral system approach. *Geosci. Front.* **11** (3), 719–738.

Hagemann S.G., Cassidy K.F. (2000) Archean orogenic lode gold deposits. In *Gold in 2000*. (Eds. Hagemann S.G., Brown Ph.E.). Reviews in Economic Geology, **13**, 9–68.

Halverson G.P., Wade B.P., Hurtgen M.T., Barovich, K.M. (2010). Neoproterozoic chemostratigraphy. *Precambrian Res.* **182** (4), 337–350.

Hart C.J.R. (2007) Reduced intrusion-related gold systems. Geological Association of Canada, Mineral Deposits Division **5**, 95–112.

Hutchison W., Finch A.A., Boyce A.J. (2020) The sulfur isotope evolution of magmatic-hydrothermal fluids: insights into ore-forming processes. *Geochim. Cosmochim. Acta.* **288**, 176–198.

Hoefs J. Stable Isotope Geochemistry (2009). 6th ed.; Springer: Berlin, Heidelberg, Germany, 285.

Hronsky J.M.A., Groves D.I., Loucks R.R., Begg G.C. (2012) A unified model for gold mineralisation in accretionary orogens and implications for regional-scale exploration targeting methods. *Miner. Deposita.* **47**, 339–358

Hu R.Z., Su W.C., Bi X.W., Tu G.Z., Hofstra A.H. (2002) Geology and geochemistry of Carlin-type gold deposits in China. *Miner. Deposita.* **37**, 378–392.

Ivanov A.V., Vanin V.A., Demonterova E.I., Gladkochub D.P., Donskaya T.V., Gorovoy V.A. (2015) Application of the 'no

ГЕОХИМИЯ том 69 № 9 2024

826

fool's clock' to dating the Mukodek gold field, Siberia, Russia. *Ore Geol. Rev.* **69**, 352–359.

Kempe U., Belyatsky B., Krymsky R., Kremenetsky A., Ivanov P. (2001) Sm–Nd and Sr isotope systematics of scheelite from the giant Au (–W) deposit Muruntau (Uzbekistan): implications for the age and sources of Au mineralization. *Miner. Deposita.* **36**, 379–392.

Kerrich R., Cassidy K.F. (1994) Temporal relationships of lodegold mineralization to accretion, magmatism, metamorphism, and deformation — Archean to present: A review. *Ore Geol. Rev.* **9** (4), 263–310.

Kresse C., Lobato L.M., Hagemann S.G., Silva R.C.F. (2018). Sulfur isotope and metal variations in sulfides in the BIF-hosted orogenic Cuiabá gold deposit, Brazil: Implications for the hydrothermal fluid evolution. *Ore Geol. Rev.* **98**, 1–27.

Kröner A., Kovach V., Belousova E., Hegner E., Armstrong R., Dolgopolova A., Seltmann R., Alexeiev D.V., Hoffmann J.E., Wong J., Sun M., Cai K., Wang T., Tong Y., Wilde S.A., Degtyarev K.E., Rytsk, E. (2014). Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. *Gondwana Res.* **25** (1), 103–125.

V.Y., Kudrin M.V., Fridovsky Polufuntikova L.I., Ĺ.Y. Krvuchkova (2021).Disseminated gold-sulfide mineralization in metasomatites of the Khangalas Deposit, Yana-Kolyma metallogenic belt (Northeast Russia): analysis of the texture, geochemistry, and S isotopic composition of pyrite and arsenopyrite. Minerals, 11 (4), 403. https://doi.org/10.3390/ min11040403

Kuznetsov A.B., Ovchinnikova G.V., Gorokhov I.M., Letnikova E.F., Kaurova O.K., Konstantinova G.V. (2013) Age constraints on the Neoproterozoic Baikal Group from combined Sr isotopes and Pb-Pb dating of carbonates from the Baikal type section, southeastern Siberia. J. Asian Earth Sci. 62, 51–66.

Large R.R., Danyushevsky L.V., Chang Z., Maslennikov V.V., Robert F. (2007) Multistage sedimentary and methamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province, Russia. *Econ. Geol.* **102** (7), 1233–1267.

