Том 68, Номер 6

Журнал публикует оригинальные работы по всем разделам геохимии, космохимии, термодинамики природных процессов, геохимии органического вещества, геохимии океана и экологии.

-

_

Том 68, номер 6, 2023

Источники металлов колчеданных месторождений Рудного Алтая по данным высокоточного MC-ICP-MS изучения изотопного состава свинца И. В. Чернышев, И. В. Викентьев, А. В. Чугаев, А. Л. Дергачев, В. В. Раткин	545
Особенности состава и возможные механизмы образования флогопитового перидотита архейского возраста в гнейсоэндербитах Бугской гнейсо-гранулитовой области Украинского щита С. Б. Лобач-Жученко, Ш. К. Балтыбаев, Ю. С. Егорова, А. В. Юрченко	570
Перенос металлов в гидротермальных условиях в виде коллоидных частиц и пересыщенных истинных растворов <i>В. А. Алексеев</i>	608
Термодинамические свойства кокимбита и алюминококимбита Ю. Д. Гриценко, Л. П. Огородова, М. Ф. Вигасина, Д. А. Косова, С. К. Дедушенко, Л. В. Мельчакова, Д. А. Ксенофонтов	622
Дифференцированная оценка содержания ¹³⁷ Cs на биогенном и литогенном взвешенном веществе в Черном море И. Г. Сидоров, О. Н. Мирошниченко, В. Ю. Проскурнин, А. А. Параскив	629
Элементный состав растений семейства рясковые (Lemnaceae) на урбанизированных территориях Российской Федерации <i>Н. В. Барановская, А. Ю. Барановская, А. Ф. Судыко</i>	638

ИСТОЧНИКИ МЕТАЛЛОВ КОЛЧЕДАННЫХ МЕСТОРОЖДЕНИЙ РУДНОГО АЛТАЯ ПО ДАННЫМ ВЫСОКОТОЧНОГО MC-ICP-MS ИЗУЧЕНИЯ ИЗОТОПНОГО СОСТАВА СВИНЦА

© 2023 г. И. В. Чернышев^{а,} *, И. В. Викентьев^а, А. В. Чугаев^а, А. Л. Дергачев^b, В. В. Раткин^c

^аИнститут геологии рудных месторождений, петрографии, минералогии и геохимии Российской академии наук

(ИГЕМ РАН), Старомонетный пер., 35, Москва, 119017 Россия

^b Московский Государственный Университет им. М.В. Ломоносова (МГУ),

Ленинские горы, д. 1, Москва, 119991 Россия

^сДальневосточный геологический институт Дальневосточного отделения Российской академии наук

(ДВГИ ДВО РАН), пр-т 100-летия Владивостока, 159, Владивосток, 690022 Россия

*e-mail: cheriv1935@gmail.com

Поступила в редакцию 08.11.2022 г. После доработки 22.12.2022 г. Принята к публикации 17.01.2023 г.

Металлогеническая провинция Рудного Алтая, конформная одноименному террейну и расположенная в Центрально-Азиатском складчатом поясе (ЦАСП), – одна из крупнейших в мире по запасам колчеданных (volcanogenic massive sulfide (VMS)) руд. Изотопный состав свинца впервые с высокой точностью ($\pm 0.02\%$, SD) измерен по галениту (всего 61 образец) для 20 колчеданно-полиметаллических месторождений, представляющих доминирующий в Рудном Алтае тип сульфидных залежей. Они залегают в ранне-срелнелевонской вулканогенно-осалочной толше, ассощируя с вулканитами бимодальной базальт-риолитовой серии. Среди изученных присутствуют крупные и суперкрупные месторождения этого типа: Риддер-Сокольное, Тишинское, Ново-Лениногорское, Зыряновское, Змеиногорское, Корбалихинское. В провинции в целом изотопные отношения ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb и ²⁰⁸Pb/²⁰⁴Pb варьируют в узких пределах. При средних значениях 206 Pb/ 204 Pb = 17.820, 207 Pb/ 204 Pb = 15.517 и 208 Pb/ 204 Pb = 37.669 среднеквадратичный разброс (коэффициент вариации, %) составляет 0.22, 0.038 и 0.063% соответственно. Еще более гомогенный состав наблюдается внутри рудных районов провинции (0.054, 0.012 и 0.020%) и особенно внутри месторождений (0.025, 0.010 и 0.013%), масштаб вариаций изотопных отношений свинца здесь достигает уровня погрешности их измерения (±0.02%). Изотопный состав свинца провинции не содержит изотопных "меток" ювенильного (астеносферного) происхождения. Эволюционные характеристики источника свинца (его деплетированность ураном, удревненный модельный Рb-Рb возраст, умеренные значения параметра μ_2) в совокупности с выдержанностью изотопного состава позволяют в качестве его источника рассматривать литосферную мантию, состоящую из метасоматизированных и рециклированных пород. Этот источник носил региональный характер, был гомогенным в химическом (U-Th-Pb) и изотопном (Pb-Pb) отношении и единым для всех месторождений. Среди других пространственно-близких террейнов ЦАСП, включая Китайский Алтай, рудный свинец Рудно-Алтайского террейна обладает наименее радиогенным составом по содержанию всех трех изотопов ²⁰⁶Pb, ²⁰⁷Pb и ²⁰⁸Pb. Отмеченное ранее (Chiaradia et al., 2006) систематическое уменьшение содержания радиогенных изотопов в свинце руд и пород указанных террейнов ЦАСП в направлении с юго-запада на северо-восток коррелируется с уменьшением в том же направлении роли нижней коры в составе террейнов, где в том числе участвуют фрагменты и блоки докембрийской коры. Особенность изотопного состава Pb Рудно-Алтайского террейна в большой степени определяется отсутствием в его составе блоков докембрийской коры.

Ключевые слова: изотопный состав Pb, MC-ICP-MS метод, колчеданные месторождения, Рудный Алтай, источники вещества

DOI: 10.31857/S001675252306002X, EDN: EMNCHT

введение

Рудный Алтай — одна из крупнейших горнорудных провинций мирового класса с суммарными запасами вулканогенных массивных сульфидных руд (VMS deposits) — около 1000 млн тонн (Смирнов, 1979; Беспаев и др., 1997; Дергачев, 2010). Здесь на площади менее 10000 км² сконцентрировано 60 месторождений меди, свинца и цинка. Четверть из них относится к разряду крупных и суперкрупных месторождений (более 25 млн тонн) (Дергачев, 2010).

В современных металлогенических обобщениях доминирующие в Рудном Алтае колчеданнополиметаллические месторождения чаще классифицируются как тип Куроко или siliciclastic-felsic VMS deposits (Franklin et al., 2005; Shanks et al., 2012; Lobanov et al., 2014; Гаськов, 2015). В то же время, находящиеся в андезитоидных осадочновулканогенных формациях месторождения миоценового Пояса зеленых туфов (Куроко) в пределах Японской энсиалической дуги по петрологии вулканических пород заметно отличаются от таковой для Рудного Алтая (Миронов и др., 1999; Викентьев и др., 2023). Существует точка зрения (Кудрявцева, Кузнецов, 2012) о необходимости выделения месторождений Рудного Алтая в самостоятельный "рудно-алтайский" тип, главным образом, на основании резкого различия масштабов колчеданной минерализации в Рудном Алтае от более мелких по запасам руды и металлов месторождений Куроко. Рудообразование в Рудном Алтае рассматривается как процесс, синхронный с проявлением бимодального базальтриолитового вулканизма девонского возраста (Вулканогенные ..., 1978; Гаськов, 2002; Чекалин, Дьячков, 2013; Akinfiev, Vikentvev, 2020). При этом природа девонских вулканических пород и их рудоносности остается предметом дискуссии (Промыслова, 2005; Куйбида и др., 2013, 2019; Козлов, 2015; Кузнецов и др., 2019; Куйбида, 2019). Одним из ключевых вопросов обсуждаемой проблемы является источник металлов этой металлогенической провинции.

Развитие геохимии изотопов повлекло за собой многие исследования, в которых различные изотопные характеристики рудного вещества и ассоциированных с ним горных пород использовались как "метки" для идентификации источников рудной минерализации в крупных рудных провинциях различного профиля и отдельных месторождений Тихоокеанского пояса, юго-восточной Австралии, Забайкалья, Верхоянья, Урала и других регионов. Проводившееся в XX столетии, особенно интенсивно в 1950-80-х гг., геологическое изучение колчеданных месторождений Рудного Алтая практически не было поддержано исследованиями радиогенных изотопов при разработке вопросов происхождения месторождений этой крупнейшей рудной провинции. Так, результаты единичных, выполненных более 40 лет назад работ, в которых анализировался изотопный состав Pb Рудного Алтая, ввиду низкой точности были мало информативными (Аксенов и др., 1977; Сыромятников и др., 1981; Гаськов, 2002).

Предпринятое в настоящей работе систематическое изучение изотопного состава Рь колчеданно-полиметаллических месторождений Рудного Алтая проведено с помощью высокоточного (с погрешностью ±0.02%) МС-ІСР-МЅ метода, который по точности на порядок превосходит традиционно применявшийся ранее метод TIMS. Метод MC-ICP-MS (Rehkämper, Halliday, 1998) в последние 10-15 лет стал новой метолической основой свинцово-изотопных гео-исследований. обеспечив заметный прогресс в первую очередь в области изучения рудного свинца. Он позволил при неопределенности всего 0.02% фиксировать различия изотопного состава свинца в объектах различного масштаба, вплоть до уровня микрокристаллов рудных минералов, и выявлять реальную картину распределения в них изотопного состава свинца. Эти качества метода, как уже показал опыт региональных свинцово-изотопных исследований с использованием высокоточных MC-ICP-MS данных (Kamenov et al., 2002, 2005; Чугаев и др., 2013; Standish et al., 2014; Чугаев, Чернышев, 2017; Чернышев и др., 2018), оказываются существенными при выяснении геологических причин региональных и локальных вариаций изотопного состава свинца и идентификации его источников.

Полученные в настоящей работе результаты носят, прежде всего, региональный характер, поскольку относятся к 20 месторождениям и рудопроявлениям из четырех рудных районов – Зыряновского, Лениногорского, Змеиногорского и Рубцовского, формирующих в Рудном Алтае протяженный (примерно 500 км) пояс северо-западного простирания. Кроме того, для отдельных месторождений, среди которых наиболее крупные колчеданно-полиметаллические объекты провинции – Риддер-Сокольное, Тишинское, Зыряновское и Ново-Лениногорское, полученные данные носят более детальных характер, характеризуя масштаб вариаций изотопного состава свинца внутри месторождений. Всего в ходе работы изучен 61 рудный образец, в каждом из которых непосредственным объектом анализа являлся галенит. Возможность "сквозного" использования галенита – благоприятная особенность месторождений Рудного Алтая, поскольку галенит по ряду причин является оптимальным минералом при свинцово-изотопном изучении гидротермальных месторождений.

В результате проведенной работы с высокой точностью измерен изотопный состав свинца в 20 колчеданно-полиметаллических месторождениях и рудопроявлениях Рудного Алтая, изучено его региональное и локальное распределение в провинции; на основании Pb-Pb изотопных данных подкоровая литосферная мантия рассматривается как возможный источник рудной минерализации.

Рис. 1. Положение Рудного Алтая на схеме тектонического строения западной части Алтае-Саянской складчатой области (по (Буслов и др., 2003; Сафонова, 2021) с изменениями авторов), расположенной в центральной части Центрально-Азиатского складчатого пояса (ЦАСП – см. врезку). Цифрами показаны сдвиговые зоны, реактивированные в позднем палеозое: 1 – Чарская, 2 – Иртышская, 3 – Чарыш-Теректинская, 4 – Курайская, 5 – Барлык, 6 – Майле, 7 – Дарлабуте; р – разлом.

ГЕОТЕКТОНИЧЕСКАЯ ПОЗИЦИЯ, СТРОЕНИЕ И ГЕОЛОГИЧЕСКОЕ РАЗВИТИЕ РУДНОГО АЛТАЯ

Рудно-Алтайский террейн

Рудно-Алтайская металлогеническая провинция отвечает Рудно-Алтайскому террейну (Буслов и др., 2000), который наряду с другими Алтаидами входит в состав Центрально-Азиатского складчатого пояса (ЦАСП) (рис. 1). В геологической структуре ЦАСП этот террейн располагается в юго-западной части Алтае-Саянского коллажа террейнов юго-западного обрамления Сибирского континента. Рудно-Алтайский террейн соседствует с расположенными северо-восточнее Горно-Алтайским и Алтае-Монгольским террейнами, а с юго-запада он ограничен Иртышской зоной смятия, отделяющей Рудный Алтай от террейнов сутурной зоны Обь-Зайсанского палеоокеана (рис. 1).

Фундамент Рудно-Алтайского террейна сложен (по данным (Государственная ..., 2019)) складчатым комплексом ордовик-силурийских флишоидов корбалихинской свиты, в которой переслаиваются кварц — серицит — (эпидот) хлоритовые сланцы, метапесчаники и метаалевролиты с редкими прослоями мраморизованных известняков. По данным (Буслов и др., 2000), сформированные в турбидитовом бассейне флишоиды подстилаются метабазальтовыми сланцами океанического основания. В процессе аккреции ордовик-силурийская толща, суммарная мощность которой превышает 10 км, испытала финальную складчатость и метаморфизм на силур-раннедевонском рубеже времени (Козаков и др., 2005).

Для Рудно-Алтайского террейна характерна пониженная мощность земной коры. В нем выделяется гребневидный мантийный выступ северозападного простирания, ось которого погружается на юго-восток (Щерба и др., 1998). Обособленность Рудно-Алтайского террейна по отношению к смежным геологическим структурам подчеркивается положительной аномалией поля силы тяжести, интенсивность которой в 2–2.5 раза превышает таковую смежных структур, а также повышенной интенсивностью магнитного поля.

Постаккрециционный чехол Рудно-Алтайского террейна

Складчатый раннепалеозойский комплекс Рудно-Алтайского террейна на большей его части перекрыт рудоносными вулканогенно-осадочны-

ми эмс-франскими толщами и лежащими выше осадочными и вулканогенными породами франкаменноугольного возраста. Эмс-раннефранский вулканизм, проявившийся как бимодальная антидромная базальт-риолитовая ассоциация, реализовался в мелководно-морских условиях в линейных зонах растяжения — вулкано-тектонических структурах (ВТС), представленных как депрессии первого порядка, сопряженные с ограничивающими Рудно-Алтайский террейн региональными зонами сдвиговых дислокаций (Филатов, Ширай, 1975; Вулканогенные ..., 1978; Викентьев, 1994; Щерба и др., 1998; Филатов, 1999; Кузнецов и др., 2019 и др.). Мощность вулканогенно-осадочных толщ, выполняющих краевые депрессии, достигает 2.5 км.

Вулканиты девонской базальт-риолитовой формации Рудного Алтая по геохимическим и петрохимическим признакам являются переходными между толеитовой и известково-щелочной сериями (Гладких, 1992; Миронов и др., 1999). Базальты по содержаниям Mg и La соответствуют толеитам СОХ, а по Са, К и большей части некогерентных элементов – базальтам островных дуг, тогда как по содержанию Al – континентальным платобазальтам (Миронов и др., 1999; Промыслова, 2005). Изменчивость петрохимических характеристик вулканических пород эмс-франской бимодальной антидромной ассоциации выступает как индикатор геодинамической обстановки их формирования, которая может быть связана как с субдукцией, так и с внутриплитными (рифтогенными) обстановками (Щерба, 1983; Филатов, 1999; Промыслова, 2005; Сараев и др., 2012; Куйбида и др., 2015, 2019; Куйбида, 2018, 2019; Кузнецов и др., 2019).

В последнюю четверть XX в. эволюция Рудного Алтая в девоне рассматривается с позиций мобилизма (Филатов, Ширай, 1975; Зоненшайн и др., 1976; Ротараш и др., 1982; Dobretsov et al., 1995; Ширяй и др., 1999; Владимиров и др., 2003 и др.). Общим для представлений большинства авторов является вывод о формировании палеозойских структур региона в пределах островодужной системы, при этом Иртышская зона смятия многими отождествляется с палеозоной Беньофа.

В современных геодинамических и петрологических обобщениях (Ханчук и др., 2019; Grebennikov, Khanchuk, 2021; Крук, 2021), в частности, показано, что "пестрота" состава пород проявляется в магматических ассоциациях, сформированных в трансформном режиме, в обстановке скольжения литосферных плит на границе "континент-океан". Что касается конкретно Рудного Алтая, то на основании геолого-структурных наблюдений (Промыслова, 2005; Кузнецов и др., 2019) и палеогеодинамических построений (Владимиров и др., 2003; Крук, 2021) предполагается, что формирование девонских вулкано-тектонических депрессий происходило в условиях деструкции Рудно-Алтайского террейна в результате интенсивных сдвиговых перемещений вдоль ограничивающих его СЗ разломов Иртышской и Северо-Восточной зон смятия в режиме проскальзывания Обь-Зайсанской океанической плиты относительно края Сибирского кратона.

РУДНО-АЛТАЙСКАЯ МЕТАЛЛОГЕНИЧЕСКАЯ ПРОВИНЦИЯ

Геологическое положение и типы колчеданных месторождений

В ряде террейнов ЦАСП известны колчеданные месторождения различных типов, варьирующие по возрасту от кембриийского до девонского. Среди них Рудно-Алтайский террейн, включающий Алтайскую металлогеническую провинцию, является наиболее насыщенным в отношении колчеданных месторождений. Данная металлогеническая провинция, в которой сосредоточено около 70 колчеданных месторождений, представляет собой линейно вытянутую область северозападного простирания длиной примерно 850 км, проходящую через территории России, Казахстана и Китая (рис. 2).

Рис. 2. Позиция колчеданно-полиметаллических месторождений в структурах Рудного Алтая. *1* – докембрийские метаморфиты; *2* – додевонские флишоидные формации; *3* – силур-ордовикские метаморфические сланцы; *4* – карбонатно–терригенные фации девона – карбона Калба-Нарымской зоны; *5* – преимущественно вулканиты нижнего – среднего девона; *6* – нерасчлененные вулканогенно-осадочные породы девона рифтогенной и островодужной обстановок (рудообразующая формация); *7* – известняково–терригенные и флишоидные образования верхнего девона; *8* – разновозрастные динамометаморфические сланцы Иртышской зоны смятия; *9* – молассовые лимнические угленосные отложения юры; *10* – гранитоидные интрузии девон-каменноугольного возраста (коллизионные); *11* – граниты пермь-триасовые (постколлизионные); *12* – карбонатно–терригенные фации девона – карбона Западно-Калбинской зоны; *13* – разрывные нарушения: *a* – главные достоверные, *6* – главные предполагаемые, *e* – второстепенные; *14*–*17* – колчеданные месторождения: *14* – очень крупные, *15* – крупные, *16* – средние, *17* – малые; *18* – рудопроявления. Цифрами на схеме обозначены месторождения и проявления: 1 – Степное, 2 – Таловское, 3 – Лазурское, 4 – Корбалихинское, 5 – Петровское рудопр, 6 – рудопр. Привет, 7 – Комиссаровское рудопр, *8* – Зайцевское рудопр, *9* – Семеновское, 10 – Зареченское, 11 – Змеиногорское, 12 – Выше-Ивановское рудопр, *13* – Шубинское, *14* – Чекмарь, *15* – Тишинское, *16* – Ермолаевское рудопр, *17* – Долинное, *18* – Ново-Лениногорское, *19* – Риддер-Сокольное, *20* – Зыряновское. Разломы: А – Аламбайский, Б – Бугринский, Л – Локтевский, АТ – Алейский, КИ – Кара-Иртышский, БМ – Белоубинско-Маркакольский, И – Иртышский, И – Иртышский.

ЧЕРНЫШЕВ и др.

