УДК 544.31

СТАНДАРТНЫЕ ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА Ag₃Sn (ШОСАНБЕЦУИТ), ОПРЕДЕЛЕННЫЕ ЭДС-МЕТОДОМ

© 2025 г. М.В. Воронин, Е.Г. Осадчий*

Институт экспериментальной минералогии имени академика Д.С. Коржинского РАН, ул. Академика Осипьяна, 4, Черноголовка, Московская область, 142432 Россия

*e-mail: euo@iem.ac.ru

Поступила в редакцию 19.07.2024 г. После доработки 29.08.2024 г. Принята к публикации 17.09.2024 г.

В системе Ag–Sn впервые определены термодинамические свойства шосанбецуита (Ag₃Sn) в твердотельной гальванической ячейке: (–) Pt | Gr | Ag | RbAg₄I₅ | Ag₃Sn, Sn | Gr | Pt (+), в температурном диапазоне 327–427 К в вакууме. В результате анализа полученных данных рассчитаны стандартные (298.15 K, 10^5 Па) $\Delta_j G^0$, $\Delta_j H^0$ и S⁰, которые составили для Ag₃Sn: –21238 Дж·моль⁻¹, –18763 Дж·моль⁻¹ и 187.5 Дж·К⁻¹·моль⁻¹ соответственно.

Ключевые слова: Ag-Sn, Ag₃Sn, ЭДС-метод, шосанбецуит

DOI: 10.31857/S0016752525020042, EDN: GPICEO

введение

Станниды серебра (Ag₃Sn (ϵ) и Ag₄Sn (ζ)) исследуются как компонент припоев в системах, не содержащих свинца (Esaka et al., 2005; Kotadia et al., 2014; Cui et al., 2023; Hou et al., 2023), а также в качестве анодов литий-ионных батарей (Wachtler et al., 2002). В последнее десятилетие один из интерметаллидов (Ag₃Sn) в виде золотосодержащей разновидности в ассоциации со станнидами (AuSn₄, AuSn₂ (румоиит) и AuSn (юанцзянит)) и другими интерметаллидами золота (рис. 1) встречен в россыпях рек Ольховая 1-я (п-ов Камчатский Мыс, Восточная Камчатка, Россия) и Баимка (Западная Чукотка, Россия) (Сандимирова и др., 2013; Литвиненко, 2017). Позже был также обнаружен на реке Шосанбецу (г. Хаборо, пров. Румои, преф. Хоккайдо, Япония), в честь которой назван шосанбецуитом (Nishio-Hamane, Saito, 2021). В связи с этим знание фазовых отношений и термодинамической стабильности фаз в системе Ag-Sn необходимо для понимания процессов, протекающих с участием указанных соединений, выбора оптимальных условий применения, а также определения условий образования в природной обстановке.

В бинарной системе Ag–Sn (рис. 2) установлено два интерметаллида – Ag₃Sn (ϵ) и Ag₄Sn (ζ) (Karakaya, Thompson, 1987). Фаза Ag₃Sn кристаллизуется в ромбической сингонии, пространственная группа *Рттп*, параметры ячейки (нм): a = 0.59682, b = 0.47802, c = 0.5184 (Fairhurst, Cohen, 1972) и имеет стехиометрический состав (Ag₃Sn) со стороны олова. При температуре 221 °C и содержании серебра 3.8 ат. % (Karakaya, Thompson, 1987) в системе происходит эвтектическая кристаллизация ($L = Ag_3Sn + Sn$).

В литературе присутствует обширная информация об исследовании термодинамических свойств в области расплава электрохимическими и калориметрическими методами (Karakaya, Thompson, 1987, с цитированной литературой), но в твердофазной области информация ограничена определением энтальпии (Kleppa, 1955; Flandorfer et al., 2007; Ipser et al., 2007), измерением высокотемпературной теплоемкости (Wallbrecht et al., 1981), а также данными, полученными из оптимизации термодинамических свойств системы Ag–Sn (Chevalier, 1988; Kattner, Boettinger, 1994; Xie, Qiao, 1996; Franke, Neuschütz, 2002). В литературе отсутствует информация по определению термодинамических свойств Ag₃Sn с использованием ЭДС-метода.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез и характеристика твердых фаз. Для электрохимических измерений синтезирована смесь фаз $Ag_3Sn + Sn$ из элементов (92 ат. % Sn). Синтез был осуществлен методом плавления под вакуумом заданной смеси металлов Ag (99.95) и Sn (99.999) в количестве 3 г в ампуле из кварцевого стекла в пламени кислородной горелки. Образец в виде капли обрабатывался для превращения в диск толщиной примерно 2 мм и диаметром 6 мм (система образца). Рентгенограмма полу-