Large R.R., Gregory D.D., Steadman J.A., Tomkins A.G., Lounejeva E., Danyushevsky L.V., Halpina J.A., Maslennikov V., Sack P.J., Mukherjee I., Berry R., Hickman A. (2015). Gold in the oceans through time. *Earth Planet. Sci. Lett.* **428**, 139–150.

Large R.R., Mukherjee I., Gregory D.D., Steadman J.A., Maslennikov V.V., Meffre S. (2017). Ocean and atmosphere geochemical proxies derived from trace elements in marine pyrite: implications for ore genesis in sedimentary basins. *Econ. Geol.* **112** (2), 423–450.

Li R., Chen H., Large R.R., Zhao L., Liu Y., Jiao J., Xiao-Ping X., Yang, Q. (2020). Ore-forming fluid source of the orogenic gold deposit: Implications from a combined pyrite texture and geochemistry study. *Chem. Geol.* **552**, 119781. https://doi. org/10.1016/j.chemgeo.2020.119781

Liegeois J.P., Navez J., Hertogen J., Black R. (1998). Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. *Lithos*, **45** (1-4), 1-28.

Litvinovsky B.A., Tsygankov A.A., Jahn B.M., Katzir Y., Be'eri-Shlevin Y. (2011) Origin and evolution of overlapping calc-alkaline and alkaline magmas: the Late Palaeozoic post-collisional igneous province of Transbaikalia (Russia). *Lithos.* **125** (3-4), 845–874.

Lipson R. (2014). The promise and perils of porphyry deposits in the future of gold production. *SEG Discovery*. **98**, 1–21.

Liu Y., Nie F., Jiang S., Bagas L., Xiao W., Cao Y. (2016). Geology, geochronology and sulphur isotope geochemistry of the black schist-hosted Haoyaoerhudong gold deposit of Inner Mongolia, China: Implications for ore genesis. *Ore Geol. Rev.* **73** (2), 253–269.

Liu Q.Q., Shao Y.J., Chen M., Algeo T.J., Li H., Dick J.M., Wang C., Wang W.-S., Liu Z.F. (2019) Insights into the genesis of orogenic gold deposits from the Zhengchong gold field, northeastern Hunan Province, China. *Ore Geol. Rev.* **105**, 337–355.

Lyons T.W., Reinhard C.T., Planavsky N.J. (2014) The rise of oxygen in Earth/'s early ocean and atmosphere. *Nature*. **506**, 307–315.

Mao J., Wang Y., Li H., Pirajno F., Zhang Ch., Wang R. (2008) The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula: Evidence from D–O–C–S isotope systematics. *Ore Geol. Rev.* **33**, 361–381.

McCulloch M.T., Chappell B.W. (1982). Nd isotopic characteristics of S-and I-type granites. *Earth Planet. Sci. Lett.* **58** (1), 51–64.

McDermott F., Hawkesworth C. (1990). The evolution of strontium isotopes in the upper continental crust. *Nature*. **344** (6269), 850–853.

Macfarlane A.W., Marcet P., LeHuray A.P., Petersen U. (1990). Lead isotope provinces of the Central Andes inferred from ores and crustal rocks. *Econ. Geol.* **85** (8), 1857–1880.

McNeil A.M., Kerrich R. (1986) Archean lamprophyre dykes and gold mineralization, Matheson, Ontario: the conjunction of LILE-enriched mafic magmas, deep crustal structures and Au concentration. *Can. J. Earth Sci.* **23** (3), 324–343.

Meffre S., Large R.R., Scott R., Chang Z., Gilbert S.E., Danyushevsky L.V., Woodhead J., Hergt J.M., Maslennikov V. (2008) Age and pyrite Pb-isotopic composition of the giant Sukhoi Log sediment-hosted gold deposit, Russia. *Geochim. Cosmochim. Acta.* **72** (9), 2377–2391.

Meffre S., Large R.R., Steadman J.A., Gregory D.D., Stepanov A.S., Kamenetsky V.S., Kathy Ehrig K., Scott R.J. (2016) Multi-stage enrichment processes for large gold-bearing ore deposits. *Ore Geol. Rev.* **76**, 268–279.