Районы Рудного Алтая

Рис. 3. Схема корреляции рудоносных уровней девонской системы в Рудном Алтае и стратиграфическое положение изученных колчеданно-полиметаллических месторождений, с учетом данных (Дубатолов и др., 1980; Козлов, Дубатолов, 1994; Беспаев и др., 1997; Щерба и др., 1998; Гутак и др., 2000). *1–6* – преимущественный литолого-петрографический состав отложений девона: *1–3* – вулканогенный (преобладают: *1* – риодациты, *2* – базальты, *3* – туфы кислого состава); *4–6* – осадочный терригенный (преобладают: *4* – алевролиты, *5* – песчаники, *6* – конгломераты); *7* – известняки; *8* – зеленые сланцы; *9* – стратиграфические перерывы; *10* – рудоносные уровни; *11* – колчеданные месторождения суперкрупные (*a*), крупные (*b*), средние (*b*), малые и рудопр. (*c*); *12* – состав руд: колчеданные полиметаллический (*a*), золото-серебро-барит-полиметаллический (*b*). Цифрами на схеме обозначены месторождения и рудопроявления: 1 – Степное, 2 – Таловское, 3 – Лазурское, 4 – Корбалихинское, 5 – Петровское рудопр., 6 – рудопр. Привет, *7* – Комиссаровское рудопр., *8* – Зайцевское рудопр., *9* – Семеновское, 10 – Зареченское, 11 – Змеиногорское, 12 – Выше-Ивановское рудопр., 13 – Шубинское, 14 – Чекмарь, 15 – Тишинское, 16 – Ермолаевское рудопр., 17 – Долинное, 18 – Ново-Лениногорское, 19 – Риддер-Сокольное, 20 – Зыряновское.

Помимо резко преобладающих девонских колчеданно-полиметаллических месторождений, в сопредельной с Рудным Алтаем Иртышской зоне смятия, к юго-западу от Иртышского глубинного разлома, давно известны два мелких медно-колчеданных месторождения Карчига и Вавилонское, приближающихся к типу Бесси и обычно рассматриваемые в составе Рудно-Алтайской провинции. Последние залегают среди сильно метаморфизованных базитов — сланцев и амфиболитов и являются додевонскими (Попов и др., 1995; Lobanov et al., 2014). Рудоносен на Рудном Алтае, близкий основному для Урала магнитогорскому уровню, эмсживетский стратиграфический интервал колчеданного оруденения, причем так же с максимальной продуктивностью эмс-эйфельских отложений (Vikentyev et al., 2017). На Рудном Алтае отмечается стратиграфический контроль рудных залежей. В разрезе базальт-риолитовой формации эйфель-франского возраста выделена серия общих для всего региона стратиграфических интервалов концентрации полиметаллических месторождений (рис. 3). Первый и второй стратиг

Рис. 4. Микрофотографии в отраженном свете руд некоторых изученных колчеданно-полиметаллических месторождений Рудного Алтая. а – месторождение Риддер-Сокольное; б – месторождение Ново-Лениногорское; в – месторождение Корбалихинское; г – месторождение Степное. *Ру* – пирит, *Сср* – халькопирит, *Sp* – сфалерит, *Gn* – галенит, *Qtz* – кварц.

графические уровни расположены в пределах эмсэйфельских и эйфель-живетских отложений Алейской и Синюшинской вулканогенных геоантиклиналей. Третий интервал приходится на среднеживетские образования, а последний четвертый — на позднеживет-раннефранские отложения северо-западной (российской) части Рудного Алтая (Вулканогенные ..., 1978; Щерба, 1983; Яковлев и др., 1984; Кузнецов и др., 2019).

Колчеданно-полиметаллические месторождения Рудного Алтая связаны с палеовулканами центрального типа и вмещаются вулканитами бимодальной базальт-риолитовой серии, а также перекрывающими их терригенными и терригенно-карбонатными породами (рис. 3). Рудные тела ассоциируют с субвулканическими интрузиями кислого состава и представлены крупными сульфидными линзами и жилами, прожилками и штокверковыми зонами в лежачем боку рудных тел (Григорьев, 1934; Попов и др., 1995). Главными рудными минералами в рассматриваемых месторождениях являются пирит, сфалерит, галенит, халькопирит, теннантит-тетраэдрит, а жильные минералы представлены кварцем, серицитом, хлоритом и баритом (рис. 4а-4г). Главными полезными компонентами руд этих месторождений являются Zn, Pb, Cu, Au и Ag, а сопутствующими элементами – Pt, Pd, Cd, In, Sb, Se, Te, Tl, Bi, Ba, Hg.

Руды месторождений как слабо (Риддер-Сокольное, Ново-Лениногорское и др.), так и сильно (Зыряновское, Тишинское, Шубинское и др.) метаморфизованы в результате стресс-деформаций (Викентьев, 1987; Мохов, Викентьев, 1988; Starostin et al., 1989; Зиновьев и др., 2016), а также испытали локальный контактовый метаморфизм (Вулканогенные ..., 1978; Викентьев и др., 1988).

Учитывая свинцово-изотопную направленность настоящей статьи, отметим, что изученные нами колчеданно-полиметаллические месторождения Рудного Алтая отличаются значительно более высокими содержаниями Pb в рудах — первые мас. % и выше, по сравнению, например, с близкими по возрасту колчеданными месторождениями Урала, а также упомянутыми выше додевонскими медно-колчеданными месторождениями Иртышской зоны смятия, где они как правило, совсем низкие ($C_{Pb} < 0.01$ мас. %). По данным балансов запасов колчеданно-полиметаллических месторождений Рудного Алтая, с учетом отработанных, среднее соотношение Cu : Pb : Zn составляет 16 : 22 : 62.

Рудные районы

В Рудном Алтае отчетливо проявлено узловое распределение месторождений и их концентра-

ция в территориально обособленных рудных районах (рис. 2), выраженных в палеовулканической структуре как индивидуальные ВТС или их сочетания (Филатов, 1999; Гаськов, 2002; Викентьев, 2004; Промыслова, 2005; Кузнецов и др., 2019). В свою очередь рудные поля в палеоструктуре районов отвечают депрессиям второго порядка, которые разделяют вулканические постройки центрального типа и морфологически проявлены как межвулканические, надвулканические и склоновые прогибы, выполненные глинисто-кремнистыми алевролитами и песчаниками. Внутренняя структура рудных полей обычно осложнена экструзивными, лавовыми куполами и сопряженными с ними впадинами. В число наиболее значительных по запасам колчеданно-полиметаллических руд входят рудные районы Зыряновский, Лениногорский (они наиболее крупные), Змеиногорский и Рубцовский. В них сконцентрировано более 50 колчеданно-полиметаллических месторождений и рудопроявлений. Далее в тексте упоминаются только те из них, которые изучались в настоящей работе.

Зыряновский рудный район, расположенный на крайнем юго-востоке Рудно-Алтайской металлогенической провинции, отвечает интенсивно деформированной Ревнюшинской ВТС. Месторождения района локализованы на трех стратиграфических уровнях. Большая часть месторождений, включая одно из крупнейших в провинции – Зыряновское, приурочена к пачкам глинисто-известковистых вулканомиктовых алевролитов и песчаников позднеэмсского-раннеэйфельского возраста, которые перекрывают толщу вулканитов риолитового и риодацитового состава. Руды здесь представлены согласными и комбинированными залежами сплошных, реже вкрапленных колчеданнополиметаллических руд (Аксенов и др., 1977; Юдовская, 1984; Викентьев, 1986; Гаврилец, 1986).

Лениногорский рудный район расположен в центре Рудно-Алтайской провинции. В геологоструктурном плане район представлен несколькими ВТС, которые обрамляют Синюшинский горст-антиклинорий, в ядре которого обнажаются гранитоиды и слюдистые сланцы раннепалеозойского фундамента Рудно-Алтайского террейна. Месторождения ассоциированы с эмс-живетской вулканогенно-осадочной толщей, сложенной доминирующими кислыми вулканитами при незначительном участии базальтоидов (Вулканогенные ..., 1978; Мохов, Викентьев, 1988; Starostin et al., 1989). Месторождения локализуются на множестве (до 8) литолого-стратиграфических уровнях (Щерба, 1983; Лапухов и др., 1986; Викентьев, Карманов, 1989; Ганженко и др., 2018); три из них главные (рис. 3). Нижний, эмсский уровень характерен для субширотной Лениногорской ВТС размером 25×5 км, вмещающей, кроме крупнейшего месторождения Риддер-Сокольного, также месторождения Ново-Лениногорское и Долинное. В средней части вулканогенно-осадочного разреза среди среднеэйфельских слоев, выполняющих узкую, протяженную (около 80 км, при ширине 2-8 км) Кедровско-Бутачихинскую ВТС, локализовано крупное месторождение Тишинское. Верхний уровень, отвечающий верхней части эфельского яруса, характерен для Листвяжной ВТС. Здесь среди алевролитов, перекрывающих горизонт вулканических пород риолитового состава, локализованы руды месторождений Шубинское и Чекмарь (Трофимов, 1981; Попов и др., 1995). Для значительной части месторождений Лениногорского района характерно присутствие барита в рудах и повышенные содержания золота и серебра.

Змеиногорский рудный район находится в краевой, северо-восточной части Рудно-Алтайской провинции. Район размером 20 × 100 км отвечает ВТС, сопряженной с Северо-Восточной зоной смятия. Для месторождений отмечается стратификация рудных залежей и их приуроченность к седиментационным и вулканическим циклам от эмса до франа включительно. Нижний, эмсский литолого-стратиграфический уровень включает барит-полиметаллические месторождения Зареченское. Змеиногорское. Петровское и другие. Оруденение локализуется в составе осадочной толщи, перекрытой кислыми вулканитами. Средний, эйфельский уровень представлен мелкими колчеданно-полиметаллическими месторождениями, в основном ассоциированными с алевритопесчанистыми отложениями. Верхний, позднеживетско-раннефранский литолого-стратиграфический уровень характеризуется более значимым проявлением оруденения колчеданно-полиметаллического состава (месторождения Корбалихинское, Лазурское, Петровское и другие). Рудовмещающими являются терригенные отложения, которые слагают горизонты среди базальт-риолитовой серии и характеризуют периоды затухания активного вулканизма и развития поствулканической гидротермальной деятельности.

Рубцовский рудный район размером 30 × 60 км расположен на северо-западном фланге металлогенической провинции и отвечает Рубцовской ВТС, облегающей с северо-востока Алейское горст-антиклинальное поднятие. Рудовмещающий эмс-франский разрез сложен преимущественно терригенными и туфогенно-осадочными породами. Только на ранне-среднефранском уровне присутствует толща с доминированием кислых вулканогенных пород. Выявленные в районе 4 месторождения локализуются на двух стратиграфических уровнях. На нижнем уровне среднеживетская осадочная толща вмещает Таловское и Степное колчеданно-полиметаллические месторождения. На верхнем, нижне-среднефранском уровне присутствуют Рубцовское и Захаровское месторождения, не входившие в число изучавшийся нами. В Рубцовском районе, в отличие от других районов, отсутствует оруденение на нижнедевонском (эмсском) уровне.

Возраст месторождений

Прямые определения возраста гидротермальных рудных минералов, необходимые для датирования рудных процессов, для колчеданно-полиметаллических месторождений Рудного Алтая пока отсутствуют. Представления об их возрасте сейчас базируются на косвенных датировках – детальных биостратиграфических (Дубатолов и др., 1980; Козлов, Дубатолов, 1994; Гутак и др., 2000), а также изотопных — для интрузивных и вулканических пород, с которыми ассоциирует рудная минерализация (Владимиров и др., 2001; Куйбида и др., 2009, 2013). В качестве геологической оценки возраста обсуждаемых месторождений приводится интервал 400–375 млн лет (Lobanov et al., 2014). Последний укладывается в диапазон значений 408-372 млн лет (с округлением до 1 млн лет), который, согласно современной цифровой шкале (Cohen et al., 2019), отвечает рудоносному участку разреза девонской вулканогенно-осадочной толщи. С этими интервалами значений в пределах погрешности совместимы недавно полученные U-Pb датировки по циркону трех образцов риолитов Рудного Алтая (391–378 млн лет) (Куйбида и др., 2019; Kuibida et al., 2020). Приведенные интервалы времени весьма широки (15-20 млн лет) и могут рассматриваться сейчас лишь в качестве грубой оценки, указывающей на ранне-среднедевонский возраст месторождений.

Результаты Re-Os датирования пирита из медно-колчеданного месторождения Карчига (тип Бесси), залегающего в Иртышской зоне смятия Рудного Алтая (Lobanov et al., 2014), с большой неопределенностью указали на неопротерозоский — раннепалеозойский (590-470 млн лет) возраст месторождений этого типа в Рудном Алтае. В рамках указанной работы было проведено ³⁹Ar/⁴⁰Ar (по биотиту) и U-Pb (по циркону) изучение, соответственно, вкрапленных руд и рудовмещающих амфиболитов этого месторождения. Часть датировок, полученных с помощью каждого из трех перечисленных методов, лежит в интервале 370-350 млн лет, который авторы цитируемой работы рассматривают в качестве оценки возраста регионального метаморфизма и отмечают его синхронность с образованием колчеданнополиметаллических месторождений (близких типу Куроко) Рудного Алтая. Аналогичные оценки возраста метаморфизма ранее были сделаны по циркону в других террейнах восточного сегмента ЦАСП (Бибикова и др., 1992; Козаков и др., 2005). Однако наиболее надежным определением возраста метаморфизма в этой части ЦАСП, в том

ГЕОХИМИЯ том 68 № 6 2023

числе и для Рудно-Алтайского террейна, по-видимому, являются высокоточные U-Pb (ID-TIMS) датировки $374 \pm 2-360 \pm 5$ млн лет, характеризующие поздний высокобарический эпизод метаморфизма как позднедевонское (фамен) событие (Козаков и др., 2005).

Определенный геохронологический аспект, как мы полагаем, несет в себе широко признанный факт узко-локального распределения колчеданно-полиметаллической минерализации Рудного Алтая в вертикальном разрезе пород нижнегосреднего девона, т.е. факт литолог-стратиграфического контроля оруденения (Овчинников, Баранов. 1973: Беспаев и др., 1997). Пользуясь цифровыми рубежами отделов и ярусов девонской системы (Cohen et al., 2019), нетрудно видеть весьма значительную разницу в возрасте месторождений, находящихся в пределах одного рудного района, т.е. в пределах единой ВТС. Так, в Лениногорском районе эта разница составляет около 23 млн лет, а в Змеиногорском районе она достигает 28 млн лет. Подобная длительность не свойственна процессам вулканизма и связанного с ними рудообразования, развивавшихся в рамках одной ВТС или даже целого вулканического района. Продолжительность циклов активной жизни вулканических районов в фанерозое составляет нескольких сотен тыс. лет (Чернышев и др., 2006). В отсутствии хотя бы единичных прямых датировок колчеданно-полиметаллической минерализации упомянутая виртуальная длительность формирования месторождений Рудного Алтая, строго говоря, не имеет однозначной интерпретации. Если такую продолжительность рудообразования считать реальной, то ее нужно отнести к числу существенных специфических особенностей Рудного Алтая. Однако вполне вероятно, что литологический контроль обусловлен не "полихронным" захоронением сингенетичной минерализации, образовавшейся в поверхностном слое морского осадка, как это наблюдается для "черных курильщиков": причиной вертикального распределения минерализации и целых месторождений в Рудном Алтае могло быть эпигенетическое (по отношению к осадкам) проникновение рудоносного флюида в благоприятные для этого литофицированные слои эмс-раннефранской толщи.

Таким образом, все имеющиеся сейчас данные не являются прямыми датировками рудной минерализации и потому окончательно не решают проблему возраста колчеданно-полиметаллических месторождений Рудного Алтая. Сложности этой задачи, которую предстоит решать в будущем, подчеркиваются неоднозначностью вышеупомянутых результатов Re-Os датирования пирита из месторождения Карчига, представляющего в Рудном Алтае другой — медно-колчеданный тип минерализации.

МЕТОД ВЫСОКОТОЧНОГО ИЗОТОПНОГО АНАЛИЗА СВИНЦА

Многоколлекторная масс-спектрометрия с индуктивно связанной плазмой (MC-ICP-MS), которая в последнее десятилетие стала новой метолической основой современной изотопной геохимии свинца, как и для некоторых других элементов, обладает целым рядом достоинств. В совокупности они обеспечивают решение наиболее сложной проблемы высокоточного изотопного анализа – возможность корректирования результатов измерений на эффект приборной массдискриминации при обязательном условии проведения анализа из моноэлементных растворов. В случае анализа свинца коррекция осуществляется с помощью трасера – изотопного отношения ²⁰⁵Tl/²⁰³Tl, измеряемого в ходе анализа on line с изотопными отношениями свинца. Этот подход, предложенный в (Rehkämper, Halliday, 1998), реализован в конкретных методиках анализа, одна из которых разработана соавторами настоящей статьи в ИГЕМ РАН (Чернышев и др., 2007), с некоторыми изменениями применена уже во многих изотопно-свинцовых исследованиях, включая настоящую работу.

Изучение изотопного состава Рь методом МС-ICP-MS проволилось в лаборатории изотопной геохимии и геохронологии ИГЕМ РАН (Москва). Отбор проб галенита осуществлялся при оптическом контроле как из тяжелых минеральных фракций в виде микрокристаллов, так и непосредственно из аншлифов с помощью твердосплавной иглы. Подготовка галенита для изотопного анализа сводилась к растворению отобранной микропробы массой 0.001-0.003 г в капле 10 М HNO₃ и приготовлению рабочего раствора необходимой концентрации (3% HNO₃). Непосредственно перед измерениями к рабочему раствору добавляли аликвоту стандартного раствора таллия. Лабораторная контаминация образца в ходе химической процедуры по данным холостых опытов не превышала 0.1 нг Pb.

Использовался 9-коллекторный масс-спектрометр типа MC-ICP-MS NEPTUNE (ThermoFinnigan, Германия) и методика, подробно описанная в работе (Чернышев и др., 2007). Анализировались растворы с концентрацией Pb 100–200 нг/г и концентрацией Tl 10–20 нг/г в режиме "мокрой плазмы", что обеспечивало интенсивность ионных токов ²⁰⁸Pb⁺ 4–8 × 10⁻¹¹ A и ²⁰⁵Tl⁺ – 0.6–1.0 × 10⁻¹¹ A. Помимо пиков изотопов Pb (коллекторы H3, H2, H1 и L1) также проводилась регистрация ионных токов изотопов ²⁰⁵Tl⁺, ²⁰³Tl⁺ и ²⁰²Hg⁺ соответственно на коллекторах Ax, L2 и L3. По интенсивности пика 202Hg⁺ вводилась коррекция на интерференционное наложение ионов изотопа ²⁰⁴Hg на 204 массу. Изотопный анализ включал регистрацию 27 масс-спектров при времени интегрирования на пиках 8 с. Измерение "нуля" электрометрических усилителей и центровка пиков проводились через каждые три спектра. Обработка результатов измерений проводилась с помощью программного обеспечения масс-спектрометра NEPTUNE. Нормирование измеренных изотопных отношений свинца осуществлялось по опорному отношению 205 Tl/ 203 Tl = 2.3889 с использованием экспоненциального закона.

Правильность и точность конечных результатов контролировалась по данным параллельных анализов стандартного образца изотопного состава Pb SRM-981 и образцов галенита. Итоговая погрешность (±2SD) измерения отношений 206 Pb/ 204 Pb, 207 Pb/ 204 Pb и 208 Pb/ 204 Pb не превышала ±0.02%, а для отношений 208 Pb/ 206 Pb и 207 Pb/ 206 Pb составляла соответственно ±0.01 и ±0.005%.

РЕЗУЛЬТАТЫ

Результаты измерений изотопного состава Рь в галените (всего 61 образец) из 20 колчеданнополиметаллических месторождений Рудного Алтая представлены в таблице (табл. 1). Наряду с изотопными отношениями ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb и ²⁰⁸Pb/²⁰⁴Pb в табл. 1 приведены величины ²⁰⁷Pb/²⁰⁶Pb и ²⁰⁸Pb/²⁰⁶Pb, которые в настоящей работе также используются при интерпретации свинцово-изотопных данных. Результаты статистической обработки полученных данных сведены в отдельную таблицу (табл. 2), в которой приводятся средние значения изотопных отношений, величины их среднеквадратичного разброса и коэффициента вариации ($\mathbf{v}_{i/204}, \%$)¹ для рудных районов и для отдельных рудных месторождений, которые наиболее детально (от 6 до 17 образцов для каждого месторождения) представлены в изучавшейся коллекции. Это - крупные и суперкрупные месторождения Зыряновское, Риддер-Сокольное, Тишинское и Ново-Лениногорское.

На Pb-Pb изотопных диаграммах (рис. 5, 6) размеры символов точек, отображающих величины изотопных отношений, примерно соответствуют и во всяком случае не меньше аналитической погрешности соответствующих изотопных отношений. Пояснения, касающиеся оценки точности величин всех используемых изотопных отношений даны в разделе 4 (Метод...), а также в примечаниях к табл. 1.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В Рудно-Алтайской провинции в целом величины изотопных отношений ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb и

¹ $v_{i/204}$ – коэффициент вариации или выраженный в % среднеквадратичный (стандартный) разброс в серии значений изотопных отношений свинца, где i – изотоп ²⁰⁶ Pb, ²⁰⁷ Pb, ²⁰⁸ Pb.