Рис. 1. Природные составы в системе Ag–Au–Sn(±Pb, Sb), в сравнении с экспериментальными данными в системе Ag–Au–Sn при 206 °C (Prince et al., 2006), Е – тройная эвтектика.

ченного образца содержит две фазы, которые соответствуют картам PDF: 01-074-9567 для Ag_3Sn и 01-089-4898 для Sn.

Изготовление электродов ЭДС ячейки. Система сравнения (электрод сравнения) изготавливалась из серебряного прутка и представляла собой таблетку диаметром 6 мм и высотой 2 мм. Процедура изготовление системы образца описана выше. Инертные графитовые электроды изготавливались из стержня прессованного спектрально чистого графита диаметром 6 мм и соединялись с платиновой проволокой диаметром 0.2 мм. В качестве твердого электролита использовался моноблочный кристаллический $RbAg_4I_5$, изготовленный в Институте проблем технологии микроэлектроники и особочистых материалов РАН (Черноголовка). Все плоские рабочие поверхности (электрические

контакты) электродов полировались до зеркального блеска. Принципиальная схема электрохимической ячейки приведена в работе (Воронин, Осадчий, 2011).

ЭДС измерения. Измерения проводились с помощью универсальной многоканальной компьютерной системы (Жданов и др., 2005). Каналы для измерения ЭДС имеют входное сопротивление не менее 10^{12} Ом. Температура измерялась хромельалюмелевой термопарой (тип "K"). Точность измерения ЭДС и температуры составляла ± 0.02 мВ и ± 0.15 К соответственно. Опыты проводились методом "температурного титрования" (Osadchii, Echmaeva, 2007), т.е. ожиданием установления постоянного (равновесного) значения ЭДС при заданной температуре. Определение равновесных значений ЭДС проводилось в режиме ступенчато-

(

го нагрева и охлаждения ячейки по методике, детально описанной в работе (Osadchii, Rappo, 2004).

Фазовые реакции и гальванические ячейки. В бинарной системе Ag—Sn, в соответствии с фазовой диаграммой (рис. 2), была изучена виртуальная химическая реакция:

$$3Ag + Sn = Ag_3Sn (R1).$$

Для реакции образования Ag₃Sn из элементов электрохимический процесс записывается следующим образом:

3Ag = 3Ag⁺ + 3e⁻ левый электрод (система сравнения) (-)

 $3Ag^{+} + 3e^{-} + Sn = Ag_{3}Sn$ правый электрод (система образца) (+)

$$3Ag + Sn = Ag_3Sn$$
 суммарный потенциалобразующий процесс,

который совпадает с реакцией (R1) и реализован в полностью твердотельной гальванической ячейке:

(-)
$$Pt | Gr | Ag | RbAg_{4}I_{5} | Ag_{3}Sn, Sn | Gr | Pt (+), (A)$$

где $RbAg_4I_5 - Ag^+$ -проводящий твердый электролит, Gr - графитовый электрод с платиновым (Pt) электрическим контактом.

РЕЗУЛЬТАТЫ И РАСЧЕТЫ

ЭДС величины. Результаты измерения E(T) зависимости в ячейке (А) представлены в табл. 1 и в виде линейного уравнения (1), при условии, что $\Delta_{\rm c}C_{\rm a}$ постоянно и равно нулю (рис. 3):

$$E(A), MB = (64.82 \pm 0.74) + + (0.02868 \pm 1.91 \cdot 10^{-3}) \cdot T,$$
(1)
$$327 < T/K < 427), R^2 = 0.9638, k = 36,$$

где k — количество экспериментальных точек, R² — коэффициент детерминации экспериментальных точек. По графику остатков на рис. 3 нет оснований для выбора уравнения более высокого порядка для описания E(T) и соответственно $\Delta_{r}G(T)$. Здесь и далее стандартные ошибки приведены для 95 % (t_{0.975:36-2} = 2.032244).