Melezhik V.A., Pokrovsky B.G., Fallick A.E. Kuznetsov A.B., Bujakaite M.I. (2009) Constraints on ⁸⁷Sr/⁸⁶Sr of Late Ediacaran seawater: insight from Siberian high-Sr limestones. *J. Geol. Soc.* **166** (1), 183–191.

Meyer F.M. (2023) Case histories of orogenic gold deposits. *Minerals.* **13**, 369. https://doi.org/10.3390/min13030369

Morelli R., Creaser R. ., Seltmann R., Stuart F.M., Selby D., Graupner T. (2007). Age and source constraints for the giant Muruntau gold deposit, Uzbekistan, from coupled Re-Os-He isotopes in arsenopyrite. *Geology.* **35** (9), 795–798.

Mumin A.H., Fleet M.E., Chryssoulis S.L. (1994). Gold mineralization in As-rich mesothermal gold ores of the Bogosu-Prestea mining district of the Ashanti gold belt, Ghana: Remobilization of "invisible" gold. *Miner. Deposita.* **29** (6), 445–460.

Nokleberg W.J., Bundtzen T.K., Eremin R.A., Ratkin V.V., Dawson K.M., Shpikerman V.I., Goryachev N.A., Byalobzhesky S.G., Frolov Yu.F., Khanchuk A.I., Koch R.D., Monger J.W.H., Pozdeev A.I., Rozenblum I.S., Rodionov S.M., Parfenov L.M., Scotese Ch.R., Sidorov A.A. Metallogenesis and tectonics of the Russian far east, Alaska, and the Canadian cordillera (No. 1697). US Dept. of the Interior, US Geological Survey. 2005, 397.

ГЕОХИМИЯ том 69 № 9 2024

Nosova A.A., Kargina A.V., Sazonova L.V., Dubinina E.O., Chugaev A.V., Lebedeva N.M., Yudin D.S., Larionova Y.O., Abersteiner A., Gareev B.I., Batalin G.A. (2020) Sr-Nd-Pb isotopic systematic and geochronology of ultramafic alkaline magmatism of the southwestern margin of the Siberian Craton: metasomatism of the sub-continental lithospheric mantle related to subduction and plume events. *Lithos.* **364–365**, 105509. https://doi.org/10.1016/j.lithos.2020.105509

Nwaila G.T., Frimmel H.E. (2019). Highly siderophile elements in Archaean and Palaeoproterozoic marine shales of the Kaapvaal Craton, South Africa. *Mineral Petrol.* **113**, 307–327.

Oliver N.H., Allibone A., Nugus M.J., Vargas C., Jongens R., Peattie R., Chamberlain V.A. (2020). The supergiant, highgrade, Paleoproterozoic metasedimentary rock-and shear veinhosted Obuasi (Ashanti) gold deposit, Ghana, West Africa. In *Geology of the World's Major Gold Deposits and Provinces* (Eds. Sillitoe R.H., Goldfarb R.J., Robert F., Simmons S.F., Allen Press, Inc. USA, 121–140.

Ohmoto H., Rye R.O. (1979) Isotopes of sulfur and carbon. In *Geochemistry of Hydrothermal Ore Deposits* (Eds Barnes H.L.). J Wiley and Sons, 509–567.

Palenova E.E., Yudovskaya M.A., Frei D., Rodionov N.V. (2019). Detrital zircon U–Pb ages of Paleo-to Neoproterozoic black shales of the Baikal-Patom Highlands in Siberia with implications to timing of metamorphism and gold mineralization. *J. Asian Earth Sci.*, **174**, 37–58.

Pankhurst R.J., Hole M.J., Brook M. (1988). Isotope evidence for the origin of Andean granites. *Earth Environ. Sci. Trans. R. Soc. Edinburgh.* **79** (2-3), 123–133.

Peucat J.J., Jegouzo P., Vidal P., Bernard-Griffiths J. (1988). Continental crust formation seen through the Sr and Nd isotope systematics of S-type granites in the Hercynian belt of western France. *Earth Planet. Sci. Lett.* **88** (1-2), 60–68.