									Эволюци	юнные па	раметры
	0.5	Место-	²⁰⁶ Pb/	²⁰⁷ Pb/	²⁰⁸ Pb/	²⁰⁷ Pb/	²⁰⁸ Pb/	Тм	источ	ника по м	одели
N⁰	Образец	рождение***	²⁰⁴ Pb	²⁰⁴ Pb	²⁰⁴ Pb	²⁰⁶ Pb	²⁰⁶ Pb	млн лет	Стей	іси-Крам	epca
		x	10	10	10	10	10		Т	$\mu_2 \omega_2 Th_2$	/Ū
				Zungua	คะหมมั ทงวั)นมนักสนัก	u a				
1	24-6	31 IDUIJOPCKOP	17 7204	<u>Зыряно</u> 15 5028	вский руб 37 6229	10 87486	$\frac{\pi}{2}$ 12314	489	9 4 3	36.2	3 84
1	24-0	$A0^{\circ}AA'C$	17.7204	15.5020	57.0227	0.07400	2.12317	707	7.45	50.2	5.04
		84°17′ B									
2	25-1*	То же	17 7204	15 5032	37 6255	0 87488	2 12329	489	9 4 3	36.2	3 84
3	26-3	То же	17 7234	15.5052	37 6316	0.87489	2.12327	493	9 4 4	36.3	3.85
4	20 3 24/3a	Тоже	17 7234	15.5000	37 6300	0.87482	2.12327	490	9 4 4	36.3	3.84
5	27/36*	То же	17 7329	15.5017	37 6347	0.87444	2.12231	487	9 4 4	36.3	3.85
6	1226*	То же	17 7294	15.5005	37 6222	0.87432	2.12201	482	9.43	36.2	3.84
U	1220	10 же	Пен	19.9011 иногорски	37.0222 1й пудный	0.07 192 (пайон	2.12202	102	2.15	50.2	5.01
7	П-122-3	Риллер-	17.8188	15.5175	37.6490	0.87085	2.11288	442	9.47	35.9	3.79
		Сокольное	1110100	1010170	0,10 19 0	0.07000			<i></i>	0019	0117
		50°20' C									
		83°30' B									
8	П-323	То же	17 8150	15 5154	37 6607	0 87092	2 11399	441	9 46	36.0	3 80
9	2Ю3-350	То же	17.8232	15.5171	37.6668	0.87061	2.11336	438	9.46	36.0	3.80
10	3Ю3-223	То же	17.8212	15.5161	37.6617	0.87065	2.11331	438	9.46	35.9	3.80
11	P-C-(1)	То же	17.8219	15.5172	37.6671	0.87068	2.11353	439	9.46	36.0	3.80
12	P-C-(2)	То же	17.8132	15.5151	37.6598	0.87099	2.11415	442	9.46	36.0	3.80
13	P-C-(3)	То же	17.8204	15.5170	37.6643	0.87074	2.11355	440	9.46	36.0	3.80
14	P-C-302.3	То же	17.8176	15.5166	37.6650	0.87086	2.11392	442	9.46	36.0	3.80
15	P-C-286.7a	То же	17.8176	15.5169	37.6656	0.87087	2.11395	442	9.46	36.0	3.80
16	A-8	То же	17.8225	15.5178	37.6698	0.87069	2.11361	440	9.47	36.0	3.80
17	Л-11 (8/9)	То же	17.8175	15.5174	37.6660	0.87091	2.11399	443	9.47	36.0	3.80
18	П-309	То же	17.8182	15.5186	37.6675	0.87094	2.11399	445	9.47	36.0	3.81
19	П-331	То же	17.8147	15.5177	37.6633	0.87106	2.11417	446	9.47	36.0	3.80
20	3ЮЗ-280 (сф)	То же	17.8241	15.5189	37.6706	0.87067	2.11346	441	9.47	36.0	3.80
21	Б-026(хп)	То же	17.8254	15.5194	37.6750	0.87063	2.11356	441	9.47	36.0	3.80
22	Б-072(сф)	То же	17.8249	15.5170	37.6675	0.87052	2.11320	437	9.46	36.0	3.80
23	Б-108(хп)	То же	17.8198	15.5130	37.6520	0.87055	2.11293	432	9.45	35.8	3.79
24	9-7-24	Тишинское,	17.8233	15.5207	37.6801	0.87081	2.11409	445	9.48	36.1	3.81
		50°16′ C									
		83°20′ B									
25	10-7-3	То же	17.8175	15.5160	37.6624	0.87083	2.11379	440	9.46	36.0	3.80
26	C-100-6	То же	17.8175	15.5158	37.6633	0.87082	2.11384	440	9.46	36.0	3.80
27	T-1	То же	17.8206	15.5162	37.6664	0.87069	2.11364	438	9.46	36.0	3.80
28	T-2	То же	17.8193	15.5154	37.6606	0.87071	2.11347	438	9.46	35.9	3.80
29	T-210	То же	17.8188	15.5155	37.6596	0.87074	2.11348	438	9.46	35.9	3.80
30	ТИ-1	То же	17.8208	15.5153	37.6634	0.87063	2.11345	436	9.46	35.9	3.80
31	ТИ-5а	То же	17.8193	15.5159	37.6653	0.87074	2.11386	439	9.46	36.0	3.80
32	T-102.5	То же	17.8200	15.5180	37.6676	0.87082	2.11378	443	9.47	36.0	3.80
33	T-110	То же	17.8190	15.5146	37.6646	0.87068	2.11373	436	9.45	35.9	3.80
34	11-7a-11	То же	17.8199	15.5169	37.6665	0.87076	2.11373	440	9.46	36.0	3.80
35	C-92-1	То же	17.8237	15.5155	37.6611	0.87050	2.11298	438	9.47	36.0	3.80
36	Шу-1	Шубинское	17.8029	15.5092	37.6428	0.87116	2.11442	438	9.43	35.8	3.80
		50°23′29″ C									
		83°40′34″ B									

Таблица 1. Изотопный состав свинца галенита в рудах колчеданно-полиметаллических месторождений Рудного Алтая** (Россия, Казахстан)

		рождение***	²⁰⁰ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	Т _м млн лет	источн Стей Тм	ника по м іси—Крам μ2 ω2 Th	одели epca /U
37	4-39/32	Чекмарь 50°39'7" С	17.8232	15.5128	37.6566	0.87037	2.11279	429	9.44	35.8	3.79
38	Д-25/4/548	83°37 12 В Долинное 50°20'14″ С 83°43'26″ В	17.8195	15.5173	37.6674	0.87080	2.11383	441	9.47	36.0	3.80
39	16066/108	Ново-Ленино- горское 50°15′57″ С 83°40′31″ В	17.8305	15.5170	37.6630	0.87025	2.11228	432	9.46	35.9	3.79
40	1610/941.5	То же	17.8307	15.5172	37.6656	0.87025	2.11240	433	9.46	35.9	3.79
41	1610/1053-1	То же	17.8214	15.5177	37.6690	0.87073	2.11369	441	9.47	36.0	3.80
42	1610/1053-2	То же	17.8166	15.5172	37.6641	0.87094	2.11399	444	9.47	36.0	3.80
43	1608/898.4	То же	17.8307	15.5160	37.6621	0.87018	2.11221	430	9.46	35.9	3.79
44	1743a/775(1)	Тоже	17 8336	15 5168	37 6707	0 87009	2 11234	430	9 46	35.9	3 80
1	1,104,770(1)	Рудони	пявления		асти Лег	иногорск	2.1123 I 020 рудно.	20 naŭona	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5515	2.00
45	Fn-1	Ермодзерское	17 8252	15 5134	37 6581	0 87031	2 11263	429	945	35.8	3 79
т	Lp-1	50°36′30″ C 83°39′29″ B	17.0252	15.5154	57.0501	0.07051	2.11205	729	J. 1 J	55.0	5.15
46	В-И(1)	Выше-Ива-	17.7885	15.5091	37.6459	0.87186	2.11631	449	9.44	36.0	3.81
		новское 50°12'23" С 84°2'58" В									
I			I	Змеиног	орский ру	дный рай	ОН				
47	3M-2	Змеиногорское 51°9'18" С 82°11'17" В	17.8266	15.5219	37.6811	0.87072	2.11376	445	9.48	36.1	3.81
48	Зареч-е 3-4	Заречное 51°10′9″ С	17.8357	15.5215	37.6929	0.87025	2.11334	438	9.48	36.1	3.81
49	6зб/542.3	82°7 10 В Петровское 51°10′13″ С	17.8174	15.5198	37.6752	0.87105	2.11452	448	9.48	36.1	3.81
50	1-5/5056	02 0 1/ D Ta wa	17 0110	15 5106	27 6600	0.97120	2 11402	451	0.47	26.1	2 01
51	CH-5	То же Семеновское 51°2′24″ С	17.8596	15.5226	37.6915	0.87129	2.11493	421	9.47 9.48	35.9	3.79
52	ЛК-3	62 21 19 В Лазурское 51°5′34″ С	17.8840	15.5228	37.7149	0.86797	2.10886	403	9.47	35.9	3.79
53	485к/618	82 23 30 в Корбалихин- ское	17.8633	15.5209	37.7020	0.86887	2.11058	415	9.47	35.9	3.79
54	23вк/498.1	51°12′11″ С 82°11′52″ В Зайцевское	17.8396	15.5214	37.6905	0.87005	2.11274	434	9.48	36.1	3.80
55	24вк/276.9	51°6′12″ С 82°11′4″ В То же	17.8406	15.5230	37.6903	0.87009	2.11261	437	9.49	36.1	3.80

556

Таблица 1. Окончание

									Эволюци	юнные па	раметры
No	Образец	Образец Место-		⁶ Pb/ ²⁰⁷ Pb/		²⁰⁷ Pb/	²⁰⁸ Pb/	Тм	источника по модели		
JN⊻	Образец	рождение***	²⁰⁴ Pb	²⁰⁴ Pb	²⁰⁴ Pb	²⁰⁶ Pb	²⁰⁶ Pb	млн лет	Стей	си-Крам	epca
									Т _м	$\mu_2 \omega_2 Th_2$	/U
56	29зб/394	Привет	17.8491	15.5245	37.7077	0.86976	2.11258	433	9.49	36.1	3.81
		51°10′59″ C									
		82°19′44″ B									
57	19вк/376.5	Комиссаров-	17.8639	15.5218	37.6951	0.86889	2.11013	416	9.47	35.9	3.79
		ское									
		51°7′18″ C									
		82°18′13″ B									
		1	Py	бцовский	рудный р	айон	I	1			
58	Тал-418/610.3	Таловское	17.9034	15.5297	37.7220	0.86742	2.10697	402	9.50	35.9	3.78
		51°25′59″ C									
		81°55′B									
59	C-106	Степное	17.8950	15.5263	37.7200	0.86763	2.10785	402	9.48	35.9	3.78
		51°23′45″ C									
		81°59′34″ B									
60	С-8в	То же	17.9008	15.5292	37.7280	0.86751	2.10762	403	9.50	36.0	3.79
61	C-150/6	То же	17.8955	15.5278	37.7237	0.86769	2.10800	404	9.49	35.9	3.79

* Среднее значение по результатам двух анализов.

** Относительные погрещности измерения изотопных отношений (± 2 SD, %) методом MC-ICP-MS: не более $\pm 0.02\%$ для отношений 206 Pb/ 204 Pb, 207 Pb/ 204 Pb и 208 Pb/ 204 Pb и не более ± 0.01 и $\pm 0.005\%$ соответственно для отношений 208 Pb/ 206 Pb и 207 Pb/ 206 Pb.

*** В столбце с названиями месторождений указаны их географические координаты.

²⁰⁸Pb/²⁰⁴Pb варьируют в пределах 17.9034–17.7204, 15.5297–15.5011 и 37.7280–37.6222, соответственно. В относительном выражении ширина этих диапазонов вариаций составляет 1.0, 0.18 и 0.28% и, соответственно, в 50, 10 и 15 раз превышает аналитическую погрешность.

По наиболее вариативному изотопному отношению ²⁰⁶Pb/²⁰⁴Pb максимально (на 0.98%) различаются средние значения, характеризующие Рубцовский (17.899) и Зыряновский (17.725) районы, а минимально (на 0.14%) по этому показателю различаются Змеиногорский (17.845) и Лениногорский (17.820) районы. По изотопным отношениям ²⁰⁷Pb/²⁰⁴Pb и ²⁰⁸Pb/²⁰⁴Pb масштаб "районных" различий средних значений ожидаемо в несколько раз меньше и находится в пределах 0.15– 0.04% для отношений ²⁰⁷Pb/²⁰⁴Pb и 0.25–0.08% для ²⁰⁸Pb/²⁰⁴Pb.

Полученные данные характеризуют степень гомогенности – гетерогенности изотопного состава Рb колчеданно-полиметаллических месторождений Рудного Алтая в трех масштабах: 1) рудная провинция в целом; 2) отдельные рудные районы; 3) отдельные месторождения.

1) В Рудно-Алтайской рудной провинции в целом, как уже отмечено выше, выраженная в процентах ширина интервалов вариаций изотопных отношений ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb и ²⁰⁸Pb/²⁰⁴Pb соответственно составляет 1.0, 0.18 и 0.28%. При этом коэффициенты вариации $v_{i/204}$ для совокупности значений изотопных отношений ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb и ²⁰⁸Pb/²⁰⁴Pb, измеренных в 61 образце галенита, соответственно равны 0.22, 0.038 и 0.063%.

2) Степень гомогенности изотопного состава Pb в пределах отдельных рудных районов оценена по данным анализов совокупности образцов галенита из месторождений, локализованных в пределах конкретных рудных районов. Средние значения $v_{i/204}$ по четырем районам (табл. 2) составляют 0.054% для ²⁰⁶Pb/²⁰⁴Pb, 0.012% для ²⁰⁷Pb/²⁰⁴Pb и 0.019% для ²⁰⁸Pb/²⁰⁴Pb.

3) Оценка степени гомогенности изотопного состава Рb в масштабе отдельных месторождений базируется на данных изучения образцов галенита по четырем крупным и суперкрупным месторождениям Зыряновское (6 образцов), Риддер-Сокольное (17), Тишинское (12) и Ново-Лениногорское (6) (табл. 2). Среднее по ним значение коэффициентов вариации $v_{i/204}$ для различных изотопных отношений составляет $v_{206/204} = 0.025\%$, $v_{207/204} = 0.010\%$ и $v_{208/204} = 0.013\%$. С этими значения ниями $v_{i/204}$ вполне согласуются более грубые оценки масштаба вариаций $v_{i/204} \leq 0.02\%$, полу-

558

Таблица 2. Средние значения и коэффициенты вариации* изотопного состава Рb галенита в рудных районах и отдельных колчеданно-полиметаллических месторождениях Рудного Алтая (Россия, Казахстан)

Дл	я всех местор	ождений	
	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb
Среднее значение	17.820	15.517	37.669
Минимальное	17.7204	15.5011	37.6222
Максимальное	17.9034	15.5297	37.728
SD	0.0393	0.0058	0.0236
$v_{i/204}, \%$	0.221	0.038	0.063
Зыр	яновский руд	ный район	
Среднее значение	17.725	15.504	37.628
SD	0.00508	0.00201	0.00505
$v_{i/204}, \%$	0.029	0.013	0.013
Лени	ногорский ру,	дный район	
Среднее значение	17.820	15.516	37.663
SD	0.00736	0.00227	0.00711
$v_{i/204}, \%$	0.041	0.015	0.019
Змеи	ногорский ру	цный район	
Среднее значение	17.845	15.522	37.692
SD	0.0220	0.0016	0.0135
$v_{i/204}, \%$	0.123	0.010	0.036
Pyc	бцовский рудн	ый район	
Среднее значение	17.899	15.528	37.723
SD	0.004	0.002	0.003
$v_{i/204}, \%$	0.023	0.010	0.009
Мест	орождение З	ыряновское	
Среднее значение	17.725	15.504	37.628
SD	0.00508	0.00201	0.00505
$v_{i/204}, \%$	0.029	0.013	0.013
Местор	ождение Ридд	цер-Сокольно	be
Среднее значение	17.820	15.517	37.664
SD	0.0038	0.0017	0.0055
$v_{i/204}, \%$	0.021	0.011	0.015
Mec	торождение	Гишинское	
Среднее значение	17.820	15.516	37.665
SD	0.0019	0.0016	0.0056
$v_{i/204}, \%$	0.011	0.010	0.015
Местород	кдение Ново-	-Лениногорси	koe
Среднее значение	17.827	15.517	37.666
SD	0.007	0.001	0.003
$v_{i/204}, \%$	0.037	0.006	0.009

* SD = $\sqrt{\frac{\sum (X_i - \overline{X})^2}{N - l}}$ – среднеквадратичный разброс единич-

ченные по данным изучения трех других, небольших по запасам металлов месторождений – Степное, Петровское и Зайцевское, для которых было проанализировано по 2–3 образца галенита.

При рассмотрении результатов изучения изотопного состава Рb месторождений Рудного Алтая прежде всего обращает на себя внимание узкий диапазон вариаций изотопных отношений ²⁰⁶Рb/²⁰⁴Рb, ²⁰⁷Рb/²⁰⁴Рb и ²⁰⁸Рb/²⁰⁴Рb (соответственно $\mathbf{v}_{206/204} = 0.22\%$, $\mathbf{v}_{207/204} = 0.038\%$ и $\mathbf{v}_{208/204} =$ = 0.063%) в рудной провинции в целом, который сочетается с еще более гомогенным составом, наблюдаемым внутри входящих в состав провинции рудных районов ($\mathbf{v}_{206/204} = 0.054\%$, $\mathbf{v}_{207/204} = 0.012\%$ и $\mathbf{v}_{208/204} = 0.020\%$) и локализованных в них конкретных колчеданно-полиметаллических месторождениях ($\mathbf{v}_{206/204} = 0.025\%$, $\mathbf{v}_{207/204} = 0.010\%$ и $\mathbf{v}_{208/204} = 0.013\%$). Вариации изотопного состава Pb внутри рудных районов и конкретных месторожлений в большинстве случаев соответствуют масштабу аналитической погрешности 0.02% или находятся ниже этого уровня.

Число регионов, близких к Рудному Алтаю в отношении гомогенности изотопного состава рудного свинца, невелико, что отчасти объяснимо пока еще ограниченным количеством детальных свинцово-изотопных исследований, проведенных на основе высокоточного изотопного анализа. К исследованным регионам относится Sn-Pb-Zn-рудная провинция Южного Сихотэ-Алиня позднемезозойского возраста, в которой общий диапазон изотопного состава Pb (0.8% для отношения ²⁰⁶Pb/²⁰⁴Pb, 0.3% для ²⁰⁷Pb/²⁰⁴Pb и 0.5% для ²⁰⁸Pb/²⁰⁴Pb) близок к означенному выше на Рудном Алтае. Одновременно с этим внутри отдельных рудных районов и месторождений Южного Сихоте-Алиня наблюдается гомогенный изотопный состав Pb, определяемый для всех трех изотопных отношений коэффициентами вариации $v_{i/204}$, характерными и для Рудного Алтая. Наиболее высока степень изотопной гомогенности свинца в крупных касситерит-сульфидных месторождениях Арсеньевское и Южное (Chugaev et al., 2020). Помимо Южного Сихотэ-Алиня Рудный Алтай принципиально аналогичен распределению изотопного состава свинца, зафиксированному в еще одной известной рудной провинции – Кураминском регионе Западного Тянь-Шаня, содержащем крупномасштабную Au-Ag и Pb-Zn-рудную минерализацию.

Ближайший металлогенический аналог Рудного Алтая — Уральская колчеданная провинция обладает значительно более широким по сравнению с Рудным Алтаем размахом значений изотопного состава рудного Рb (Чернышев и др., 2008). В Уральской провинции этот размах в 2–8 раз для разных изотопных отношений шире, чем на Рудном Алтае (рис. 5), причем данная оценка отно-

ного значения в серии образцов, где: X_i , \overline{X} – индивидуальные и средние значения изотопных отношений в серии образцов, N – количество образцов; $v_{i/204}$, % – то же, выраженное в %.