Расчет термодинамических величин. Энергия Гиббса, энтропия и энтальпия реакции вычислены с помощью основных уравнений термодинамики

Рис. 2. Фазовая диаграмма системы Ag-Sn по данным (Karakaya, Thompson, 1987).

	First First State Stat							
<i>Т</i> , К	Е, мВ	ΔE	Т, К	Е, мВ	ΔE			
410.85	76.42	-0.19	348.15	74.71	-0.10			
400.18	76.32	0.01	337.68	74.61	0.10			
389.57	76.13	0.13	327.41	74.45	0.23			
379.08	75.81	0.11	332.58	74.28	-0.09			
368.75	75.50	0.09	342.80	74.40	-0.26			
373.85	75.65	0.10	353.34	74.69	-0.27			
384.28	75.96	0.11	363.68	75.05	-0.21			
394.79	76.31	0.16	373.89	75.41	-0.14			
405.40	76.58	0.12	384.20	75.75	-0.10			
416.22	76.75	-0.02	394.77	76.10	-0.05			
426.93	76.84	-0.24	405.47	76.46	0.00			
421.53	76.68	-0.24	416.16	76.80	0.03			
410.88	76.67	0.05	426.83	76.75	-0.32			
400.14	76.32	0.01	421.49	77.05	0.13			
389.60	76.17	0.17	410.83	76.77	0.16			
379.14	75.78	0.08	400.21	76.45	0.14			
368.70	75.37	-0.03	389.53	76.12	0.12			
358.54	74.92	-0.19	379.07	75.81	0.11			

Таблица 1. Измеренные в ячейке (А) значения E(T), ($\Delta E = E_{\mu_{AM}} - E_{nacu}$)

из температурных зависимостей ЭДС (*E*, мВ) гальванической ячейки:

 $\Delta_{r} G (\square \mathbb{X} \cdot \mathsf{MOND}^{-1}) = -n \cdot F \cdot 10^{-3} E;$ $\Delta_{r} S (\square \mathbb{X} \cdot \mathbb{K}^{-1} \cdot \mathsf{MOND}^{-1}) = n \cdot F \cdot 10^{-3} \cdot (dE/dT);$ $\Delta_{r} H (\square \mathbb{X} \cdot \mathsf{MOND}^{-1}) = -n \cdot F \cdot 10^{-3} \cdot [E - (dE/dT) \cdot T],$

где n = 3 – количество электронов в реакции (R1), $E - \Im \Box C$ в милливольтах и F = 96485.34 Кл·моль⁻¹ – константа Фарадея.

С использованием вспомогательных данных по энтропиям серебра и олова произведен расчет стандартных термодинамических свойств станнида серебра. Полученные значения, а также вспомогательные и литературные данные приведены в табл. 2.

Средняя квадратичная ошибка уравнения регрессии $\Delta_{f}G^{0}(T)$ равна $\hat{\sigma} = 91 \ \text{Дж} \cdot \text{моль}^{-1}$. Доверительный интервал $\Delta_{f}G^{0}(T)$ при 298.15 К составляет 51 $\text{Дж} \cdot \text{моль}^{-1}$. Интервал прогнозирования $\Delta_{f}G^{0}(T)$ при 298.15 К равен 105 $\text{Дж} \cdot \text{моль}^{-1}$. Таким образом,

Рис. 3. Экспериментальные значения E(T), полученные в ячейке (А). Внизу приведен график остатков.