Phillips G.N. (2013) Australian and global setting for gold in 2013. In *Proceedings world gold 2013*, Brisbane, Australia, 26–29 September, 2013. Aust Inst Min Metall., 15–21.

Phillips G.N., Powell R. (2010). Formation of gold deposits: a metamorphic devolatilization model. *J. Metamorph. Geol.* **28** (6), 689–718.

Pitcairn K. (2011) Background concentrations of gold in different rock types. *Appl. Earth Sci.* **120** (1), 31–38.

Pitcairn I.K., Teagle D.A., Craw D., Olivo G.R., Kerrich R., Brewer T.S. (2006). Sources of metals and fluids in orogenic gold deposits: insights from the Otago and Alpine Schists, New Zealand. *Economic Geology*. **101** (8), 1525–1546.

Pitcairn I.K., Olivo G.R., Teagle D.A.H., Craw D. (2010) Sulfide evolution during prograde metamorphism of the Otago and Alpine Schists, New Zealand. *Can. Mineral.* **48** (5),1267–1295.

Plotinskaya O.Y., Chugaev A.V., Seltmann R. (2017). Lead isotope systematics of porphyry–epithermal spectrum of the Birgilda–Tomino ore cluster in the South Urals, Russia. *Ore Geol. Rev.* **85**, 204–215.

Powerman V., Shatsillo A., Chumakov N., Kapitonov I., Hourigan J. (2015). Interaction between the Central Asian Orogenic Belt (CAOB) and the Siberian craton as recorded by detrital zircon suites from Transbaikalia. *Precambrian Res.* **267**, 39–71.

Prave A.R., Condon D., Hoffmann K.-H., Tapster S., Fallick A.E. (2016) Duration and nature of the end-Cryogenian (Marinoan) glaciations. *Geology.* **44**, 631–634.

Prokof'ev V.Y., Garofalo P.S., Bortnikov N.S., Kovalenker V.A., Zorina L.D., Grichuk D.V., Selektor S.L. (2010). Fluid inclusion constraints on the genesis of gold in the Darasun district (Eastern Transbaikalia), Russia. *Econ. Geol.* **105** (2), 395–416.

Prokof'ev V.Yu., Safonov Yu.G., Lüders V.V., Borovikov A.A., Kotov A.A., Zlobina T.M., Murashov K.Yu., Yudovskay M.A., Selektor S.L. (2019) The sources of mineralizing fluids of orogenic gold deposits of the Baikal-Patom and Muya areas, Siberia: Constraints from the C and N stable isotope compositions of fluid inclusions. *Ore Geol. Rev.* **111**, 102988. https://doi.org/10.1016/j. oregeorev.2019.102988

Pu J.P., Bowring S.A., Ramezani J., Myrow P., Raub T.D., Landing E., A Mills, E. Hodgin, Macdonald F.A. (2016). Dodging snowballs: Geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. *Geology*. **44** (11), 955–958.

Reznik V.P., Fedoronchuk N.A. (2000). Microscopic gold in marine and oceanic sediments. *Lithol. Miner. Resour.* **35** (4), 311–318.

Richards J.P. (2011) Magmatic to hydrothermal metal fluxes in convergent and collided margins: *Ore Geol. Rev.* **40** (1), 1–26.

Robert F. (2001) Syenite-associated disseminated gold deposits in the Abitibi greenstone belt, Canada. *Mineral. Deposita.* **36**, 503–516.

Rock N.M.S., Duller P., Haszeldine R.S., Groves D.I. (1987) Lamprophyres as potential gold exploration targets: Some preliminary observations and speculations," Geol. Dep. Ext. Serv., Univ. West. Aust. 1, 271–286.

Rollinson H.R., Pease V. (2021). Using geochemical data: to understand geological processes. Cambridge University Press, 661.

Rooney A.D., Strauss J.V., Brandon A.D., Macdonald F.A. (2015) A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations. *Geology*. **43**, 459–462.