Рис. 5. Изотопные диаграммы 206 Pb/ 204 Pb – 208 Pb/ 204 Pb (а) и 206 Pb/ 204 Pb – 207 Pb/ 204 Pb (б) с результатами измерений изотопного состава свинца галенита колчеданно-полиметаллических месторождений Зыряновского, Лениногорского, Змеиногорского и Рубцовского рудных районов Рудного Алтая. Размеры символов примерно соответствуют аналитической погрешности ($\pm 0.02\%$) отображаемых изотопных отношений. На диаграммы пунктирными линиями нанесены эволюционные кривые модели (S–K) Стейси–Крамерса (1975), сплошными линиями – эволюционные кривые модели (Z–D) Зартмана–Доу (1981), точечными линиями – Pb-Pb изохроны.

сится как к провинциям в целом, так и к сравнению масштаба различий изотопного состава Pb между конкретными месторождениями и целыми районами (зонами) внутри рассматриваемых двух рудных провинций. Что касается степени гомогенности изотопного состава Pb, то внутри уральских месторождений она также заметно ниже, чем в месторождениях Рудного Алтая. В то же время некоторые крупнейшие уральские месторождения — Гайское и Сафьяновское по всем

ГЕОХИМИЯ том 68 № 6 2023

трем изотопным отношениям обладают характеристиками **v**_{i/204}, близкими или аналогичными таковым в Рудном Алтае.

Сформированные в металлогенические эпохи фанерозоя рудные провинции и составляющие их месторождения, в которых, согласно рассмотренным критериям, проявлена региональная и локальная гомогенность изотопного состава Pb, разнообразны по таким параметрам как тектоническое положение, возраст, минеральный состав,

Рис. 6. Изотопная диаграмма ²⁰⁷Pb/²⁰⁶Pb-²⁰⁸Pb/²⁰⁶Pb с результатами измерений изотопного состава свинца галенита колчеданно-полиметаллических месторождений Зыряновского, Лениногорского, Змеиногорского и Рубцовского рудных районов Рудного Алтая. Размеры символов по обеим осям графика примерно соответствуют аналитическим погрешностям отображаемых изотопных отношений, соответственно ±0.005 и ±0.010%.

масштаб минерализации и некоторые другие. Общим важнейшим признаком (параметром) изотопно-гомогенных месторождений является их связь с магматизмом. Что касается Рудного Алтая, то определяющая роль ранне-среднедевонского магматизма в рудогенезе колчеданно-полиметаллических месторождений сейчас не вызывает больших сомнений, хотя, глубинная, магматическая поставка рудного вещества колчеданных месторождений поддерживается не всеми (Козлов, 2015; Simonov et al., 2010; Vikentyev et al., 2013). Особенно дискуссионными остаются вопросы, связанные как с геодинамическими условиями, так и источниками расплавов рудообразующего магматизма.

Выводы, вытекающие из обсуждавшихся выше особенностей распределения изотопного состава Pb в месторождениях Рудного Алтая, состоят в следующем. (1) В девонское время, во всяком случае в период формирования колчеданно-полиметаллических месторождений, в Рудно-Алтайском террейне существовал обширный, регионального масштаба, глубинный, гомогенный в химическом (U, Th, Pb) и изотопном (Pb) отношении резервуар – источник магм и металлоносных флюидов. (2) Диапазон изотопного состава Pb в колчеданно-полиметаллических месторождениях Рудного Алтая (отметим, небольшой для крупной рудной провинции), практически определяется различиями значений изотопных отношений, характерных для отдельно взятых рудных районов и соответствующих им ВТС. Возможные причины этих различий обсуждаются ниже. (3) В пределах рудных районов процессы образования и преобразования конкретных месторождений (движение металлоносных растворов, рудоотложение, метаморфизм руд) не сопровождались сколько-нибудь существенными сдвигами исходного, характерного для каждого района, изотопного состава свинца, что и обеспечило униформность изотопного состава в месторождениях внутри каждого рудного района.

Выявленная с помошью высокоточного изотопного анализа гомогенность изотопного состава свинца внутри колчеданно-полиметаллических месторождений и в пределах целых рудных районов Рудно-Алтайской провинции может служить основой для некоторых оценок длительности процессов рудогенеза. Среди изученных в настоящей работе наиболее подходящими для таких оценок являются колчеданно-полиметаллические месторождения Лениногорского района, отличающиеся высокой степенью гомогенности изотопного состава свинца. Среди них – два суперкрупных месторождения (Риддер-Сокольное и Тишинское) и одно крупное Ново-Лениногорское, локализованные на разных стратиграфических уровнях девонского разреза Рудно-Алтайской

провинции: в породах эмсского яруса (Риддер-Сокольное и Ново-Лениногорское) и средней части эйфельского яруса (Тишинское месторождение) (рис. 3). Цифровые границы подразделений девонской системы (Cohen et al., 2019) позволяют оценить выраженную в млн лет разницу в "стратиграфическом" возрасте трех упомянутых месторождений. Месторождение Риддер-Сокольное оказывается древнее месторождения Тишинское примерно на 20 млн лет и древнее месторождения Ново-Лениногорское соответственно на 10 млн лет. Для всех трех месторождений в настоящей работе получены наиболее представительные Pb-Pb изотопные данные, исключающие случайный характер вычисленных средних значений изотопных отношений и обеспечивающие их высокую точность. Оптимальным для использования в последующих расчетах и оценках является отношение ²⁰⁶Pb/²⁰⁴Pb, средние значения которого в рассматриваемых месторожлениях совпалают в пределах односигмового $(\pm 1 \text{SD})$ разброса: Риддер-Сокольное — 17.820 \pm ± 0.004 , Тишинское — 17.820 ± 0.002 , Ново-Лениногорское -17.827 ± 0.007 (табл. 2).

Используя разницу "стратиграфических" возрастов, с помощью уравнения, определяющего накопление радиогенного изотопа свинца, мы рассчитали величину $\Delta(^{206}\text{Pb}/^{204}\text{Pb})_{\Delta t}$, которая представляет прирост величины изотопного отношения ²⁰⁶Pb/²⁰⁴Pb в U-Pb системе источника за время между событиями, имеющими возраст t₁ и t₂. Величина $\Delta t = t_1 - t_2 - разница$ "стратиграфического" возраста месторождения Риддер-Сокольное (t_1) и более "молодых" месторождений (t_2) , в одном случае месторождения Тишинское, а в другом – Ново-Лениногорское. Как показывают расчеты, через 10 млн лет, прошедшие с момента, когда образовалось месторождение Риддер-Сокольное, а величина отношения ²⁰⁶Pb/²⁰⁴Pb в галените "застыла" на vровне 17.820, отношение ²⁰⁶Pb/²⁰⁴Pb в рудоносном источнике, едином для месторождений Лениногорского рудного района, возросло на величину 0.015, а еще через 10 млн лет — на величину 0.030. При расчетах принимались значения ²³⁸U/²⁰⁴Pb отношения в источнике, оцененные из модели Стейси-Крамерса для месторождений Рудного Алтая. Таким образом, в моменты образования месторождений Ново-Лениногорское и Тишинское величина отношения ²⁰⁶Pb/²⁰⁴Pb должна была бы зафиксироваться ("застыть") соответственно на уровнях 17.842 и 17.850. Весьма значительное (до 0.17%) несоответствие этих расчетных данных и фактического, весьма гомогенного изотопного состава свинца в месторождениях одного рудного района – факт, который ограничивает предположения или взгляды о длительном развитии колчеданного рудогенеза в отдельных районах Рудного Алтая и в провинции в целом. Решая обратную задачу (оценка интервала Δt , соответствующего определенному сдвигу величины отношения ²⁰⁶Pb/²⁰⁴Pb), можно показать, что, например, рассматриваемые месторождения Лениногорского рудного района сформировались в течение отрезка времени не более 2 млн лет.

Полученные свинцово-изотопные ланные позволяют оценить эволюционные характеристики свинца этого гомогенного источника. На диаграмме в координатах ²⁰⁶Pb/²⁰⁴Pb-²⁰⁷Pb/²⁰⁴Pb (рис. 5б) точки изотопных составов свинца галенита изученных месторождений Рудного Алтая занимают линейно вытянутую область, которая лежит значительно ниже средней эволюционной кривой, определяемой моделью Стейси–Крамерса (1975), и ниже близкой к ней линии орогена по модели Зартмана–Доу (1981). Положение этой области изотопных составов свинца на диаграмме отвечает по модели Стейси-Крамерса узкому диапазону значений параметра $\mu_2 = 9.50 - 9.43$, которые заметно выше величины $\mu_2 = 9.2$, характеризующей согласно изотопно-геодинамическим моделям астеносферную мантию (Zartman, Doe, 1981; Zindler, Hart, 1986; Kramers, Tolstikhin, 1997).

Другой эволюционный параметр источника свинца месторождений Рудного Алтая - модельный (по S-K) ²⁰⁷Pb-²⁰⁶Pb возраст (Тм) лежит в широком диапазоне значений 493-402 млн лет, которые систематически древнее эмс-франского возраста колчеданно-полиметаллических месторождений. Для разных районов Рудного Алтая эти различия составляет примерно от 200 до 30 млн лет; они максимально проявлены в рудном свинце Зыряновского района и минимально в свинце Рубцовского района. Для Рудного Алтая, в целом, такое соотношение модельного Тм возраста источника свинца и возраста процесса его минерализации, т.е. возраста рудогенеза, может интерпретироваться как свидетельство того, что процессу минерализации свинца, который геологически синхронен моменту отделения свинца от U-Th-Pb системы источника, предшествовала длительная, не менее 200 млн лет, изотопная эволюция свинца в резервуаре с отношением U/Pb, пониженным относительно значений $\mu_2 = 9.55 - 9.48$.

Изотопные характеристики рудного свинца в колчеданно-полиметаллических месторождениях Рудного Алтая не содержат прямых, не искаженных изотопных "меток" мантийного (астеносферного) происхождения. В этом отношении наблюдается существенное отличие изотопных характеристик от таковых в колчеданных месторождениях Урала (Чернышев и др., 2008). Значения отношений ²⁰⁶Pb/²⁰⁴Pb и ²⁰⁷Pb/²⁰⁴Pb и определяемые ими значения параметра μ_2 свинца Рудного Алтая совпадают только с небольшой, средней частью широкого спектра значений μ_2 (9.83–9.28) в колчеданных месторождениях Урала (рис. 5), которая представлена на Урале груп-

пой месторождений Магнитогорской зоны, залегающих в относительно примитивных по составу и неполно дифференцированных вулканитах (Амплиева и др., 2008; Викентьев и др., 2000б; Карпухина и др., 2013; Серавкин, 2013). Среди ранее изучавшихся нами колчеданных месторождений Урала, свинец только двух месторождений Сан-Донато и Кабан, локализованных в Тагильской зоне, обладает значениями $\mu_2 = 9.30 - 9.27$, т.е. более низкими, чем обладают все без исключения колчеданные месторождения Урала и Рудного Алтая. Породы рудообразующих толщ этих двух месторождений Урала являются производными толеитовой магмы, близкой по характеристикам к базальтам срединно-океанических обстановок (Викентьев и др., 2000а), и отвечают ранней стадии развития островных океанических дуг (Викентьев, 2004; Косарев и др., 2021). При интерпретации Pb-Pb данных в пользу мантийного происхождения этих двух месторождений Урала нужно отметить тот факт, что точки их изотопных составов Pb образуют линейный тренд, проходящий через точку изотопного состава деплетированной мантии типа DMM-А. Подобными метками свинец месторождений Рудного Алтая не обладает, и по ряду показателей (пониженное значение U/Pb, средние μ_2 , удревненные Тм) в качестве его вероятного источника может рассматриваться подкоровая литосферная мантия, которая может включать рециклированное вещество пород океанической коры. Еще один аргумент в пользу такой интерпретации дает анализ данных в системе ²⁰⁶Pb/²⁰⁴Pb-²⁰⁸Pb/²⁰⁴Pb.

В системе координат ${}^{206}\text{Pb}/{}^{204}\text{Pb}-{}^{208}\text{Pb}/{}^{204}\text{Pb}$, так же как и в системе ${}^{206}\text{Pb}/{}^{204}\text{Pb}-{}^{207}\text{Pb}/{}^{204}\text{Pb}$, точки изотопных составов образуют линейный тренд. Тренд точек находится выше средних эволюционных кривых по моделям S–K и Z–D, будучи значительно смещен в сторону линии эволюции свинца в нижней коре по модели Z–D (рис. 5а, 5б).

Положение точек в этой системе координат, определяемое по модели S-К параметрами ω₂ и Th/U со значениями 36.3-35.9 и 3.85-3.78, соответственно, указывает на еще одну особенность источника свинца месторождений Рудного Алтая, которая заключается в деплетированности источника ураном относительно тория. Геохимическая фракционированность такого типа (Кгатers, Tolstikhin, 1997), свойственна породам, которые прошли стадию рециклинга (преобразования) при Р-Т-условиях нижней коры, обеспечивших частичную потерю урана. Данные высокоточного изучения Pb-Pb изотопной систематики, в данном случае для месторождений Рудного Алтая, и последующий модельный расчет Th/U отношения показывают, что в источнике Pb дефицит U в отношении Th на фоне среднего значения 3.78 хорошо заметен. Этот дефицит минимален в источнике месторождений Рубцовского рудного района (Th/U = 3.78) и максимален для Зыряновского района (Th/U = 3.85).

Отметим далее исключительно высокую для Pb-Pb изотопно-геохимических данных степень линейной корреляции ($R^2 = 0.99$) точек изотопных составов Рb в координатах ²⁰⁷Pb/²⁰⁶Pb-²⁰⁸Pb/²⁰⁶Pb (рис. 6). Эта корреляция формально является следствием подобия отмеченных выше распределений точек изотопных составов вдоль трендов (рис. 5а, 5б), а геологический (геохимический) смысл корреляции определяется тем, что оба изотопных отношения ²⁰⁷Pb/²⁰⁶Pb и ²⁰⁸Pb/²⁰⁶Pb контролируют присутствие в месторождениях Рудного Алтая свинца, происходящего из одного и того же источника, а именно, источника, деплетированного ураном. Отношение ²⁰⁷Pb/²⁰⁶Pb контролирует его вклад посредством модельного эволюционного параметра U/Pb (или μ_2), а отношение ²⁰⁸Pb/²⁰⁶Pb – посредством параметра Th/U. В обоих случаях таким региональным источником предположительно является литосферная мантия.

Линейный тренд точек изотопных составов свинца в координатах ²⁰⁶Pb/²⁰⁴Pb-²⁰⁷Pb/²⁰⁴Pb, которым задается размах значений параметра Т_м почти в 100 млн лет. не является вторичной изохроной², поскольку тангенс угла наклона тренда (tg == 0.139), определяющий возраст источника свинца около 2.0 млрд лет, не согласуется с тем обстоятельством, что породы такого возраста в пределах террейна Рудного Алтая не установлены. Среди суммированных в работе (Куйбида, 2019) данных, которые противоречат присутствию в Рудном Алтае фрагментов докембрийского фундамента, помимо геологических и палеонтологических наблюдений, нужно отметить Sm-Nd изотопные данные (Крук и др., 1999), а именно, положительные величины $\epsilon_{Nd (T)}$ для риолитов и относительно молодые (<1 млрд лет) значения модельного Т_{DM} возраста.

Эти же данные поддерживают базирующийся на рассмотренных выше результатах изучения изотопного состава рудного свинца вывод о том, что литосферная мантия, как гомогенный, обширный по масштабу региональный источник вещества колчеданно-полиметаллических месторождений Рудного Алтая, была относительно молодой, новообразованной скорее всего в раннепалеозойское время.

При интерпретации обсуждаемого линейного тренда точек изотопного состава рудного свинца,

² Прямая линия на диаграмме ²⁰⁶Pb/²⁰⁴Pb—²⁰⁷Pb/²⁰⁴Pb, объединяющая точки образцов галенита, свинец которых эволюционировал в U-Pb системе единого источника при разных значениях U/Pb и был геологически синхронно отделен от источника во время процесса рудогенеза.

вызванного небольшими его вариациями (рис. 5), можно рассматривать две возможные причины. 1) Тренд является линией смешения свинца источника и свинца — контаминанта, захваченного восходящими магмами и рудоносными флюидами из пород складчатого комплекса и осадочного чехла Рудно-Алтайского террейна. 2) Тренд является следствием изотопной (Pb-Pb) и химической (U-Th-Pb) гетерогенности источника.

Вдоль тренда отчетливо проявлена группировка точек изотопных составов Pb в соответствии с принадлежностью к четырем конкретным рудным районам Рудного Алтая. При этом крайнюю нижнюю-левую позицию на тренде занимают точки, отвечающие Зыряновскому району, представленному в настоящей работе свинцово-изотопными данными по месторождению Зыряновское – одному из крупнейших в провинции. Наименее радиогенный изотопный состав свинца Зыряновского района (месторождения) по содержаниям всех трех изотопов ²⁰⁶Pb, ²⁰⁷Pb и ²⁰⁸Pb и определяемые ими значения эволюционных параметров источника свинца (μ_2 , ω_2 , TM, Th/U) позволяют рассматривать рудный свинец этого района по сравнению с другими районами как наиболее близкий по составу к свинцу источника, которым, как мы предполагаем, были деплетированные ураном породы подкоровой литосферной мантии.

Принимая такую концепцию, вернемся к интерпретации небольших различий изотопного состава свинца в месторождениях Рудного Алтая, определивших региональный тренд изотопного состава.

Контаминация свинца регионального металлоносного источника свинцом пород основания и чехла Рудно-Алтайского террейна в общем балансе изотопного состава рудного свинца не играла существенной роли. Основанием для этого вывода служит, прежде всего, высокое валовое содержание Pb в рудах изучавшихся колчеданнополиметаллических месторождений Рудного Алтая. Они характеризуются Cu-Pb-Zn метальным профилем и валовыми содержаниями Pb от 0.8 до 5.4 мас. % (Lobanov et al., 2014), что несомненно является прямым показателем высокого содержания Рь в гидротермальных растворах, перемещавшихся непосредственно от источника в зону минерализации. Отметим, что существуют данные прямых определений (Викентьев и др., 2012; Audétat, 2019) содержания свинца в первичных флюидных включениях, полученные с помощью LA-ICP-MS, в магматическом кварце, связанном с гранитоидными расплавами. Согласно этим данным содержания Pb в магматическом флюиде весьма высоки и составляют от первых десятков до 8000 ррт. Очевидно, что эффект изотопного обмена таких металлоносных растворов с породами, имеющими содержание Pb на порядок ниже, будет незначительным: даже при контрастной разнице изотопных составов свинца в растворе и породе-контаминанте в 0.5% смещение изотопного состава свинца в растворе превысит величину 0.02%, если доля свинца из осадков превысит 5%. Заметим, что принципиально иная ситуация встречается при детальном свинцовоизотопном изучении золоторудных месторождений орогенного типа, когда коровая контаминация мантийного Pb оказывается хорошо заметной вследствие, наоборот, низкого содержания Рь в рудообразующей системе, который сопровождал поступление Аи из мантийного источника (Чугаев и др., 2020; Chugaev et al., 2022). Другое ограничение роли контаминации связано с характером подробно рассмотренного выше распределения изотопных составов Pb в регионе. Если коровая контаминация свинца, в региональном масштабе, имела бы место и привела к наблюдаемым различиям средних изотопных составов свинца отдельных рудных районов, то необъяснимым остается факт высокой степени гомогенности изотопных составов свинца внутри рудных районов и отдельных месторождений.

Наиболее предпочтительным объяснением различий рудных районов колчеданно-полиметаллических месторождений Рудного Алтая по их изотопным характеристикам представляется изотопная Pb-Pb и химическая U-Th-Pb неоднородность источника рудоносной бимодальной базальт-риолитовой ассоциации. Зыряновский, Лениноногорский, Змеиногорский и Рубцовский рудные районы образуют линейный пояс³ юговосток-северо-западного простирания, являющийся одним из латеральных элементов металлогенической зональности Рудного Алтая. Зональность, отражающая геолого-вещественную неоднородность региона, проявляется в смене подтипов колчеданных месторождений (Zn-Cu, Cu-Pb-Zn, Pb-Zn) с уменьшением в их составе содержания Си и возрастании содержания Рb в сторону северо-востока Рудного Алтая. В этом же направлении увеличивается содержание калия в вулканических породах (Авдонин и др., 1987), а по данным измерений геофизических параметров, происходит возрастание толщины коры (Попов и др., 1995; Беспаев и др., 1997; Большой Алтай..., 2000). Согласно данным (Вулканогенные ..., 1978; Авдонин и др., 1987 и др.), вулканизм "мигрировал" с востока и юго-востока на запад и северо-запад (т.е. в направлении простирания пояса, в котором расположены изучавшиеся нами колчеданно-полиметаллические месторождения), результатом чего стали наблюдаемые в разрезах вулканиче-

³ В этот пояс колчеданно-полиметаллических месторождений входит Снегирихинский рудный район, месторождения которого в настоящей работ не изучались.