Фаза	∆ _∕ G° (Дж∙моль ⁻¹)	S° (Дж∙К ⁻¹ ∙моль ⁻¹)	∆ _f Н° (Дж∙моль ⁻¹)	Ссылка	
Ag	0	42.677	0	Barin, 1995	
Sn	0	51.195	0	«»	
Ag ₃ Sn (ε)	-18983	184.1	-17528	Chevalier, 1988	
	-15772	193.5	-11508	Kattner, Boettinger, 1994	
	-25201	212.1	-15394	Xie, Qiao, 1996	
	-18544	190.1	-15304	Franke, Neuschütz, 2002	
	-	_	-17154 ± 1673	Глушко, 1965—1982	
	_	_	$-16800 \pm 4000^{*}$	Flandorfer et al., 2007	
	-	_	$-16720 \pm 4000^{**}$	Ipser et al., 2007	
	-21238 ± 51	187.5 ± 0.6	-18763 ± 214	данная работа	

Таблица 2. Стандартные (298.15 К, 10⁵ Па) термодинамические свойства Ag₃Sn, Ag и Sn

* Для состава Ag_{2.96}Sn_{1.04}. ** Для состава Ag_{2.976}Sn_{1.024}.

Таблица 3. Значения энергии Гиббса ($\Delta_f G^0(T)$, Дж·моль⁻¹) для Ag₃Sn в температурном диапазоне 300-500 К по данным разных авторов

Course	Температура, К						
Ссылка	300	350	400	450	500		
Chevalier, 1988	-18992	-19236	-19480	-19724	-19968		
Kattner, Boettinger, 1994	-15798	-16514	-17229	-17944	-18659		
Xie, Qiao, 1996*	-25262	-26906	-28551	-30196	-31840		
Franke, Neuschütz, 2002	-18566	-19109	-19653	-20196	-20740		
наши данные	-21253	-21668	-22083	-22498	-22913		

* Рассчитано по уравнению $\Delta_{f}G^{0}(T)$ (Дж·моль⁻¹) = -15394 - 32.892*T*.

доверительный интервал предсказанного (экстраполированного) значения $\Delta_f G^0(298.15 \text{ K})$ почти в два раза меньше, чем средняя квадратичная ошибка уравнения регрессии. Электрохимические эксперименты - одни из самых точных способов определения термодинамических свойств простых соединений. Зачастую большую ошибку при расчетах сложных реакций вносит использование вспомогательных величин - термодинамических свойств соединений, участвующих в исследуемой реакции. В этой работе расчет $\Delta_{f} G^{0}(T)$ Ag, Sn не потребовал использования энергии Гиббса других соединений, потому доверительный интервал $\Delta_t G^0(T)$ соответствует доверительному интервалу энергии Гиббса реакции, $\Delta G^0(T)$, полученной только из электрохимического эксперимента.

ДИСКУССИЯ

Ранее значения термодинамических свойств для Ag₃Sn были получены косвенно из оптимизации фазовой диаграммы Ag-Sn, на основании многочисленных экспериментальных данных по фазовым отношениям в системе и термодинамическим данным, полученным в области существования расплава (Chevalier, 1988; Kattner, Boettinger, 1994; Xie, Qiao, 1996; Franke, Neuschütz, 2002). Данные для Ag₂Sn, как правило, в этих работах приводится в виде уравнения температурной зависимости энергии Гиббса. Стоит отметить, что в указанных работах не всегда приводится температурный диапазон применимости уравнения, а также не всегда указывается, для какого стандартного состояния элементов приведены данные для энергии Гиббса, но, вероятно, стандартным состоянием серебра и олова является кристаллическое при 298.15 К и 10^5 Па. Тогда указанными уравнениями можно пользоваться до температуры плавления олова (504 К).

Сравнение литературных данных с данными, полученными в этой работе, приведено в табл. 3 и на рис. 4. Можно отметить несколько завышенное значение энергии Гиббса, приведенное в работах (Chevalier, 1988; Kattner, Boettinger, 1994; Franke, Neuschütz, 2002) по сравнению с данными настояшей работы. В работе (Хіе, Оіао, 1996) вероятнее всего допущена ошибка в приведенном уравнении температурной зависимости энергии Гиббса, т.к. в таком случае ниже 500 К значение становится положительным, а фаза метастабильной (т.е. является высокотемпературной), что находится в противоречии с непосредственными выводами как самой работы, так и данными других авторов. Исходя из вышеизложенного, в уравнении из указанной выше работы был заменен знак при свободном члене уравнения. Несмотря на это, данные (Xie, Qiao, 1996) значительно отличаются как от наших данных, так и от данных других авторов (табл. 3, рис. 4).