Rudnick R.L., Goldstein S.L. (1990). The Pb isotopic compositions of lower crustal xenoliths and the evolution of lower crustal Pb. *Earth Planet. Sci. Lett.* **98** (2), 192–207.

Rudnick R., Gao S. (2003) Composition of the continental crust. The Crust. In *Treatise on Geochemistry* (Eds. Rudnick R.L., Holland H.D., Turekian K.K.). Elsevier–Pergamon, Oxford, **3**, 1–64.

Rud'ko S.V., Kuznetsov A.B., Petrov P.Y., Sitkina D.R., Kaurova O.K. (2021). Pb-Pb dating of the Dal'nyaya Taiga Group in the Ura uplift of southern Siberia: Implications for correlation of C-isotopic and biotic events in the Ediacaran. *Precambrian Res.* **362**, 106285. https://doi.org/10.1016/j. precamres.2021.106285

Sahoo S.K., Planavsky N.J., Kendall B., Wang X., Shi X., Scott C., Anbar A.D., Lyons T.W., Jiang G. (2012) Ocean oxygenation in the wake of the Marinoan glaciation. *Nature*. **489**, 546–549.

Sahoo S.K., Planavsky N.J., Jiang G., Kendall B., Owens J.D., Wang X., Lyons T.W. (2016). Oceanic oxygenation events in the anoxic Ediacaran ocean. *Geobiology*. **14**, 457–468.

Safonova I., Kotlyarov A., Krivonogov S., Xiao W. (2017). Intraoceanic arcs of the Paleo-Asian Ocean. *Gondwana Res.* **50**, 167– 194.

Shanks, W.C.P., III (2013) Stable isotope geochemistry of mineral deposits. In *Treatise on Geochemistry* (Eds. Rudnick R.L., Holland H.D., Turekian K.K.). Elsevier–Pergamon, Oxford, **13**, 59–85.

Salters V.J., Stracke A. (2004). Composition of the depleted mantle. *Geochem., Geophys., Geosyst.* **5** (5). https://doi. org/10.1029/2003GC000597

Sazonov A.M., Lobanov K.V., Zvyagina E.A., Leontiev S.I., Silyanov S.A., Nekrasova N.A., Nekrasov A.Y., Borodushkin A.B., Poperekov V.A., Zhuravlev V.V., Ilyin S.S., Kalinin Yu.A., Savichev A.A., Yakubchuk A.S. (2020). Olympiada gold deposit, Yenisei Ridge, Russia. In *Geology of the World's Major Gold Deposits and Provinces* (Eds. Sillitoe R.H., Goldfarb R.J., Robert F., Simmons S.F.), Allen Press, Inc. USA, 203–226.

Shuste J., Reith F., Cornelis G., Parsons J.E., Parsons J.M., Southam G. (2017). Secondary gold structures: Relics of past biogeochemical transformations and implications for colloidal gold dispersion in subtropical environments. *Chem. Geol.* **450**, 154–164.

Seltmann R., Goldfarb R.J., Zu B., Creaser R.A., Dolgopolova A., Shatov V.V. (2020). Muruntau, Uzbekistan: The world's largest epigenetic gold deposit. In *Geology of the World's Major Gold Deposits and Provinces* (Eds. Sillitoe R.H., Goldfarb R.J., Robert F., Simmons S.F.), Allen Press, Inc. USA, 497–521.

Sillitoe R.H. (2010) Porphyry copper systems: *Econ. Geol.* 105 (1), 3–41.

Sillitoe R.H. (2020) Gold deposit types: an overview. In *Geology of the World's Major Gold Deposits and Provinces* (Eds. Sillitoe R.H., Goldfarb R.J., Robert F., Simmons S.F.), Allen Press, Inc. USA, 1–28

Skuzovatov S., Wang K.L., Dril S., Lee H.Y., Iizuka Y. (2019). Geochemistry, zircon U-Pb and Lu-Hf systematics of highgrade metasedimentary sequences from the South Muya block (northeastern Central Asian Orogenic Belt): Reconnaissance of polymetamorphism and accretion of Neoproterozoic exotic blocks in southern Siberia. *Precambrian Res.* **321**, 34–53.