ской формации изменения в соотношении основных и кислых пород.

Олна из причин геолого-вешественной неолнородности Рудно-Алтайской провинции, вероятно, состояла в различиях состава исходных пород, участвовавших в выплавлении магм в ходе формирования рудоносной бимодальной базальт-риолитовой ассоциации. При этом изотопно-химическая (Pb-Pb и U-Th-Pb) неоднородность источника магм обусловила наблюдаемые небольшие (~1%) различия рудных районов по изотопному составу свинца, которые, будучи хорошо заметны на фоне его общей гомогенности в провинции в целом, фактически и определяют весь региональный размах его вариаций. Характер неоднородности состава источника рудного свинца в регионе, вероятно, закономерно изменялся вдоль упомянутого регионального пояса колчеданно-полиметаллических месторождений северо-западного простирания, о чем свидетельствует тот факт, что последовательность размещения Зыряновского, Лениногорского, Змеиногорского и Рубцовского рудных районов вдоль пояса повторяет последовательность расположения полей этих районов на диаграмме вдоль тренда, отражающего постепенное изменение изотопного состава Pb (рис. 5, 6).

Отметим, что в колчеданных (Ашеле, Кекетале) и других (Au-W, Cu-Ni) месторождениях Китайского Алтая, локализованных на юго-восточном продолжении рассматриваемого пояса, изотопный состав свинца отличается от такового в изученных месторождениях Рудного Алтая более высоким содержанием радиогенных изотопов ²⁰⁶Pb и ²⁰⁷Pb. Изотопный состав Pb месторождений Китайского Алтая интерпретируется как результат контаминации ювенильного мантийного компонента свинца свинцом, мобилизованным из фрагментов докембрийской континентальной коры, присутствующей в этой части орогена (Chiaradia et al., 2006).

Как уже отмечалось выше, геодинамические условия продуктивного ранне-среднедевонского магматизма Рудного Алтая остаются предметом дискуссий (Щерба, 1983; Филатов, 1999; Промыслова, 2005; Сараев и др., 2012; Козлов и др., 2015). В недавно опубликованных работах (Куйбида, 2019; Куйбида и др., 2019) на основании анализа геологических и геохимических данных эволюцию базальт-риолитового вулканизма Алтая на активной окраине Сибирского континента предлагается рассматривать в рамках двухстадийной модели субдукции и миграции вулканизма от континента к океану. При этом автором модели не исключается возможность действия других причин раннего рифтогенеза: мантийного плюма под пассивной окраиной или вращения и дрейфа Сибирского континента. Альтернативная концепция (Владимиров и др., 2003; Кузнецов и др., 2019; Крук, 2021) предполагает, что девонский магматизм протекал в условиях деструкции Рудно-Алтайского террейна, вызванной сдвиговыми перемещениями Обь-Зайсанской океанической плиты относительно края Сибирского кратона.

Рассмотренные в настоящей работе свинцовоизотопные данные освещают некоторые стороны генезиса, в частности, источники вещества колчеданно-полиметаллических месторождений Рудного Алтая, однако они недостаточны для расшифровки геодинамических условий развития раннесреднедевонского магматизма и колчеданного рудообразования в этой провинции. Помимо данных изотопного состава рудного свинца обсуждение проблем региональной геодинамики требует привлечения отсутствующих пока для Рудного Алтая столь же систематических и эквивалентных по точности свинцово-изотопных данных по магматическим породам террейна, а также систематических Nd-изотопных данных.

ЗАКЛЮЧЕНИЕ

Настоящее исследование позволило впервые увидеть особенности изотопного состава свинца колчеданной провинции Рудного Алтая и сопоставить их с изотопными характеристиками месторождений, локализованных в других террейнах зоны Алтаид ЦАСП. Согласно данным изучения рудного свинца и свинца пород террейнов ШАСП от Западного Тянь-Шаня до Китайского Алтая, наблюдается систематическое уменьшение содержания ураногенных изотопов в направлении с юго-запада на северо-восток (Chiaradia et al., 2006). Такое изменение изотопного состава свинца коррелируется с уменьшением в том же направлении роли нижней коры в составе террейнов, где в том числе участвуют фрагменты и блоки докембрийской коры. Изотопный состав рудного свинца Рудного Алтая, определяемый в среднем значениями отношений ²⁰⁶Pb/²⁰⁴Pb = 17.820 ± ± 0.039 (SD), ²⁰⁷Pb/²⁰⁴Pb = 15.517 ± 0.006 (SD) и 208 Pb/ 204 Pb = 37.669 ± 0.024 (SD), является наименее радиогенным по содержанию всех трех изотопов ²⁰⁶Pb, ²⁰⁷Pb и ²⁰⁸Pb среди других террейнов ШАСП. включая Китайский Алтай. Он обладает высокой гомогенностью и не содержит изотопных "меток" свинца ювенильного (астеносферного) мантийного происхождения. При этом изотопный состав свинца Рудно-Алтайской провинции выявляет такие эволюционные характеристики источника как его деплетированность ураном и, как следствие, повышенное отношение Th/U, удревненный модельный Pb-Pb возраст, умеренные значения параметра μ_2 (9.55–9.48), которые в совокупности дают основание в качестве вероятного источника рассматривать литосферную мантию, состоящую из рециклированных и метасоматизированных пород. Такая интерпретация Pb-Pb изотопных данных согласуется с ранее высказанной точкой зрения об участии вещества подкоровой литосферной мантии в петрогенезисе кислых рудоносных расплавов (Гаськов, 2015, Кузнецов и др., 2019).

Униформность изотопного состава Pb, которая при небольших отклонениях от средних значений выдерживается вдоль протяженного (~500 км) пояса колчеданно-полиметаллических месторождений Рудного Алтая, определенно говорит о том, что упомянутый источник в период формирования месторождений носил региональный характер, был гомогенным в химическом и изотопном отношении и единым для всех месторождений. Узкий диапазон вариаций изотопного состава свинца (максимально **v**_{206/204} = 0.22%) в рудной провинции в целом сочетается с еще более гомогенным изотопным составом, наблюдаемым внутри рудных районов (максимально $v_{206/204} =$ = 0.054%) и локализованных в них конкретных месторождениях (максимально $\mathbf{v}_{206/204} = 0.025\%$). Поэтому общий размах вариаций изотопного состава свинца в изучавшихся месторожлениях определяется различиями значений изотопных отношений в отдельно взятых рудных районах и соответствующих им ВТС. В пределах рудных районов различные по своему характеру процессы, связанные с образованием и метаморфическим преобразованием конкретных месторождений, не сопровождались существенными (по крайней мере на уровне точности $\pm 0.02\%$ применявшегося высокоточного метода изотопного анализа) сдвигами изотопного состава свинца. Высокая степень его гомогенности в пределах рудных районов и месторождений ограничивает длительность их формирования отрезком времени 2 млн лет.

Полученные данные свидетельствуют о наличие единого регионального источника вещества для колчеданно-полиметаллических месторождений Рудного Алтая, что объясняет гигантский масштаб проявленной в регионе колчеданной минерализации, близость геохимических и свинцово-изотопных характеристик локализованных здесь месторождений данного типа. Результаты исследований подтверждают высокий ресурсный потенциал Рудно-Алтайской провинции и перспективы открытия новых рудных залежей.

Авторы благодарны академику Н.С. Бортникову за поддержку нашей работы в рамках указанного гранта и своим коллегам по лаборатории ИГЕМ К.Н. Шатагину и Н.В. Сердюку за помощь в проведении работы.

Авторы выражают признательность В.В. Кузнецову и С.В. Кузнецовой за предоставление для исследований части каменного материала, а также за рекомендации при подготовке статьи. Авторы благодарят руководство и геологическую службу TOO "Казцинк" за доступ к керну и в подземные горные выработки месторождений Лениногорского рудного района, геологов Риддерского ГОКа (прежде всего, В.И. Мамина) и Алтайского геолого-экологического института (Г.Д. Ганженко) за содействие в проведении полевых работ и получение образцов руд. Авторы выражают благодарность анонимному рецензенту, чьи ценные замечания способствовали улучшению итогового варианта статьи.

Исследования выполнены при финансовой поддержке гранта Министерства науки и высшего образования РФ № 13.1902.21.0018 "Фундаментальные проблемы развития минерально-сырьевой базы высокотехнологичной промышленности и энергетики России".

СПИСОК ЛИТЕРАТУРЫ

Авдонин В.В., Дергачев А.Л., Шатагин Н.Н. (1987) Петрохимическая зональность базальт—риолитовой формации Рудного Алтая. *Вестник МГУ*, Сер. 4, геология, (4), 18–24.

Аксенов В.С., Гриненко Л.Н., Гриненко В.А. (1977) Изотопы свинца и вопросы генезиса сульфидных руд полиметаллических месторождений Зыряновского района. В кн.: Проблемы генезиса колчеданно-полиметаллических месторождений Рудного Алтая. Под ред. Абдулина А.А. Алма-Ата: Наука, 153-158.

Амплиева Е.Е., Викентьев И.В., Карпухина В.С., Бортников Н.С. (2008) Роль магматогенного флюида в формировании Талганского медно-цинково-колчеданного месторождения, Ю. Урал. *ДАН*. **423**(4), 516-519.

Беспаев Х.А., Полянский Н.В., Ганженко, Г.Д., Дьячков Б.А., Евтушенко О.П. (1997). Геология и металлогения Юго-Западного Алтая (в пределах территории Казахстана и Китая). Алматы: Ғылым. 288 с.

Бибикова Е.В., Кирнозова Т.И., Козаков И.К., Котов А.Б., Неймарк Л.А., Гороховский Б.М., Шулешко И.К. (1992). Полиметаморфические комплексы южного склона Монгольского и Гобийского Алтая: результаты уран-свинцового датирования. *Геотектоника.* 2, 104-112.

Буслов М.М., Фудживара И., Сафонова И.Ю., Окада Ш., Семаков Н.Н. (2000) Строение и эволюция зоны сочленения террейнов Рудного Алтая и Горного Алтая. *Геология и геофизика.* **41**(3), 383-397.

Буслов М.М., Ватанабе Т., Смирнова Л.В., Фудживара И., Ивата К., Семаков Н.Н., Травин А.В., Кирьянова А.П., Кох Д.А. (2003). Роль сдвигов в позднепалеозойско-раннемезозойской тектонике и геодинамике Алтае-Саянской и Восточно-Казахстанской складчатых областей. *Геология и геофизика*. **44**(1–2), 49-75.

Викентьев И.В. (1986) Рудоносные палеовулканические структуры Зыряновского колчеданно-полиметаллического месторождения (Рудный Алтай). Известия вузов. Геология и разведка. (5), 87-93.

Викентьев И.В. (1987) Метаморфогенные структуры Тишинского месторождения (Рудный Алтай). *Геология рудных месторождений*. 29(1), 66-76.

ЧЕРНЫШЕВ и др.

Викентьев И.В. (1994) Тектонофизический анализ колчеданных месторождений Северо-Восточной зоны смятия на Алтае. Известия вузов. Геология и разведка. (4), 83-91.

Викентьев И.В. (2004). Условия формирования и метаморфизм колчеданных руд. М.: Научный мир, 344 с. Викентьев И.В., Гаврилец В.Н., Бородаев Ю.С. (1988) Дайки меланократовых пород Зыряновского месторождения (Р. Алтай). *Геология рудных месторождений*. **1**(4), 99-104.

Викентьев И.В., Карманов В.П. (1989) Два структурно-геохимических типа полиметаллических месторождений в Лениногорском рудном районе. Известия вузов. Геология и разведка. (8), 48-57.

Викентьев И.В., Бонатти Э., Пейве А.А. (2000а) Рудная минерализация в нормальном разрезе океанической коры (разломная зона Вима, 10°45' с.ш. САХ). ДАН. **375**(4), 500-503.

Викентьев И.В., Беленькая Ю.А., Агеев Б.И. (2000б) Александринское колчеданно-полиметаллическое месторождение на Урале. *Геология рудных месторождений.* **42**(3), 248-274.

Викентьев И.В., Дамдинов Б.Б., Минина О.Р., Спирина А.В., Дамдинова Л.Б. (2023) Классификация процессов полиметаллического рудообразования и переходный VMS–SEDEX–МV-тип – пример гигантского Озерного месторождения в Забайкалье, Россия. *Геология рудных месторождений*. **65**(3), 1-36.

Викентьев И.В., Борисова А.Ю., Карпухина В.С., Наумов В.Б., Рябчиков И.Д. (2012) Прямые данные о рудоносности кислых магм Узельгинского рудного поля (Южный Урал, Россия). ДАН. **443**(3), 347-351.

Владимиров А.Г., Крук Н.Н., Руднев С.Н., Хромых С.В. (2003) Геодинамика и гранитоидный магматизм коллизионных орогенов. *Геология и геофизика*. **44**(12), 1321-1338.

Владимиров А.Г., Козлов М.С., Шокальский С.П., Халилов В.А., Руднев С.Н., Крук Н.Н., Выставной С.А., Борисов С.М., Березиков Ю.К., Мецнер А.Н., Бабин Г.А., Мамлин А.Н., Мурзин О.М., Назаров Г.В., Макаров В.А. (2001) Основные возрастные рубежи интрузивного магматизма Кузнецкого Алатау, Алтая и Калбы (по данным U-Pb изотопного датирования). *Геология и геофизика.* **42**(8), 1157-1178.

Вулканогенные колчеданно-полиметаллические месторождения (на примере Рудного Алтая) (1978). Под ред. Г.Ф. Яковлева М.: Изд-во Моск. ун-та, 280 с.

Гаврилец В.Н. (1986) Палеовулканическая структура и литолого-фациальный контроль на Зыряновском месторождении (Рудный Алтай). Геология рудных месторождений. (1), 40-47.

Ганженко Г.Д., Юдовская М.А., Викентьев И.В. (2018). Золото-полиметаллическая минерализация Риддер-Сокольного месторождения на Рудном Алтае (Вост. Казахстан). *Минералогия*. **4**(1), 8-34.

Гаськов И.В. (2002) Колчеданно-полиметалличекие месторождения северо-западной части Рудного Алтая: условия формирования и закономерности размещения. Дис. ... док. геол.-мин. наук. Новосибирск: ИГ СО РАН, 336 с.

Гаськов И.В. (2015) Особенности развития колчеданных рудно-магматических систем в островодужных

обстановках рудного Алтая и южного Урала. Литосфера. (2), 17-39.

Гладких В.С. (1992) К геохимии девонских вулканогенных пород юго-западной части Алейского антиклинория. Отечественная геология. (11), 77-83.

Государственная геологическая карта Российской Федерации масштаба 1 : 200000. Сер. Горно-Алтайская. Лист М-44-IV (Рубцовск) (2019). Об. Зап. Ред. С.И. Федак, Ю.А. Туркин, П.Ф. Селин и др. М.: Моск. филиал ВСЕГЕИ, 273 с.

Григорьев И.Ф. (1934) Основные черты Рудного Алтая и Калбы. В кн.: Большой Алтай. Т. 1. Л.: Изд-во АН СССР, 1934. С. 37–51.

Гутак Я.М., Мурзин О.В., Жданов В.А., Ляхницкий В.Н., Петрунина З.Е., Родыгин С.А. (2000) Опорные разрезы девона Рудного Алтая и граница среднего и верхнего девона (Путеводитель полевой экскурсии VII выездной сессии Девонской комиссии МСК России в Рудном Алтае). Змеиногорск, 75 с.

Дергачев А.Л. (2010). Эволюция вулканогенного колчеданообразования в истории Земли. Дис. ... док. геол.-мин. наук. Москва: МГУ, 262 с.

Дубатолов В.Н., Дубатолова Ю.А., Козлов М.С., Спасский Н.Я. (1980) Биостратиграфия нижнего и среднего девона Рудного Алтая. М.: Наука, 164 с.

Еремин Н.И., Дергачев А.Л. Позднякова Н.В., Сергеева Н.Е. (2004) Крупные и особо крупные колчеданные месторождения вулканической ассоциации. *Геология рудных месторождений*. 46(2), 107-127.

Зиновьев С.В. (2016) Роль динамометаморфизма в формировании рудных месторождений (на примере колчеданных Тишинского и Риддер-Сокольного месторождений Рудного Алтая). *Геология и геофизика*. 57(3), 521-536.

Зоненшайн Л.П., Кузьмин М.И., Моралев В.И. (1976) Глобальная тектоника, магматизм и металлогения. М.: Недра, 238 с.

Карпухина В.С., Наумов В.Б., Викентьев И.В. (2013) Генезис колчеданных месторождений Верхнеуральского рудного района (Южный Урал, Россия): свидетельства магматического вклада металлов и флюида. *Геология рудных месторождений*. **55**(2), 145-165

Козлов М.С. (2015) Условия формирования Рудноалтайской металлогенической провинции. *Геология рудных месторождений*. **57**(4), 299-326.

Козлов М.С., Дубатолов В.Н. (1994) Стратиграфия верхнесилурийских, девонских и нижнекаменноугольных отложений Юго-Западного Алтая. *Геология и геофизика*. **35**(12), 18-36.

Косарев А.М., Пучков В.Н., Серавкин И.Б., Шафигуллина Г.Т. (2021) Геодинамические условия вулканизма и колчеданообразования в Магнитогорской мегазоне в позднеэмсско-раннеэйфельское время. *Литосфера.* **21**(6), 775-804.

Козаков И.К., Сальникова Е.Б., Котов А.Б., Ковач В.П., Диденко А.Н. (2005) Возрастные рубежи и геодинамические обстановки формирования кристаллических комплексов восточного сегмента Центрально-Азиатского складчатого пояса. В кн.: Проблемы тектоники Центральной Азии. М.: ГЕОС, 137-170.

Кудрявцева Н.Г., Кузнецов В.В. Геодинамические особенности формирования месторождений цветных и благородных металлов Большого Алтая. Алматы, 2012. 38-44.

Крук Н.Н., Руднев С.Н., Владимиров А.Г., Журавлев Д.З. (1999) Sm-Nd изотопная систематика гранитоидов западной части Алтае-Саянской складчатой области. *ДАН*. **366**(3), 395-397.

Крук Н.Н. (2021) Конвергенция геохимических признаков магматических ассоциаций трансформных окраин континентов и внутриплитных крупных изверженных провинций в складчатых поясах: причины и тектонические следствия. В сб.: Геологические процессы в обстановке субдукции, коллизии и скольжения литосферных плит. Мат. V Всероссийской конф.с международным участием. Владивосток, Изд-во: ДВФУ, 38-40.

Кузнецов В.В., Кудрявцева Н.Г., Серавина Т.В., Мурзин О.В., Корчагина Д.А., Кузнецова С.В., Миляев С.А. (2019) Основы прогноза и поисков колчеданно-полиметаллических месторождений Рудного Алтая. М.: ЦНИ-ГРИ, 206 с.

Куйбида М.Л. Крук Н.Н. Владимиров А.Г., Полянский Н.В., Николаева И.В. (2009) U-Pb-изотопный возраст, состав и источники плагиогранитов Калбинского хребта (Восточный Казахстан). ДАН. 424(1), 84-88.

Куйбида М.Л., Крук Н.Н., Мурзин О.В., Шокальский С.П., Гусев Н.И., Кирнозова Т.И., Травин Н.И. (2013) Геологическая позиция, возраст и петрогенезисплагиогранитов северной части Рудного Алтая. *Геология и геофизика.* **54**(10), 1668-1684.

Куйбида М.Л., Крук Н.Н., Шокальский С.П., Гусев Н.И., Мурзин О.В. (2015) Надсубдукционныеплагиограниты Рудного Алтая. *ДАН*. **464**(3), 317-322.

Куйбида М.Л. (2018) Возраст и состав риолитов мельнично-сосновского вулканического комплекса (Рудный Альай). В сб.: Петрология магматических и метаморфических комплексов. Материалы X Всероссийской петрографической конференции с международным участием. Изд-во: Томский центр научно-технической информации, 219-224.

Куйбида М.Л. (2019) Базальтовый вулканизм системы островная дуга-задуговой бассейн (Алтайская активная окраина). *Тихоокеанская геология*. **38**(3), 108-120.

Куйбида М.Л., Тимкин В.И., Кривчиков В.А., Мурзин О.В., Крупчатников В.И., Попова О.М., Крук Н.Н., Руднев С.Н., Куйбида Я.В., Шокальский С.П., Гусев Н.И., Комия Ц., Аоки Ш., Сун М., Нарыжнова А.В. (2019). Среднепалеозойские риолиты Горного и Рудного Алтая: возраст и особенности состава. ДАН. **487**(5), 532-537.