Значительные расхождения между значениями $\Delta_{j}G^{0}(T)$ для Ag₃Sn, полученными в результате оптимизации системы Ag—Sn, и из прямых ЭДС измерений в данной работе, говорят о необходимости проведения повторной оптимизации термодинамики системы Ag—Sn с учетом вновь полученных результатов.

Тот факт, что шосанбецуит обнаружен только в россыпях, оставляет открытым вопрос о формировании ассоциаций с его участием, т.е. образуется ли он в первичных рудах и гидротермально измененных породах или непосредственно в россыпях (Сандимирова и др., 2013). Вместе с тем новые данные позволяют оценить физико-химические условия, необходимые для образования шосанбецуита в эндогенных процессах.

Авторы благодарят научного редактора статьи О.Л. Кускова и двух анонимных рецензентов за полезные замечания.

Работа выполнена в рамках госзадания ИЭМ РАН (FMUF-2022-0002).

СПИСОК ЛИТЕРАТУРЫ

Воронин М.В., Осадчий Е.Г. (2011) Определение термодинамических свойств селенида серебра методом гальванической ячейки с твердыми и жидкими электролитами. Электрохимия. **47**, 446-452.

Глушко В.П. (отв. ред.). (1965-1982) Термические константы веществ: Справочник в 10-и выпусках. М.: ВИНИТИ, электронная версия (под руководством Иориш В.С. и Юнгман В.С.): https://www.chem.msu. ru/cgi-bin/tkv.pl?show=welcome.html.

Жданов Н.Н., Осадчий Е.Г., Зотов А.В. (2005) Универсальная измерительная система для электрохимических измерений в гидротермальных и конденсированных средах. Сборник материалов XV Российского

Рис. 4. Температурная зависимость энергии Гиббса Ag₃Sn по данным разных авторов.

Совещания по Экспериментальной Минералогии. Сыктывкар: Изд-во «Геопринт», 166-168.

Литвиненко И.С. (2017) Интерметаллиды золота из россыпи реки Баимка (Западная Чукотка). Записки Российского минералогического общества. **146**(5), 31–43.

Сандимирова Е. И., Сидоров Е. Г., Чубаров В. М., Ибрагимова Э. К., Антонов А. В. (2013) Самородные металлы и интерметаллиды в шлиховых ореолах реки Ольховая 1-я (Камчатский мыс, Восточная Камчатка). Записки Российского минералогического общества. **142**(6), 78–88.

Barin I. (1995) Thermochemical data of pure substances. Third Edition. Two Volumes: vol. 1 (Ag–Kr) and vol. II (La–Zr). VCH: New York, 1900 p.

Chevalier P.Y. (1988) A thermodynamic evaluation of the Ag–Sn system. *Thermochim. Acta*. **136**, 45–54.

Cui Y., Xian J.W., Zois A., Marquardt K., Yasuda H., Gourlay C.M. (2023) Nucleation and growth of Ag₃Sn in Sn–Ag and Sn–Ag–Cu solder alloys. *Acta Mater.* **249**, 118831.

Esaka H., Shinozuka K., Tamura M. (2005) Evolution of structure unidirectionally solidified Sn-Ag₃Sn eutectic alloy. *Mater. Trans.* **46**(5), 916–921.

Fairhurst C.W., Cohen J.B. (1972) The crystal structures of two compounds found in dental amalgam: Ag₂Hg₃ and Ag₃Sn. *Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.* **28**(2), 371–378.

Flandorfer H., Saeed U., Luef C., Sabbar A., Ipser H. (2007) Interfaces in lead-free solder alloys: Enthalpy of formation of binary Ag–Sn, Cu–Sn and Ni–Sn intermetallic compounds. *Thermochim. Acta.* **459**(1–2), 34–39.

Franke P., Neuschütz D. (eds.). (2002) Ag–Sn (Silver-Tin). Landolt-Börnstein – Group IV "Physical Chemistry", Volume 19 "Thermodynamic Properties of Inorganic Materials", Subvolume 19B1 "Binary Systems. Part 1: Elements and Binary Systems from Ag–Al to Au–Tl". Springer-Verlag Berlin Heidelberg, 4 p. Hou N., Xian J.W., Sugiyama A., Yasuda H., Gourlay C.M. (2023) Ag₃Sn morphology transitions during eutectic growth in Sn–Ag alloys. *Metall. Mater. Trans. A.* **54**(3), 909–927.