Steadman J.A., Large R.R. (2016) Synsedimentary, diagenetic, and metamorphic pyrite, pyrrhotite, and marcasite at the Homestake BIF-hosted gold deposit, South Dakota, USA: Insights on Au-As ore genesis from textural and LA-ICP-MS trace element studies. *Econ. Geol.* **111** (7), 1731–1752.

Sorokin A.A., Zaika V.A., Kadashnikova A.Y., Ponomarchuk A.V., Travin A.V., Ponomarchuk V.A., Buchko I.V. (2023) Mesozoic thermal events and related gold mineralization in the eastern Mongol-Okhotsk Orogenic Belt: constraints from regional geology and ⁴⁰Ar/³⁹Ar dating. *Int. Geol. Rev.* **65** (9), 1476–1499.

Stacey J.S., Kramers I.D. (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. *Earth Planet. Sci. Lett.* **26** (2), 207–221.

Szczerba M., Derkowski A., Kalinichev A.G., Srodon J. (2015) Molecular modeling of the effects of ⁴⁰Ar recoil in illite particles on their K–Ar isotope dating. *Geochim. Cosmochim. Acta.* **159**, 162–176.

Su W., Dong W., Zhang X., Shen N., Hu R., Hofstra A.H., Cheng L., Xia Y., Yang K., (2018) Carlin-type gold deposits in the Dian-Qian-Gui "Golden Triangle" of southwest China. In *Diversity in Carlin-style gold deposits* (Eds. Muntean J.L.) *Reviews in Economic Geology*, **20**, 157–185.

Tarasova Y.I., Budyak A.E., Chugaev A.V., Goryachev N.A., Tauson V.L., Skuzovatov S.Y., Bryukhanova N.N., Parshin A.V., Abramova V.D., Gareev B.I., Reutsky V.N. (2020) Mineralogical and isotope-geochemical (δ^{13} C, δ^{34} S and Pb-Pb) characteristics of the Krasniy gold mine (Baikal-Patom Highlands): constraining ore-forming mechanisms and the model for Sukhoi Log-type deposits. *Ore Geol. Rev.* **119**, 103365 https://doi.org/10.1016/j. oregeorev.2020.103365.

Tarasova Yu., Budyak A., Goryachev N., Skuzovatov S., Reutsky V., Gareev B., Batalin G., Nizamova A. (2022) The

ГЕОХИМИЯ том 69 № 9 2024

role of metamorphic devolatilization in building orogenic gold deposits within Paleoproterozoic organic-rich sediments: P-T-X thermobarometric and carbon isotopic constraints from the Chertovo Koryto deposit (Eastern Siberia) *Russian Journal of Pacific Geology.* **16** (4), 387-404.

Tassara S., Reich M., Konecke B.A., González-Jiménez J.M., Simon A.C., Morata D., Barra F., Fiege A., Schilling M.E., Corgne A. (2020). Unraveling the effects of melt–mantle interactions on the gold fertility of magmas. *Front. Earth Sci.* **8**, https://doi.org/10.3389/feart.2020.00029

Taylor S.R., McLennan S.M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell, Oxford.

Tappe S., Steenfelt A., Nielsen T. (2012) Asthenospheric source of Neoproterozoic and Mesozoic kimberlites from the North Atlantic craton, West Greenland: New high-precision U–Pb and Sr–Nd isotope data on perovskite. *Chem. Geol.* **320–321**, 113–127.

Tomkins A.G. (2010) Windows of metamorphic sulfur liberation in the crust: implications for gold deposit genesis. *Geochim. Cosmochim. Acta.* **74** (11), 3246–3259.

Tomkins A.G. (2013a) On the source of orogenic gold. *Geology.* **41** (12), 1255–1256.

Tomkins A.G. (2013b) A biogeochemical influence on the secular distribution of oro-genic gold. *Econ. Geol.* **108** (2), 193–197.