Лапухов А.С., Прокопенко А.И., Иванов Н.Б., Трубников Л.М. (1986) Рудообразующие системы колчеданно-полиметаллических месторождений зон смятия (Рудный Алтай). Новосибирск: Наука, 182 с.

Миронов Ю.В., Ельянова Е.А., Зорина Ю.Г., Мирлин Е.Г. (1999) Вулканизм и океанское колчеданообразование. М.: Научный мир, 173 с.

Мохов В.А., Викентьев И.В. (1988) Динамометаморфизм колчеданно-полиметаллических месторождений Лениногорского района (Р.Алтай). Известия вузов. Геология и разведка. (12), 55-61.

Овчинников Л.Н., Баранов В.Д. (1973) О некоторых закономерностях размещения колчеданно-полиме-

таллических месторождений Алтая. Геология рудных месторождений. (6), 17-31.

567

Попов В.В., Стучевский Н.И., Демин Ю.И. (1995) Полиметаллические месторождения Рудного Алтая. Отв. ред. Н.И. Еремин. М.: ИГЕМ РАН, 414 с.

Промыслова М.Ю. (2005) Геодинамическая природа рудоносной базальт-риолитовой формации Лениногорского района Рудного Алтая. Вестник Московского университета. Серия 4: Геология. (4), 16-24.

Ротараш И.А., Самыгин С.Г., Гредюшко Е.А. (1982) Девонская активная континентальная окраина на юго-западе Алтая. *Геотектоника*. (1), 44-59.

Сараев С.В., Батурина Т.П., Бахарев Н.К., Изох Н.Г., Сенников Н.В. (2012) Среднепозднедевонскиеостроводужные вулканогенно-осадочные комплексы северо-западной части Рудного Алтая. *Геология и геофизика.* **53**(10), 1285-1303.

Сафонова И.Ю. (2021) Внутриплитные океанические базальты из аккреционных комплексов Центрально-Азиатского Складчатого пояса и Западной Пацифики. Дис. ... докт. геол-минер наук. Новосибирск: ИГМ СО РАН, 444 с.

Серавкин И.Б. (2013) Корреляция состава руд и рудовмещающих пород в вулканогенных колчеданных месторождениях (на примере Южного Урала). *Геология рудных месторождений*. **55**(3), 238-258.

Смирнов В.И. (1979) Колчеданные месторождения мира. М.: Недра, 312 с.

Сыромятников Н.Г., Замятин Н.И., Трофимова Л.А. (1981) Изотопы свинца, серы и радиоэлементы как индикаторы генезиса месторождений. В кн.: Вулканогенноосадочный лито и рудогенез. Алма-Ата: Наука, 124-140.

Трофимов А.П. (1981). Рудоносные вулканотектонические структуры и первичные геохимические ореолы колчеданно-полиметаллических месторождений Белоубинского синклинирия (Рудный Алтай). Геология рудных месторождений. (3), 41-54.

Филатов Е.И. (1999) Базальт-риолитовые формации с колчеданно-полиметаллическим оруденением (на примере Рудного Алтая). В сб.: Геохимическая и металлогеническая специализация структурно-вещественных комплексов. М.: МПР РФ, ИМГРЭ, Геокарт, РосГЕО, 337-348.

Филатов Е.И., Ширай Е.П. (1975). О палеосистеме островных дуг Зайсанской складчатой области. ДАН. **225**(1), 172-175.

Ханчук А.И., Гребенников А.В., Иванов В.В. (2019) Альб-сеноманскийорогенный пояс и магматическая провинция Тихоокеанской Азии. *Тихоокеанская геология.* **38**(3), 4-29.

Чекалин В.М., Дьячков Б.А. (2013) Рудноалтайский полиметаллический пояс: закономерности распределения колчеданного оруденения. *Геология рудных мессторождений*. **55**(6), 513-532.

Чернышев И.В., Лебедев В.А., Аркелянц М.М. (2006). К-Аг датирование четвертичных вулканитов: методология и интерпретация результатов. *Петрология*. **14**(1), 69-89.

Чернышев И.В., Чугаев А.В., Шатагин К.Н. (2007) Высокоточный изотопный анализ Рb методом многоколлекторной ICP-масс-спектрометрии с нормированием по ²⁰⁵Tl/²⁰³Tl: оптимизация и калибровка метода

для изучения вариаций изотопного состава Pb. *Геохи*мия. (11), 1155-1168.

Chernyshev I.V., Chugaev A.V., Shatagin K.N. (2007) High-precision Pb isotope analysis by multicollector-ICPmass-spectrometry using ²⁰⁵Tl/²⁰³Tl normalization: Optimization and calibration of the method for the studies of Pb isotope variations. *Geochem. Int.* **45**(11), 1065-1076.

Чернышев И.В., Викентьев И.В., Чугаев А.В., Шатагин К.Н., Молошаг В.П. (2008). Источники вещества колчеданных месторождений Урала по результатам высокоточного MC-ICP-MS изотопного анализа свинца галенитов. *ДАН*. **418**(4), 530-535.

Чернышев И.В., Чугаев А.В., Бортников Н.С., Гамянин Г.Н., Прокопьев А.В. (2018). Изотопный состав свинца и источники металлов в месторождениях золота и серебра Южного Верхоянья (Якутия, Россия): по данным высокоточного МС-ICP-MS метода. *Геология рудных месторождений*. **60**(5), 448-471.

Чугаев А.В., Чернышев И.В., Бортников Н.С., Коваленкер В.А., Киселева Г.Д., Прокофьев В.Ю. (2013) Изотопно-свинцовые рудные провинции Восточного Забайкалья и их связь со структурами региона (по данным высокоточного MC-ICP-MS-изучения изотопно-го состава Рb). *Геология рудных месторождений*. **55**(4), 282-294.

Чугаев А.В., Чернышев И.В. (2017) Рb-Рb изотопная систематика орогенных месторождений золота Байкало-Патомского складчатого пояса (Северное Забайкалье, Россия) и оценка роли неопротерозойской коры в их формировании. *Геохимия*. (11), 1027-1040.

Chugaev A.V., Chernyshev I.V. (2017) Pb–Pb isotopic systematics of orogenic gold deposits of the Baikal–Patom fold belt (Northern Transbaikalia, Russia) and estimation of the role of neoproterozoic crust in their formation. *Geochem. Int.* **55**(11), 1010-1021.

Чугаев А.В., Дубинина Е.О., Чернышев И.В., Травин А.В., Коссова С.А., Ларионова Ю.О., Носова А.А., Плотинская О.Ю., Олейникова Т.И., Садасюк А.С. (2020). Источники и возраст золоторудной минерализации месторождения Ирокинда (Северное Забайкалье): результаты изучения изотопного состава Pb, S, Sr, Nd и данные ³⁹Ar-⁴⁰Ar геохронометрии. *Геохимия*. **65**(11), 1059-1079.

Chugaev A.V., Dubinina E.O., Chernyshev I.V., Travin A.V., Kossova S.A., Larionova Yu.O., Nosova A.A., Plotinskaya O.Yu., Oleinikova T.I., Sadasyuk A.S. (2020). Sources and Age of the gold mineralization of the Irokinda Deposit, Northern Transbaikalia: Evidence from Pb, S, Sr, and Nd isotope-geochemical and ³⁹Ar–⁴⁰Ar geochronological data, *Geochem. Int.* **58**, 1208-1227.

Ширай Е.П., Филатов Е.И., Гусев Г.С., Гущин А.В., Зайков В.В., Масленников В.В., Межеловский Н.В., Перевозчиков Б.В. (1999). Металлогения рядов геодинамических обстановок островных дуг. Под. ред. Н.В. Межеловский. М.: МПР РФ, ИМГРЭ, Геокарт, РосГео., 436 с.

Щерба Г.Н (1983). Колчеданно-полиметаллические месторождения Рудного Алтая. В кн.: Колчеданные месторождения СССР. М.: Наука. С. 87-148.

Щерба Г.Н., Дьячков Б.А., Стучевский Н.И., Нахтигаль Г.П., Антоненко А.Н., Любецкий В.Н. (1998). Большой Алтай (геология и металлогения). Кн. 1. Геологическое строение. Алматы: Гылым, 304 с. Яковлев Г.Ф., Авдонин В.В., Гончарова Т.Я. и др. (1984) Палеовулканологический анализ колчеданоносных провинций (на примере Рудного Алтая). М.: МГУ, 193 с.

Юдовская Н.В. (1984) Основные закономерности в формировании колчеданно-полиметаллических руд месторождений Зыряновского района. Известия АН КазССР. Серия Геологическая. (5), 37-45.

Audétat A. (2019). The metal content of magmatic-hydrothermal fluids and its relationship to mineralization potential. *Economic Geology*. 114(6), 1033-1056.

Akinfiev N.N., Vikentyev I.V. (2020). Physicochemical modeling of ore formation at the gold and volcanogenic massive sulfide deposits in the Northern Urals. *Geochem. Int.* 58(13), 1437-1442.

Chiaradia M., Konopelko D., Seltmann R., Cliff R.A. (2006). Lead isotope variations across terrane boundaries of the Tien Shan and Chinese Altay. *Mineralium Deposita*. **41**(5), 411-428.

Chugaev A.V., Chernyshev I.V., Ratkin V.V., Gonevchuk V.G., Eliseeva O.A. (2020). Contribution of crustal and mantle sources to genesis of Sn, B and Pb-Zn deposits in South Sikhote-Alin subprovince (Russian Far East): Evidence from high-precision MC-ICP-MS lead isotope study. *Ore Geology Reviews.* **125**, 103683.

Chugaev A.V., Vanin V.A., Chernyshev I.V., Shatagin K.N., Rassokhina I.V., Sadasyuk A.S. (2022). Lead Isotope Systematics of the Orogenic Gold Deposits of the Baikal-Muya Belt (Northern Transbaikalia): Contribution of the Subcontinental Lithospheric Mantle in Their Genesis. Geochem. Int., Online First.

Cohen K.M., Finney S.C., Gibbard P.L., Fan J.-X. (2019) The ICS International Chronostratigraphic Chart. *Episodes*. 36, 199-204.

Dobretsov N.L., Berzin N.A., Buslov M.M. (1995) Opening and tectonic evolution of the Paleo-Asian ocean. *Int. Geology Review.* **37**(4), 335-360.

Franklin J.M., Gibson H.L., Jonasson I.R., Galley A.G. (2005) Volcanogenic massive sulfide deposits. *Economic Geology*. **100**, 523-560.

Grebennikov A.V., Khanchuk A.I. (2021) Pacific-type transform and convergent margins: igneous rocks, geochemical contrasts and dicriminant diagrams. *Int. geology review.* **63**(5).

https://doi.org/10.1080/00206814.2020.1848646

Kamenov G., Macfarlane A.W., RiciputiL. (2002). Sources of Pb in the San Cristobal, Pulacayo, and Potosi mining districts, Bolivia, and a reevaluation of regional ore Pb isotope provinces. *Econ. Geol.* **97**, 573-592.

Kamenov G.D., Perfit M.R., Jonasson I.R., Mueller P.A. (2005). High-precision Pb isotope measurements reveal magma recharge as a mechanism for ore deposit formation: Examples from Lihir Island and Conical seamount, Papua New Guinea. *Chemical geology*. **219**(1–4), 131-148.

Kramers J.D., Tolstikhin I.N. (1997). Two terrestrial lead isotope paradoxes, forward transport modelling, core formation and the history of the continental crust. *Chemical geology*. 139(1-4), 75-110.

Kuibida M.L., Murzin O.V., Kruk N.N., Safonova I.Y., Sun M., Komiya T., Wong J., Aoki S., Murzina N.M., Nikolaeva I., Semenova D.V., Khlestov M., Shelepaev R.A., Kotler P.D., Yakovlev V.A., Naryzhnova A.V. (2020) Whole-rock geochemistry and U-Pb ages of Devonian bi-

modal-type rhyolites from the Rudny Altai, Russia: Petrogenesis and tectonic settings. *Gondwana Research.* **81**, 312-338.

Lobanov K., Yakubchuk A., Creaser R. (2014) Besshi – type VMS deposits of the Rudny Altai. *Econ. Geology.* **109**, 1403-1430.

Rehkämper M., Halliday A.M. (1998). Accuracy and longterm reproducibility of Pb isotopic measurements by MC-ICP-MS using an external method for correction of mass discrimination. *Int. J. Mass Spec.* **181**, 123-133.

Simonov V.A., Gaskov I.V., Kovyazin S.V. (2010). Physicochemical parameters from melt inclusions for the formation of the massive sulfide deposits in the Altai–Sayan Region, Central Asia. *Australian J. Earth Sciences.* **57**, 737-754.

Shanks W.C.P., Koski R.A., Mosier D.L., Schulz K.J., Morgan L.A., Slack J.F., Ridley W.I., Dusel-Bacon C., Seal R.R., Piatak N. (2012) Volcanogenic massive sulfide occurrence model: Chapter C in Mineral deposit models for resource assessment. In USGS Scientific investigations Report by Eds W.C. Pat Shanks III and Roland Thurston. 345 p. Standish C.D., Dhuime B., Chapman R.J., Hawkesworth C.J.,

Pike A.W.G. (2014) The genesis of gold mineralisation hosted by orogenic belts: a lead isotope investigation of Irish gold deposits. *Chem. Geol.* **378–379**, 40-51. Stacey J.S., Kramers I.D. (1975) Approximation of terrestrial lead isotope evolution by a two-stage model," *Earth Planet. Sci. Lett.* **26**(2), 207-221.

Starostin V.I., Vikent'yev I.V., Sakiya D.R. (1989). Conditions of formation and transformation of massive sulfide deposits in the Kedrovka-Butachikha zone of the Rudnyy Altay. *International Geology Review.* **31**(3), 297-305.

Taylor S.R., McLennon S.M. (1985). *The continental crust: its composition and evolution*. Oxford: Blackwell Sci. Publ. 312 p.

Vikentyev I.V., Simonov V.A., Borisova A.Y., Karpukhina V.S., Naumov V.B. (2013). Volcanic-hosted massive sulfide deposits of the Urals, Russia: Evidence for a magmatic contribution of metals and fluid. *In: Mineral deposit research for a high-tech World*. Jonsson E., Ed. Uppsala, 1526-1529.

Vikentyev I.V., Belogub E.V., Novoselov K.A., Moloshag V.P. (2017) Metamorphism of volcanogenic massive sulphide deposits in the Urals. Ore geology. *Ore Geology Reviews*. **85**, 30-63.

Zartman R.E., Doe B.R. (1981). Plumbotectonics – the model. *Tectonophysics*. **75**, 135-162.

Zindler A., Hart S. (1986). Chemical geodynamics. *Annu. Rev. Earth Planet. Sci.* **14**, 493-571.

ОСОБЕННОСТИ СОСТАВА И ВОЗМОЖНЫЕ МЕХАНИЗМЫ ОБРАЗОВАНИЯ ФЛОГОПИТОВОГО ПЕРИДОТИТА АРХЕЙСКОГО ВОЗРАСТА В ГНЕЙСОЭНДЕРБИТАХ БУГСКОЙ ГНЕЙСО-ГРАНУЛИТОВОЙ ОБЛАСТИ УКРАИНСКОГО ЩИТА

© 2023 г. С. Б. Лобач-Жученко^{а, *}, Ш. К. Балтыбаев^{а, b}, Ю. С. Егорова^а, А. В. Юрченко^а

^аИнститут геологии и геохронологии докембрия РАН, наб. Макарова, д. 2, Санкт Петербург, 190034 Россия ^bCaнкт-Петербургский государственный университет — Институт наук о Земле,

Университетская наб., д. 7, Санкт Петербург, 199034 Россия

**e-mail: sb@ipgg.ru* Поступила в редакцию 13.06.2022 г. После доработки 16.01.2023 г. Принята к публикации 16.01.2023 г.

Рассмотрены минералогия, геохимия, особенности геологического положения и строения линзы флогопитового перидотита в гнейсоэндербитах архейского возраста в пределах Бугской гнейсо-гранулитовой области Украинского щита. Геохимические особенности изученных перидотитов и минералов свидетельствуют о сложной истории формирования линзы. К ранним событиям можно отнести кристаллизацию из расплава предположительно пикритового состава ассоциации оливин + шпинель (Al-хромит) с образованием кумулата, и кристаллизацию клинопироксена. Есть признаки гибридизации расплава материалом вмещающего гнейсоэндербита. Кристаллизация ортопироксена происходит позднее и часто с замещением им клинопироксена. Кристаллизация флогопита, скорее всего, связана с флюидной активностью и ростом потенциала калия во флюиде. В последующем наложенные пластические деформации и синхронный гранулитовый метаморфизм сильно повлияли на минеральный и химический состав перидотитов и ортопироксенитов. Последние изменения пород и минералов вызваны регрессивным метаморфизмом, а также локально-проявленным рассланцеванием пород.

Ключевые слова: перидотиты, мантия, Fe/Mg отношение, оливин, флогопит, архей, Украинский щит **DOI:** 10.31857/S0016752523060067, **EDN:** FIJMWQ

введение

Изучение включений ультрамафитов в гнейсах древней континентальной коры является важным элементом реконструкции мантийного магматизма в раннем докембрии. Сравнительно хорошо изучены мантийный магматизм и образование коматиитовых серий в гранит-зеленокаменных структурах архея, в то время как роль мантийного материала (продуктов магматизма и реститов мантии) в строении и развитии гранулито-гнейсовых структур раннего докембрия исследована значительно меньше.

Изучение U-Pb и Lu-Hf систем детритовых цирконов показало, что в раннем докембрии было несколько этапов переработки континентальной коры, а также внедрения мантийного материала (Griffin et al., 2014). Древний мантийный материал обычно сильно переработан и чаще всего сохранился в виде небольших будин или иных включений в кислом материале коры. Однако изучение геологии и состава таких включений позволяет не только констатировать присутствие мантийного вещества в составе коры, но также помогает подойти к расшифровке механизмов их попадания в кору, позволяет оценить последовательность деформаций и метаморфизма пород гранулито-гнейсовых областей.

Наше более раннее изучение мафит-ультрамафитовых включений в гнейсоэндербитах Бугской гнейсо-гранулитовой области выявило их многообразие: они различаются по составу, внутреннему строению, по соотношению с выделенными этапами деформаций, изотопному возрасту. Были выделены древнейшие (3.66 млрд лет) включения, отнесенные к метабазальтам (Балтыбаев и др., 2014; Лобач-Жученко и др., 2014); плутонические породы — серпентинизированные гарцбургиты, более древние, чем наиболее ранние выделенные деформации в регионе (D_{n+1}); ортопироксениты с возрастом 3.37 млрд лет (Лобач-Жученко и др., 2012) и сложные тела мафитов неустановленного возраста (Лобач-Жученко и др., 2017, 2022).

Объектом настоящего изучения стало включение флогопитового перидотита, которое представляет интерес благодаря нескольким минералого-геохимическим характеристикам, отличающим его от других включений. Во-первых, включение сложено тремя типами пород, взаимоотношения которых видны в обнажении. Во-вторых, оно характеризуется повышенным содержанием Ni при пониженной магнезиальности и необычно высоким Ni/Cr отношением. К тому же, породы включения содержат флогопит, который является индикатором присутствия воды и повышенного содержания калия в мантии. Большая часть отмеченных особенностей отражает сложные петрологические процессы, определившие современное строение и состав изучаемого включения перидотита. Учитывая сказанное, главной задачей данной работы была минералого-геохимическая характеристика указанного включения и анализ особенностей состава пород и минералов, сравнение с ультрамафитами различного геологического положения с целью разработки наиболее адекватной модели генезиса пород перидотитового включения.

АНАЛИТИЧЕСКИЕ МЕТОДЫ

Содержание главных элементов пород определено методом мокрой химии в аналитической лаборатории Геологического института Кольского научного центра РАН (г. Апатиты). Редкие элементы в породе измерены в лаборатории аналитического центра Карельского научного центра РАН (г. Петрозаводск); методика и точность измерений рассмотрены в работе (Светов и др., 2015).