Ipser H., Flandorfer H., Luef C., Schmetterer C., Saeed U. (2007) Thermodynamics and phase diagrams of lead-free solder materials. *J. Mater. Sci.: Mater. Electron.* **18**, 3–17.

Karakaya I., Thompson W.T. (1987) The Ag–Sn (silvertin) system. *Bull. Alloy Phase Diagrams*. **8**(4), 340–347.

Kattner U.R., Boettinger W.J. (1994) On the Sn-Bi-Ag ternary phase diagram. J. Electron. Mater. 23, 603–610.

Kleppa O.J. (1955) A calorimetric investigation of the system silver-tin at 450°C. *Acta Metall.* **3**(3), 255–259.

Kotadia H.R., Howes P.D., Mannan S.H. (2014) A review: On the development of low melting temperature Pb-free solders. *Microelectron. Reliab.* **54**(6–7), 1253–1273.

Nishio–Hamane D., Saito K. (2021) Au (Ag)–Sn–Sb– Pb minerals in association with placer gold from Rumoi province of Hokkaido, Japan: a description of two new minerals (rumoiite and shosanbetsuite). *J. Mineral. Petrol. Sci.* **116**(5), 263–271.

Osadchii E.G., Echmaeva E.A. (2007) The system Ag– Au–Se: Phase relations below 405 K and determination of standard thermodynamic properties of selenides by solidstate galvanic cell technique. *Am. Mineral.* **92**, 640–647.

Osadchii E.G., Rappo O.A. (2004) Determination of standard thermodynamic properties of sulfides in the Ag–Au–S system by means of a solid-state galvanic cell. *Am. Mineral.* **89**, 1405–1410.

Prince A., Liang P., Tedenac J.-C., Lakiza S., Dobatkina T. (2006) Ag–Au–Sn (Silver-Gold-Tin). Landolt-Börnstein – Group IV "Physical Chemistry", Volume 11 "Ternary Alloy Systems – Phase Diagrams, Crystallographic and Thermodynamic Data critically evaluated by MSIT", Subvolume 11B "Noble Metal Systems. Selected Systems from Ag–Al–Zn to Rh–Ru–Sc". Effenberg G., Ilyenko S. (eds.), Springer-Verlag Berlin Heidelberg, 11 p.

Wachtler M., Winter M., Besenhard J.O. (2002) Anodic materials for rechargeable Li-batteries. *J. Power Sources*. **105**, 151–160.

Wallbrecht P.C., Blachnik R., Mills K.C. (1981) The heat capacity and enthalpy of some Hume-Rothery phases formed by copper, silver and gold. Part II. Cu+Ge, Cu+Sn, Ag+Sn, Au+Sn, Au+Pb systems. *Thermochim.* Acta. **46**(2), 167–174.

Xie Y., Qiao Z. (1996) Thermodynamic reoptimization of the Ag–Sn system. *J. Phase Equilib.* **17**, 208–217.

STANDARD THERMODYNAMIC PROPERTIES OF Ag₃Sn (SHOSANBETSUITE): EMF Data

© 2025 M.V. Voronin, E.G. Osadchii*

D.S. Korzhinskii Institute of Experimental Mineralogy of Russian Academy of Sciences, Academica Osypyana ul., 4, Chernogolovka, Moscow region, 142432 Russian Federation

*e-mail: euo@iem.ac.ru

Received July 19, 2024; revised August 29, 2024; accepted September 17, 2024

Thermodynamic properties of shosanbetsuite (Ag₃Sn) are first determined in the Ag–Sn system in a galvanic cell (–) Pt | Gr | Ag | RbAg₄I₅ | Ag₃Sn, Sn | Gr | Pt (+) within the temperature range of 327–427 K in vacuum. Analysis of the data makes it possible to calculate the standard (298.15 K, 10⁵ Pa) $\Delta_{f}G^{0}$, $\Delta_{f}H^{0}$, and S⁰ of Ag₃Sn: –21238, –18763 J mol⁻¹, and 187.5 J K⁻¹ mol⁻¹, respectively.

Keywords: Ag–Sn, Ag₃Sn, EMF-method, shosanbetsuite