Tostevin R., Clarkson M.O., Gangl S., Shields G.A., Wood R.A., Bowyer F., Pennye A.M., Stirling C.H. (2019). Uranium isotope evidence for an expansion of anoxia in terminal Ediacaran oceans. *Earth Planet. Sci. Lett.*, **506**, 104–112.

Toulmin P., Barton P.B. (1964) A thermodynamic study of pyrite and pyrrhotite. *Geochim. Cosmochim. Acta.* **28** (5), 641–671.

Vielreicher N.M., Groves D., Snee L.W., Fletcher I.R., McNaughton N.J. (2010) Broad synchroneity of three gold mineralization styles in the Kalgoorlie gold field: SHRIMP, U-Pb, and ⁴⁰Ar/³⁹Ar geochronological evidence. *Econ. Geol.* **105** (1), 187–227.

Vikentyev I.V., Tyukova E.E., Vikent'eva O.V., Chugaev A.V., Dubinina, E.O., Prokof'ev, V.Y., Murzin V.V. (2019). Vorontsovka Carlin-style gold deposit in the North Urals: Mineralogy, fluid inclusion and isotope data for genetic model. *Chem. Geol.* **508**, 144–166.

Vikentyev I., Vikent'eva O., Tyukova E., Nikolsky M., Ivanova J., Sidorova N., Tonkacheev D., Abramova V., Blokov V., Spirina A., Borisova D., Palyanova G. (2021) Noble metal speciations in hydrothermal sulphides. *Minerals.* **11** (5), 488. https://doi. org/10.3390/min11050488.

Vladykin N.V., Sotnikova I.A. (2017) Petrology, geochemistry and source characteristics of the Burpala alkaline massif, North Baikal. *Geosci. Front.* **8** (4), 711–719.

Vursiy G.L., Zibrov I.A., Lobov S.G., Yakubchuk A.S. (2020). The Sukhoi Log gold deposit, Russia. In *Geology of the World's Major Gold Deposits and Provinces* (Eds. Sillitoe R.H., Goldfarb R.J., Robert F., Simmons S.F.), Allen Press, Inc. USA, 523–543.

Wang X., Z. Wang, H. Cheng, K. Zong, C.Y. Wang, L. Ma, Y-Ch. Cai, S. Foley, Z. Hu (2022) Gold endowment of the metasomatized lithospheric mantle for giant gold deposits: Insights from lamprophyre dykes. *Geochim. Cosmochim. Acta.* **316**, 21–40.

Webber A.P., Roberts S., Taylor R.N., Pitcairn I.K. (2013) Golden plumes: substantial gold enrichment of oceanic crust during ridge-plume interaction. *Geology.* **41** (1), 87–90.

ЧУГАЕВ

Weir Jr.R.H., Kerrick D.M. (1987) Mineralogic, fluid inclusion, and stable isotope studies of several gold mines in the Mother Lode, Tuolumne and Mariposa counties, California. *Econ. Geol.*, **82** (2), 328–344.

Wilson A.J., Lisowiec N., Switzer C., Harris A.C., Creaser R.A., Fanning C.M. (2020a) The Telfer gold-copper deposit, Paterson Province, Western Australia. In *Geology of the World's Major Gold Deposits and Provinces* (Eds. Sillitoe R.H., Goldfarb R.J., Robert F., Simmons S.F.), Allen Press, Inc. USA, 227–249.

Wilson C.J., Moore D.H., Vollgger S.A., Madeley H.E. (2020b). Structural evolution of the orogenic gold deposits in central Victoria, Australia: The role of regional stress change and the tectonic regime. *Ore Geol. Rev.* **120**, 103390. https://doi. org/10.1016/j.oregeorev.2020.103390

Workman R.K., Hart S.R. (2005). Major and trace element composition of the depleted MORB mantle (DMM). *Earth Planet. Sci. Lett.* **231** (1-2), 53–72.

Yakubchuk, A., Stein, H., Wilde, A. (2014). Results of pilot Re–Os dating of sulfides from the Sukhoi Log and Olympiada orogenic gold deposits, Russia. *Ore Geol. Rev.* **59**, 21–28.