Электронно-микроскопическое изучение минералов выполнено в ИГГД РАН (г. Санкт-Петербург) на электронном микроскопе JSM-6510LA с энергодисперсионным спектрометром JED-2200 при ускоряющем напряжении 20 кВ, токе 1.5 нА с ZAF-методом коррекции матричных эффектов. Использовались стандарты: Si, Mg, Fe – оливин, Al – керсутит, Ca – диопсид, Na – жадеит, К – ортоклаз, Mn – спессартин, Ti – TiO, Ni и Cr – металлы. Состав минералов части образцов измерен на электронно-зондовом микроанализаторе JXA-8230 с кристаллами ТАР, LIF, РЕТ при ускоряющем напряжении 20 кВ, токе на цилиндре Фарадея 300 нА. Применялись стандарты М.А.С. Ltd: оливин (Si и Mg), оливин-гортонолит (Fe), ортоклаз (Al), диопсид (Ca), спессартин (Mn), TiO₂, чистые металлы Cr и Ni.

Содержание редких элементов в минералах определено на ионном микрозонде Cameca IMS-4f (г. Ярославль) по методике (Batanova et al., 1998; Portnyagin et al., 2008). Каждый анализ представляет собой среднее по трем измерениям, размер аналитического кратера около 20 мкм. Содержание элементов рассчитано по интенсивностям вторичных ионов, нормализованных к 30 Si⁺ (Jochum et al., 2000, 2007). Стандарт стекла NIST-610 (Rocholl et al., 1997) использовался для настроек на массы ионов. Погрешность измерений не превышала 10% для содержаний свыше 1 ррт и 20% для 0.1–1 ррт.

ГЕОЛОГИЧЕСКАЯ ПОЗИЦИЯ ЛИНЗЫ ПЕРИДОТИТА, СОСТАВ И ВОЗРАСТ

Включение перидотита UR17/2 находится (рис. 1, 2) на северном борту карьера "Одесский" (48°13'56" N, 29°59'13" Е) и представляет собой небольшую (~0.5-5.5 м) линзу внутри палеоархейских ($3755 \pm 6 - 3768 \pm 6$ млн лет, Бибикова и др., 2013) тоналитовых ортогнейсов, метаморфизованных ~3.6 млрд лет назад в условиях гранулитовой фации (Lobach-Zhuchenko et al., 2017) в составе Бугского гранулито-гнейсового комплекса юго-западной части Днестровско-Бугской провинции Украинского щита (рис. 1, врезка). Гнейсоэндербиты содержат кроме мафитов и ультрамафитов включения метаморфических пород – кислых метаосадков (кварцитов) и кристаллосланцев. Преобладают в метаморфических толщах гранат-пироксеновые и двупироксеновые кристаллосланцы гранулитовой фации (Балтыбаев и др., 2014; Лобач-Жученко и др., 2018а).

Линза находится внутри субширотной зоны сдвиговых деформаций (Лобач-Жученко и др., 2018а). Ориентировка длинной оси линзы C3 327° с погружением под углом 77°, что соответствует линейности флогопита в краевой перидотитовой части линзы (C3 337° угол ~71°) и в кайме ортопироксенита (C3 321°, угол 68°). Линейность гнейсоэндербитов у контакта и в породах линзы практически такие же (C3 325°, угол 76°).

Проявленные во включении и во вмещающих гнейсоэндербитах структуры были образованы в сдвиговой зоне благодаря деформациям поздней стадии, зафиксированной временем перекристаллизации циркона в интервале 2785–2715 млн лет (Лобач-Жученко и др., 2018б).

Рассмотрение включения флогопитового перидотита как фрагмента дайки исходит из формы и ориентировки линзы, ее симметричном внутреннем строении и присутствии, как будет показано ниже, каймы ортопироксенита — продукта взаимодействия расплава с вмещающим гнейсоэндербитом.

Центральная часть линзы сложена лерцолитом, а краевые части — гарцбургитом (рис. 2). На контакте с гнейсоэндербитом в полосе шириной около 10 см развит флогопитовый ортопироксенит. В гнейсоэндербитах в непосредственном контакте с ортопироксенитом в зоне шириной в 2–3 см наблюдается скопление лейкократового

ЛОБАЧ-ЖУЧЕНКО и др.

Рис. 1. (а) Геологическая карта раннедокембрийских образований района по материалам ПГО "Севукргеология" и Завальевского графитового комбината, с упрощениями. 1 -карбонатные породы; 2 -метакварциты; 3 -основные породы (мафические гранулиты, амфиболиты, габбро-амфиболиты); 4 -граниты, 5 -эндербиты, чарнокиты, мигматиты; 6 -разрывные нарушения. На врезке: схема строения Украинского щита. Провинции: ВП – Волынская, РТП – Россинско-Тикическая, ДБП – Днестровско–Бугская, СПП – Среднеприднепровская, ПП – Приазовская. КП – Курская и зоны: ГЗ – Голованевская, КЗ – Криворожская, ОПЗ – Орехово–Павлоградская, Границы провинций и зон даны по (Щербак и др., 2008). 6) Схема геологического строения северной части карьера "Одесский". Архей (1-3): 1 - кристаллосланцы (метавулканиты), кварциты, гранатовые, гранат-пироксеновые и гранат-магнетитовые кварциты, 2 - гнейсоэндербиты, 3 - положение изученной линзы и номер, Протерозой: 4 - дайки трахибазальтов и метагаббро. Ориентировка гнейсовидности (5, 6): $5 - S_{n+1}, 6 - S_{n+2}$; 7 - предполагаемая ориентировка простирания толщ; 8 - номера обнажений, упоминаемых в тексте.

Рис. 2. Обнажение с перидотитовой линзой в гнейсоэндербитах (вертикальная стенка). "а" – строение линзы с указанием места отбора образцов и их номеров, "б" и "в" – фотографии контактов линзы с вмещающим гнейсоэндербитом. *I* – вмещающие гнейсоэндербиты, *2* – перидотитовая часть линзы, состоящая из лерцолита в центре с нерезким переходом в гарцбургит к краю, *3* – кайма из флогопитового и паргаситового (UR17/2-4) ортопироксенита, *4* – участки контактов пород на фотографиях "б" и "в", *5* – участки отбора серии проб и их номера (I-III): I – (UR17/2-2, UR17/2-2a, UR17/2-2b, UR17/2-3, UR17/2-3a, UR17/2-3b, UR17/2-3v), II – (UR17/2-A, UR17/2-B, UR17/2-B, UR17/2-Г), III – (UR17/2-2I, UR17/2-2II, UR17/2-2III, UR17/2-2IV, UR17/2-2IV, UR17/2-2V), *6* – места отбора отдельных образцов и их номера. На фотографиях сокращенные названия пород: *Hzb* – гарцбургит, *Opt* – ортопироксенит, *End* – гнейсоэндербит.

573

Рис. 3. Микрофотографии лерцолита (а, б), гарцбургита (в), ортопироксенита (г) из линзы UR17/2. Фотографии (а, в, г) сделаны в проходящем свете, (б) – в обратно-отраженных электронах (BSE).

материала с преобладанием кварца и альбит-олигоклаза (рис. 2в).

В верхней части линза выклинивается, эта ее часть целиком преобразована метаморфизмом и деформациями и сложена паргаситовым ортопироксенитом (рис. 2а).

СОСТАВ ПОРОД И МИНЕРАЛОВ

Флогопит-шпинелевый лерцолит представляет собой среднезернистую породу с аллотриоморфнозернистой структурой со слабой листоватостью (рис. 3а, 3б). Модальный состав UR17/2: $Ol \sim 63$ (здесь и далее — в об. %, если не указано иное, все сокращения минералов в (Приложение табл. Д3), $Opx \sim 16$, $Cpx \sim 12$, $Phl \sim 9$, Mgt (Spl) ~ 0.3 . Вторичные минералы — серпентин, гематит, доломит. В акцессорных количествах — апатит, пентландит, халькопирит, ильменит.

Флогопит-шпинелевый гарцбургит содержит: $Ol \sim 68$, $Opx \sim 19$, $Cpx \sim 3$, $Phl \sim 10$, $Mgt \sim 0.5$, $Spl \sim 2$. От лерцолита отличается меньшим количеством клинопироксена и внешне — сильным катаклазом (рис. 3в), который в краевых частях линзы проявлен значительно сильнее, чем в ее центре. Из вторичных минералов отмечается серпентин в небольшом количестве.

Флогопит-шпинелевый лерцолит и флогопитшпинелевый гарцбургит при сходном с РМ со-

ГЕОХИМИЯ том 68 № 6 2023

держании MgO характеризуются высоким содержанием FeO, пониженной величиной #mg и повышенным содержанием Co, Cu, Zn, (табл. 1). Высокое содержание Ni при низком содержании Cr обеспечило высокое Ni/Cr отношение, достигающее 4.

Лерцолит отличается от гарцбургита существенно более высокими содержаниями CaO, Sr, Y, отношением Sm/Nd, более низкими концентрациями Ti, K, Rb. Небольшая разница между лерцолитом и гарцбургитом наблюдается по REE: центр линзы (лерцолит) имеет более высокие концентрации REE в сравнении с гарцбургитом (табл. 1, 2). Хотя содержания в последнем возрастают к контакту с ортопироксенитом (рис. 4). Понижение REE в гарцбургите происходит за счет меньшего содержания *Срх*, а последующее возрастание – из-за ассимиляции эндербита (табл. 2). Обе породы, как и пироксены, характеризуются отрицательной аномалией европия.

Флогопитовый ортопироксенит — среднезернистая порода с гранолепидобластовой структурой (рис. 3г). Содержит (мас. %): *Орх* ~ 76, *Срх* ~ 0.1, *Phl* ~ 13, *Amph* ~ 7, *Mgt* ~ 2; акцессорные минералы (*Ap* + *Carb*) ~ 2 и единичные зерна пентландита, халькопирита, миллерита, пирита. В клинопироксене сохранились реликты оливина. Во флогопите и ортопироксене встречаются округлые до 2-3 мкм зерна циркона. В сравнении с гарцбур-

Vourouour	Phl лер	оцолит	F	<i>hl</i> гарцбурги	IT	Phl	ортопироксе	нит
компонент	UR17/2J	UR17/2	UR17/2-2I	UR17/2-2II	UR17/2-2III	UR 17/2-3	UR17/2-2IV	UR17/2-2V
SiO ₂	41.6	41.5	40.8	41.4	41.0	51.2	52.0	50.3
TiO ₂	0.19	0.18	0.35	0.23	0.21	0.18	0.25	0.30
Al_2O_3	1.89	1.62	1.90	1.66	1.30	3.10	2.39	3.48
FeOtat	11.1	10.4	11.4	11.1	11.3	12.5	9.66	11.0
MnO	0.17	0.18	0.19	0.18	0.18	0.29	0.23	0.27
MgO	37.5	35.6	39.1	38.9	37.9	28.0	31.4	27.8
CaO	2.14	2.65	0.04	0.69	1.09	1.77	0.31	2.17
Na ₂ O	0.06	0.10	0.10	0.09	0.09	1.00	0.13	0.18
K_2O	0.92	1.00	1.26	1.15	0.94	1.22	1.25	1.85
P ₂ O ₂	0.04	0.02	_	0.04	0.02	0.05	0.04	0.02
H.O	0.01	0.48	0.33	0.31	0.43	-	0.24	0.02
	1.05	0.40	1.05	0.31	0.45		0.24	0.27
CO ₂	1.03	0.87	1.05	0.75	0.70	_	0.70	0.04
F Cl	0.19	0.17	—	—	—	—	—	—
CI S	0.04	0.03	0.10	0.08	0.05	_	0.05	0.07
5	2 18	3 80	0.10 3.27	2 99	3.84	_	0.03	0.07
	2.18	99.0	100.2	2.99	00 /	00.3	0.82	1.52
Сумма Мо#	86	86	86	86	86	80	85	82
Li	3 40	_	3 67	3 18	2 44	_	7 24	9 39
Rb	73.0	50.0	91.8	66.9	61 7	50.9	67.1	61.0
Sr	21.0	4.03	2.50	2.43	2.78	3.53	4.04	4.28
Ba	568	381	674	550	524	382	475	460
Y	4.22	_	1.30	2.08	3.00	7.80	3.74	8.38
Zr	34.2	31.0	26.0	16.9	12.9	_	21.3	21.7
Hf	1.01	0.75	0.50	0.34	0.26	0.78	0.54	0.51
Nb	2.69	2.60	2.72	2.40	1.92	2.69	3.10	3.95
Та	0.26	0.17	0.13	0.15	< 0.1	0.15	0.19	0.25
Th	0.85	_	0.26	0.24	0.22	0.55	0.42	0.25
U	1.45	—	< 0.1	< 0.1	< 0.1	0.10	< 0.1	< 0.1
La	2.29	2.45	1.30	1.50	1.68	2.82	1.49	3.00
Ce	6.37	6.20	2.67	3.52	4.38	7.15	3.46	8.50
Pr	0.65	0.89	0.30	0.45	0.62	0.98	0.41	1.28
Nd	3.26	4.55	1.15	1.92	2.74	4.02	1.71	5.68
Sm	0.92	0.97	0.22	0.49	0.75	1.39	0.39	1.60
Eu	0.13	0.18	0.05	0.06	0.08	0.17	0.05	0.19
Gd	1.02	1.23	0.19	0.46	0.67	0.00	0.42	1.63
1b	0.19	0.22	0.03	0.07	0.12	0.23	0.08	0.28
Dy	0.79	1.25	0.18	0.40	0.60	1.45	0.56	1.09
H0 En	0.16	0.31	0.04	0.07	0.11	0.32	0.14	0.34
EI	0.41	0.83	0.13	0.19	0.28	0.80	0.44	0.87
Thi Vh	0.08	0.12	0.02	0.03	0.04	0.12	0.07	0.13
Iu	0.34	0.73	0.13	0.18	0.24	0.84	0.32	0.84
Sc	7 79	-	5 53	5 57	6 51	-	8.89	9.82
v	47 3	49.0	45 5	39.6	36.0	47 7	47 7	61.9
Ċr	729	588	661	775	950	347	861	600
Co	185	142	174	161	184	78 3	90.2	80.0
Ni	3169	2350	3680	3360	4170	_	1740	1000
Cu	58		36.9	37.9	21.2	—	32.6	26.3
Zn	130	_	150	132	149	—	136	152
Pb	3.29	3.00	<1	<1	<1	—	<1	<1
Ga	5.26	7.83	3.72	2.96	2.86	—	5.78	7.11

Таблица 1. Химический состав пород, слагающих перидотитовую линзу

Примечания. Места отбора образцов показаны на рис. 2 и 4. Содержания петрогенных оксидов элементов даны в мас. %, редких элементов – в ppm; "<" – нижний предел чувствительности метода.

Зона контактаВмещающиеКомпонентгнейсоэндербитPhl ортопироксенитгнейсоэндербитUR 17/2-AUR 17/2-BUR 17/2-BUR 17/2-ГUR17/2-1SiO252.648.256.359.161.5562.TiO20.650.Al2O33.928.7514.615.115.3316.FeO _{tot} 13.211.610.17.396.356.MnO0.080.MgO25.519.74.774.023.712.	BG38 .75 .88
Компонент <i>Phl</i> ортопироксенит гнейсоэндербит UR 17/2-A UR 17/2-Б UR 17/2-В UR 17/2-Г UR17/2-1 06- SiO2 52.6 48.2 56.3 59.1 61.55 62. TiO2 - - - - 0.65 0. Al2O3 3.92 8.75 14.6 15.1 15.33 16. FeO _{tot} 13.2 11.6 10.1 7.39 6.35 6. MnO - - - 0.08 0. MgO 25.5 19.7 4.77 4.02 3.71 2	BG38 .75 .88
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	BG38 .75 .88
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.75 .88
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $.88
Al_2O_3 3.92 8.75 14.6 15.1 15.33 16 FeO_{tot} 13.2 11.6 10.1 7.39 6.35 6.9 MnO $ 0.08$ 0.08 MgO 25.5 19.7 4.77 4.02 3.71 2	
FeO <tot< th="">13.211.610.17.396.356.MnO$0.08$$0.$MgO25.519.74.774.02$3.71$$2.$</tot<>	.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	43
MgO 25.5 19.7 4.77 4.02 3.71 2.	08
	12
$C_{3}O$ 0.71 2.83 8.08 6.38 6.91 5	15
$N_{a_2}O$ 0.09 0.59 3.43 3.44 3.51 4	49
$K_{2}O$ 1 27 3 46 0.61 0.61 0.66 0	63
\mathbf{R}_{20} 1.27 5.40 0.01 0.01 0.00 0.	.05 .76
$P_2 O_5 = 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.$.20
Cymma 97.3 95.1 97.9 96.0 98.8	40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(
KD 08.7 158 3.44 11.1 3.2 0.66 Sr 2.07 54.4 229 272 26 505	.0
Sr = 3.07 = 54.4 = 228 = 272 = 26 = 505 $P_{2} = 458 = 1200 = 270 = 420 = 562$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4
Y 6.19 9.55 23.0 16.5 19.5 12.	.4
2f 13.5 145.0 25.4 55.0 119 15/	
HI 0.39 3.37 0.98 1.51 3.28 3	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.4 つ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.1 ว
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.4 7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. /
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. - -5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.5 4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.т 3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
S_{c} 11.9 14.7 28.8 21.5 - 10	-
V 44.8 111 183 143 149 121	
Cr 558 297 150 105 93 21	
C_0 105 82.7 34.2 28.5 26 20	
Ni 2001 850 114 214 125 28	
$C_{\rm L}$ 63.6 21.0 53.6 63.5 35.7 49	
Z_{n} 188 171 104 771 726 19	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
G_a 6.0 15.7 16.4 17.6 16.2 19	.8

Таблица 2. Химический состав пород на контакте линзы с гнейсоэндербитами

Примечания. Места отбора образцов показаны на рис. 2 и 4. Образец 06-BG38 взят в 45 м от линзы UR17/2; анализ из (Shumlyanskyy et al., 2021). Содержание петрогенных оксидов элементов даны в мас. %, редких элементов – в ppm.

Рис. 4. Обобщенный профиль, демонстрирующий изменение содержания главных и редких элементов от лерцолита (в центре линзы) через зону эндо- и экзоконтакта к вмещающим гнейсоэндербитам: І – лерцолит, II – гарцбургит, III – ортопироксенит, IV – гнейсоэндербит. В правой части графика для сравнения приведен средний (*n* = 11) состав гнейсоэндербитов на удалении от контакта. В нижней части графика показаны номера проанализированных образцов (табл. 1, 2): лерцолит (UR17/2J, UR17/2), гарцбургит (UR17/2-2-I, UR17/2-2-II, UR17/2-2-III), ортопироксенит (UR17/2-2-IV, UR17/2-3, UR17/2-2-V), гнейсоэндербит (UR17/2-Б, UR17/2-B, UR17/2-Г, UR17/2-1).

гитом флогопитовый ортопироксенит содержит больше SiO₂, Al₂O₃, MnO, CaO, Na₂O, P₂O₅, Y, Hf, Nb, REE, V, Ga, меньше MgO, Cr, Co, Ni (табл. 1; рис. 4, 6a); в нем выше отношение FeO/Fe₂O₃. Химический и минералогический состав ортопироксенита меняется по мере приближения к контакту с гнейсоэндербитом (рис. 4), в том числе последовательно растет содержание всех REE и Eu-отрицательная аномалия (рис. 6a). Общей особенностью химического состава пород линзы является высокое содержание К и Rb, которое на порядок выше, чем в эндербите (рис. 4, табл. 1).

Верхняя часть линзы (рис. 2а) сложена среднезернистым паргасит-плагиоклазовым ортопироксенитом с нематобластовой структурой. По петрографическим наблюдениям содержание $Prg + Opx \ge Pl$. Содержание биотита до об. 5%. На контакте с гнейсоэндербитом присутствуют авгит и калиевый полевой шпат. Акцессорные минералы — апатит, кальцит.

В изученных породах доминируют железомагнезиальные алюмосиликатные минералы и лишь в небольшом количестве встречаются рудные.

Оливин лерцолита и гарцбургита имеет близкие составы ($Fa_{14}Fo_{86}$), образуют зерна размером 1–2 мм и содержит включения шпинели (Al-хромита). Состав оливина (Приложение, табл. Д1) при катаклазе не меняется, трещины заполнены серпентином и магнетитом. Отличительной особенностью оливина перидотитов являются высокое содержание NiO (0.42–0.49 мас. %), которое не коррелируется с его магнезиальностью (рис. 5). Оливин, в целом, имеет низкие концентрации REE, плоское распределение, с небольшим увеличением HREE (рис. 66). Небольшое увеличе-

Рис. 5. График соотношения содержания Ni и магнезиальности (содержания форстерита) оливина. *1* – оливин лерцолита линзы, *2* – оливин гарцбургита линзы, *3* – оливин их включений перидотитов Бугского комплекса (средние значения; Лобач-Жученко и др., 2018а), *4* – оливин из мантийных ксенолитов из кимберлитов в кратонах (Beard et al., 2007; Сазонова и др., 2015), *5* – оливин ксенолитов мантии в щелочных базальтах (Witt-Eickschen, O'Neil 2005; Rudnick et al., 1999), *6* – оливин коматиитов Южной Африкии и Горгоны (Sobolev et al., 2007), *7* – оливин пикритов Гавайских островов и Норильского комплекса (Sobolev et al., 2007), *8* – оливин кимберлитов (Сазонова и др., 2015). Поля кратонных и внекратонных оливинов даны по (Downes et al., 2004), линии эволюции оливина при смешении и фракционировании – по (Prelevic et al., 2013).