Yarmolyuk V.V., Kuzmin M.I., Ernst R.E. (2014) Intraplate geodynamics and magmatism in the evolution of the Central Asian Orogenic Belt. *Journ. Asian Earth Sci.* **93**, 158–179.

Yudovskaya M.A., Distler V.V., Prokof'ev V.Y., Akinfiev N.N. (2016). Gold mineralisation and orogenic metamorphism in the

Lena province of Siberia as assessed from Chertovo Koryto and Sukhoi Log deposits. *Geosci. Front.* **7** (3), 453–481.

Zartman R.E. (1974) Lead isotopic provinces in the Cordillera of the Western United States. *Econ. Geol.* **69**, 792–805.

Zartman R.E, Doe B.R. (1981) Plumbotectonics — the model. *Tectonophysics*. **75**, 135–162.

Zhang F., Xiao S., Romaniello S.J., Hardisty D., Li C., Melezhik V., Pokrovsky B., Cheng M., Shi W., Lenton T.M., Anbar A.D. (2019). Global marine redox changes drove the rise and fall of the Ediacara biota. *Geobiology*. **17** (6), 594–610.

Zheng J., Sun M., Zhou M-F., Robinson P. (2005) Trace elemental and PGE geochemical constraints of Mesozoic and Cenozoic peridotitic xenoliths on lithosphere evolution of the North China Craton. *Geochim. Cosmochim. Acta.* **69** (13), 3401–3418.

Zhou C., Huyskens M.H., Lang X., Xiao S., Yin Q.Z. (2019). Calibrating the terminations of Cryogenian global glaciations. *Geology.* **47** (3), 251–254.

Zindler A., Hart S. (1986). Chemical geodynamics. *Annu. Rev. Earth Planet. Sci.* 14 (1), 493-571.

Zorin Yu.A. (1999) Geodynamics of the western part of the Mongolia–Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. *Tectonophysics*. **306** (1), 33–56.

OROGENIC GOLD DEPOSITS OF THE NORTHERN TRANSBAIKALIA (RUSSIA): GEOLOGY, AGE, SOURCES AND GENESIS

© 2024 A.V. Chugaev

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Science, Moscow, 119017, Russia

e-mail: vassachav@mail.ru

The results of long-term geochronological and isotope-geochemical studies of mesothermal gold deposits of orogenic type in the world's largest Lena metallogenic province are summarized, and the evaluation of existing conceptions of their genesis is given. On the basis of geochronological data the presence of three ore-forming events manifested in the region in the Paleozoic time is proved. The early Late Ordovician-Early Silurian (450-430 Ma) event is associated with large-scale vein-embedded gold-sulfide mineralization in Neoproterozoic carbonaceous terrigenous-carbonate rocks of the Baikal-Patom fold belt (BPB). In terms of time, ore formation coincides with the development of metamorphic processes in the region. The reactivation of hydrothermal action in the BPP, which led to the formation of vein gold-quartz mineralization, occurred in the Middle Carboniferous (340-330 Ma) and was produced by post-collisional granitoid magmatism. The most recent ore-forming event occurred in the Early Permian (290-280 Ma) and was manifested exclusively in the Precambrian structures of the Baikal-Muya fold belt (BMP). It was synchronous with the development of intraplate alkaline and subalkaline magmatism in the region.

Isotopic-geochemical data (87 Sr/ 86 Sr, 143 Nd/ 144 Nd, Pb-Pb, and δ^{34} S) indicate that the mesothermal ore-forming systems of the Northern Transbaikalia were heterogeneous in their isotopic characteristics, which distinguishes them from ore-magmatic (intrusion related type) systems. Comparison of Sr, Nd and Pb isotopic composition of ores and rocks of the region, including magmatic rocks of the same age as gold mineralization, proves the leading role of the Precambrian continental crust in the supply of mineral-forming components to the hydrothermal systems of gold deposits. The contribution of the magmatic source of matter in the genesis of orogenic gold mineralization was limited and is established only for the Early Permian ore-forming systems of the BMP, for which the input of metals from alkaline melts of basite composition is assumed.

Keywords: Northern Transbaikalia, orogenic gold deposits, age, sources of metals, genesis