ние LREE имеется в лишь одном из четырех зерен (Приложение, табл. Д2).

Шпинель по составу отвечает Cr и Al-шпинелидам (рис. 7а, Приложение, табл. Д1). Магматическая шпинель (Spl 1) сохраняется в виде мелких включений в оливине лерцолита и отвечает глиноземистым алюмохромитам. Также к ранним шпинелям предположительно относятся алюмохромиты ксеноморфных зерен из межзернового пространства, некоторые из них секутся трещинами, заполненными флогопитом или доломитом (рис. 8). Реликты Spl 1 иногда имеют резорбированные края и/или Cr-Mgt-Mgt каймы. Spl 1 характеризуется повышенной железистостью #fe = $= (Fe^{+2}/(Mg + Fe^{+2})) = 68-83$, благодаря которой на диаграмме #mg (Mg/(Mg + Fe + 2) - #Cr (Cr/Cr + Al) ее составы отклоняются от области мантийных (рис. 7б), а также повышенным количеством TiO_2 , низким содержанием MnO, Fe^{+3} (Приложение, табл. Д1). Большая часть шпинели образует сложные ксеноморфные зерна (Spl 2), расположенные между породообразующими минералами или в трещинах минералов (рис. 8). Их состав варьирует от Mg-Al-шпинели (плеонаста) пикотитов до Cr-Mgt-Mgt (рис. 7а). Такой состав отражает распад первичной шпинели на Mg-Al-Zn и Cr-Fe-Ti фазы во время поздне-, постмагмати-

ГЕОХИМИЯ том 68 № 6 2023

ческих процессов; часто эти шпинели образуют сростки с сульфидами, доломитом, ильменитом, гематитом, апатитом, флогопитом. Обогащенные глиноземом шпинели встречаются вблизи контакта с ортопироксенитовой каймой, что может свидетельствовать о влиянии контаминации. Шпинель лерцолита отличается от шпинели гарцбургита меньшим содержанием Ni, что определяется меньшим содержанием Ni в породе.

Ортопироксен характеризуется повышенной железистостью (Приложение, табл. Д1), типичной для ортопироксенов основных и ультраосновных пород Украинского щита. Характерно низкое (<1%) содержание Al_2O_3 и Cr_2O_3 . Отличия ортопироксенов лерцолита и гарцбургита проявлены в несколько большем содержании в гарцбургите NiO и Cr_2O_3 . Магнезиальность ортопироксена снижается от лерцолита и гарцбургита (0.86–0.87) к ортопироксениту (0.79).

В паргаситовом ортопироксените присутствует гиперстен, #mg которого уменьшается от 0.62 до 0.56 на контакте с эндербитом. По соотношению (FeO + MgO)/Al₂O₃ (Лобач-Жученко и др., 2018а), а также диаграмме с учетом состава Са-пироксена (Rietmeijer, 1983), ортопироксен лерцолита, гарцбургита и ортопироксенита соответствуют магматическому типу, в то время как гиперстен

Рис. 6. Распределение редкоземельных элементов в породах и минералах изученной линзы. а – породы, б – оливин, в – клинопироксен и ортопироксен; г – флогопит. Нормировано на хондрит C1 (Sun, McDonough, 1989).

Рис. 7. Составы шпинели гарцбургита на диаграммах: $a - Al - Cr - Fe^{+3}$, 6 - #Cr - #mg. 1-3 - шпинели гарцбургита изученной линзы UR17/2: 1 - Spl 1 в оливине; 2 - Spl 1 из межзернового пространства; 3 - Spl 2 в разной степени преобразованные зерна; 4-7 - шпинель ультрамафитов Прибайкалья: 4 - из интрузий Западного Прибайкалья (Mekhonoshin et al., 2020), 5-7 - из Йоко-Довыренского массива (Пушкарев и др., 2004): 5 - из неконтаминированных дунитов, 6 - из контаминированных дунитов, 7 - хромититов. Пунктирные линии на "а" соединяют составы фаз зерен сложного строения. Серое поле на "6" – шпинели мантийных перидотитов и линии изоплет (Kamenetsky et al., 2001). #Cr = Cr/Cr + Al.

из паргаситового ортопироксенита находится в поле метаморфических ортопироксенов. Содержание REE в ортопироксене (и, соответственно, в ортопироксените) низкое, характерно относительно плоское распределение L- и MREE с небольшим увеличением HREE, $(La/Yb)_n = 0.016$ и четкая отрицательная аномалия Eu (рис. 6а). Последнее может быть связано с различной подвижностью Eu^{2+} и Eu^{3+} в системе при (пере)кристаллизации пироксенов в результате изменения фугитивности кислорода (Fabbrizio et al., 2021).

Клинопироксен представлен диопсидом (Приложение, табл. Д1) со средним значением #mg = 92 в лерцолите и гарцбургите; магнезиальность в ор-

Рис. 8. Фотографии пластин изученных пород на растровом электронном микроскопе. Показаны шпинели из флогопитового лерцолита – (а, б), гарцбургита – (в) и ортопироксенита – (г).

топироксените варьирует (87.6–89.7), что ниже, чем в перидотитах. Содержание Al_2O_3 и Cr_2O_3 в лерцолите и гарцбургите низкие – 1.02–0.67% и 0.22–0.08%, соответственно. В клинопироксене из ортопироксенита содержание Al_2O_3 выше: 2.4– 1.03%, а Cr_2O_3 сходно с таковым из лерцолита и гарцбургита. В клинопироксене ортопироксенита несколько увеличивается содержание Na, уменьшается Ca, Cr (Приложение, табл. Д2). Для *Срх* перидотитов характерно относительно плоское распределение REE с небольшим уменьшением HREE и отрицательной аномалией Eu (рис. 6в), как и в ортопироксене.

Слюда лерцолита, гарцбургита и ортопироксенита по соотношению Al, Fe и Mg представлена флогопитом (Приложение, табл. Д1), который образует пластинки, иногда крупные (до 400 мкм), развивается за счет пироксенов и оливина. При замещении флогопитом оливина в слюде сохраняются тонкие прожилки продуктов изменения оливина – серпентин и магнетит. Иногда сохраняется только магнетит.

Состав флогопита в разных частях линзы и различной ориентировки идентичен (Приложение, табл. Д1). Небольшие изменения наблюдается при переходе от перидотитов к ортопироксениту: увеличивается содержание Na_2O , уменьшается содержание Cr, #mg (от 92 до 88), что соответствует

уменьшению магнезиальности и содержания Cr_2O_3 в замещаемых флогопитом пироксенах. В целом, флогопиты ортопироксенитов имеют более варьирующие содержания многих элементов, чем перидотиты (Приложение, табл. Д1, Д2).

В паргаситовом ортопироксените и в эндербите слюда представлена биотитом с 3.5 мас. % TiO₂.

Амфибол присутствует в ортопироксените, развивается по пироксенам и представлен магнезиальной роговой обманкой — эденитом. В паргаситовом ортопироксените амфибол образует самостоятельные крупные зерна, состав которых меняется от Mg-паргасита в центре зерна до чермакита на краю (Приложение, табл. Д1).

Карбонат перидотитов представлен доломитом, реже железистым карбонатом; в паргаситовом ортопироксените – кальцитом.

Серпентин (антигорит) замещает оливин; совместно с магнетитом заполняет тонкие трещины в катаклазированных зернах.

Сульфиды. Среди сульфидов преобладает пентландит. Встречаются редкие сростки *Pn* и *Ccp* (Лобач-Жученко и др., 20216). Состав *Pn* перидотита с отношением Fe_{31-34} : Ni₃₃₋₃₄ по сравнению с *Pn* ортопироксенита с отношением Fe_{24-30} : Ni₃₆₋₄₁ является более высокотемпературным (Kitakaze et al., 2011). В ортопироксените пентландит заме-

щается миллеритом, а в зоне контакта с эндербитом они оба деформированы и ориентированы, как и флогопит, параллельно контакту (Лобач– Жученко и др., 2021б). В ортопироксените присутствуют единичные зерна пирита. Сульфиды замещаются окислами железа и магнетитом.

Магнетит перидотитов представлен двумя генетическими типами: Сг-магнетитом, содержащим до 5–6 мас. % Сг, Al, Ti, и магнетитом, заполняющим трещины в серпентине и не содержащим примесей других элементов. В паргаситовом ортопироксените встречается магнетит с небольшой примесью хрома.

Апатит присутствует в небольшом количестве в перидотите и ортопироксените, представлен фторапатитом (Cl – 0.25–0.62, F – 1.62–2.94 мас. %).

Циркон в виде мелких зерен встречается в ортопироксене и флогопите, а крупные зерна сами содержат включения клинопироксена, ортопироксена, плагиоклаза, флогопита, апатита. Большая часть включений минералов сильно изменена, как и содержащий их циркон. Неизмененные ортопироксен и флогопит идентичны по составу минералам ортопироксенитов. В одном из зернен циркона по данным рамановской спектроскопии диагностировано включение оливина (Лобач-Жученко и др., 2018б).

РАСЧЕТ *РТ*-ПАРАМЕТРОВ ОБРАЗОВАНИЯ И ПРЕОБРАЗОВАНИЯ ПОРОД

Для определения условий образования пород и последующего их преобразования мы использовали *PT*-оценки равновесий по множеству минеральных реакций, а также различные моно- и биминеральные геотермобарометры (табл. 3). Оценивалась также температура кристаллизации некоторых минералов в системе "расплав-минерал", принимая за состав гипотетического расплава отдельные составы изученных пород.

Необходимо отметить, что неудовлетворительная сходимость линий реакций минералов, полученная методом оценки мультиравновесий TWEEQU (Berman, 1991), показала отсутствие или нарушение химического равновесия между некоторыми главными минералами в перидотитах и ортопироксенитах. На нарушение равновесия указывал также достаточно пестрый состав некоторых минералов в пределах отдельных полированных пластин. Вместе с этим, по оценкам ряда минеральных термобарометров определенная закономерность в РТ-параметрах выявляется (табл. 3) при использовании непосредственно контактирующих или близко расположенных друг к другу минералов, не имеющих структурных и морфологических признаков неравновесных взаимоотношений. Эти оценки нами взяты как более адекватно отражающие РТ-параметры формирования и преобразования пород линзы.

Наиболее высокие температуры (~1000-1200°С, табл. 3), превышающие температуру метаморфизма окружающих пород (до 900°С, Балтыбаев и др., 2014; Lobach-Zhuchenko et al., 2017), получены по равновесиям оливина и шпинели (Wan et al., 2008), а также оливина и клинопироксена (Loucks, 1996). Эти температуры мы рассматриваем как минимальные субсолидусные, установившиеся после магматической кристаллизации этих минералов. Термометрия с привлечением оливина и шпинели показала (табл. 3) широкий диапазон значений, что связано с существованием шинелей нескольких генераций, как отмечалось выше. По шинелям (Al-хромиты) получены самые высокие значения температур – до 1272°С, но большинство других составов шпинелей в паре с оливином, показали значения температур значительно ниже (табл. 3). Низкие значения температур, полученные по этим и другим минеральным парам и разным геотермометрам (табл. 3) рассматриваются как следствие нарушения химического равновесия и/или несоответствия составов минералов условиям калибровки геотермометров.

Ортопироксен-клинопироксеновые, оливинортопироксеновые термометры, а также мономинеральные ортопироксеновые и клинопироксеновые термометры для различных, предположительно равновесных составов минералов, выявили температуры: ~750-900°С, а также ~900-1050°С (табл. 3). Если температуры ~750-900°С скорее связаны с этапом метаморфического переуравновешивания составов первично магматических минералов, в том числе метаморфизма магматического циркона (средняя температура 780°С. Лобач-Жученко и др., 2018б), то более высокие температуры могут рассматриваться как субсолидусные, установившиеся после магматической кристаллизации этих минералов. Во всяком случае, эти температуры (~900-1050°С) несколько превышают температуры метаморфизма окружающих пород (Балтыбаев и др., 2014; Lobach-Zhuchenko et al., 2017).

Значительное число оценок температур по биминеральным равновесиям выявило широкий низкотемпературный диапазон значений, соответствующий, вероятно, стадиям регрессивного преобразования пород. Однако интерпретировать каждый полученный температурный интервал представляется сложным в виду отсутствия объективных критериев достижения равновесия для использованных составов минералов.

Таким образом, по данным минеральной термометрии ассоциация *Ol* + *Spl*, вероятно, кристаллизовались при температуре выше 1000°С, но последующие метаморфические преобразования сильно нарушили химическое равновесие между этими минералами. Набор имеющихся минеральных парагенезисов (Lobach-Zhuchenko et al., 2017), отсутствие, в частности, граната, не дает возможности удовлетворительно оценить давление при

Р, кбар	Amph	Molina	I	I	I	I
	Amph-Pl	HI-BI94	I	I	I	I
	Opx-Bt	890	I	784– 813; 623–718	703– 783; 568–724	719– 782; 669–754
	Opx	<i>Opx(CpxSpl)</i> M80a	Ι	798—914; 807—854	857–911; 622	767–948
	Cpx	<i>Cpx(OpxSpl</i>) M80a	867–947; 1065	I	I	882
		<i>CpxOpx</i> P08a	Ι	I	1	882–968
	xdO-xd	CpxOpx P08	Ι	I	Ι	787– 843
$T, ^{\circ}C$	0	CpxOpx(Ol) KB90-T	I	I	I	504-522
	Ol-Opx-Spl	<i>Ol-Spl(Opx)</i> ONW87	Ι	545–605 (Al- <i>Cr</i>); 501–586 (<i>Mgt</i>)	527–566 (Pct); 527–574 (Al-Crt); 534–590 (Mgt)	835–894 (<i>Psr</i>); (<i>Psr</i>); 517–564 (<i>Pcr</i>); 595–608 (Al- <i>Cr</i> 1); 563–588 (<i>Mgr</i>)
	Ol-Cpx	Loucks	10041108	I	I	1030-
	Ю	B17	$\begin{array}{l} 1015-1100\\ (P=8);\\ 1035-1122\\ (P=12) \end{array}$	Ι	I	Ι
		TKH98	777 -831 (Psr); (Psr); ($845-733$ (Pcr); ($829-734$ ($A1-Cr$); 594 -662 (Mer)	654–729 (Al- <i>Crt</i>); (35–638 (<i>Mgt</i>)	643–695 (<i>Pct</i>); 632–698 (Al- <i>Cr</i> 1); 583–619 (<i>Mgt</i>)	984–1064 (<i>Psr</i>); 835–894 (<i>Psr</i>); 633–752 (<i>Pcr</i>); 680–707 (A1- <i>Cr</i> 1); 591–635 (<i>Mg</i> t)
	Id-Spl	BBG91	619–677 (<i>Psi</i>); 544–604 (<i>Pci</i>); 550–617 (Al-Crt); 577–633 (Mgt)	565–629 (Al- <i>Cr</i>); 546–630 (<i>Mgt</i>)	552–595 (<i>Pct</i>); 545–594 (Al- <i>Cr</i>); 589–661 (<i>Mgt</i>)	$\begin{array}{c} 866-971\\ (Psr);\\ (Psr);\\ 677-744\\ (Psr);\\ 516-612\\ (Pcr);\\ 604-633\\ (A1-C\pi);\\ 628-658\\ (Mgr)\end{array}$
		WCC08	$\begin{array}{c} 1016-1107\\ (Psr);\\ (Psr);\\ 1046-1193\\ (Pcr);\\ 1082-1249\\ (A1-Crt);\\ (A1-Crt);\\ (Fe-Cr)\\ (Fe-Cr)\end{array}$, ,	I	I
Параметр	Минеральные пары/ минералы	Образец/ инструменты	Лерцолит UR17/2	Гарцбургит UR17/2-2	Гарцбургит UR17/2-21	Гарцбургит UR17/2-2II
ГЕО	химия	том 68	№ 6 2023			

P, K6ap	ph-Pl Amph	-B194 Molina		1	1	1	30- 6-7; 3 '80;)-780	Mercier, 1980); Ol-Spl BBG91
	Opx-Bt Am	IH 06S	I	I	676– 816; 657–790	696– 897; 534–669	550- 7 984; 7 760-860 710	, <i>Opx</i> M80a (] oucks, 1996);
	Opx	Opx(CpxSpl) M80a	I	810890	845—912	778—891	1007–1027; 852–973	(dy, 1994); Cpx Cpx Loucks (L
	Cpx	Cpx(OpxSpl) M80a	096006	I	917—1042	814–937; 651	983–1156	Holland, Blun al., 2017); <i>Ol</i> -6
		<i>CpxOpx</i> P08a	I	I	772-898; 851-878	808-825; 608-688	815– 1029	Hl-Bl,94 (ssweiler et a
	xdO-xd	CpxOpx P08	_	Ι	833– 930; 869– 898	870– 896; 728– 790	837– 1042	Amph-Pl I B17 (Bus
$T, ^{\circ}C$	0	CpxOpx(Ol) KB90-T	I	I	740—870; 837—886	725–750; 568–584	866—1024; 728—841	et al., 2015); rka, 2008); <i>O</i>
	Ol-Opx-Spl	<i>Ol-Spl(Opx)</i> ONW87	Ι	I	I	I	I	lina (Molina x P08a (Puti
	Ol-Cpx	Loucks	Ι	I	I	l	I	Amph Mc $(); Cpx-Op$
	10	B17	I	I	I	I	I	лки на них: Putirka, 2008
		TKH98	I	I	I	I	I	тенты и ссы. <i>x-Орх</i> Р08 (]
	Ol-Spl	BBG91	I	I	I	I	I	ные инструм еу, 1990); <i>Ср</i>
		WCC08	I	I	I	I	I	Пользованн (Kohler, Br
Параметр	Минеральные пары/ минералы	Образец/ инструменты	Гарцбургит UR17/2-2b	Гарцбургит UR17/2-3b	<i>Ры</i> ортопи- роксенит UR17/2-3a	<i>Ры</i> ортопи- роксенит UR17/2-2IV	Руз ортопи- роксенит UR17/2-4	Примечания. Ис <i>Срх-Орх</i> КВ90-Т

582

Таблица 3. Окончание

ЛОБАЧ-ЖУЧЕНКО и др.

²⁰²³

минералообразовании. Использованный мономинеральный пироксеновый барометр (Mercier, 1980) дает завышенное давление ~25-35 кбар и выше, что связано с практическим отсутствием хрома в изученных пироксенах. Однако, принадлежность перидотитов к шпинелевой фации глубинности отвечает умеренным давлениям до ~15-20 кбар. Судя по нашим оценкам, с использованием пакетов программ "MELTS" и "PERPLEX" (как при допушении магматического генезиса минералов. так и метаморфического). давление минералообразования не превышало 10-12 кбар. Нижний предел давления минералообразования можно оценить по отсутствию плагиоклаза в минеральных парагенезисах перидотитов как не ниже 7 кбар, поскольку породы не относятся к плагиоклазовой фации глубинности.

Составы минералов из сильно дислоцированной и метаморфизованной части линзы, где образуются паргаситовый ортопироксенит (рис. 2а), позволили ограничить возможный температурный диапазон этого метаморфического преобразования. Для оценки в расчетах использовались составы амфиболов из зоны перекристаллизации линзы, т.е. непосредственно из паргаситового ортопироксенита. Амфибол-плагиоклазовые минеральные пары выявили по термометру (Holland, Blundy, 1994) температуры 710-780°С для широкого диапазона давления от 1 до 15 кбар (табл. 3). Для амфибола нижней части линзы, замещающего пироксен в флогопитовом ортопироксените и включенного в циркон, выявляется температура кристаллизации ниже 700°С (Лобач-Жученко и др., 2018б). По составу этих же амфиболов из паргаситового ортопироксенита с использованием барометра (Molina et al., 2015) получены две оценки давления: 6-7 кбар по предположительно ранним генерациям амфибола, состав которых ближе к паргаситу, и около 3 кбар – по более поздним (табл. 3). Эти оценки давления характеризуют тренд спада давления на регрессивном этапе метаморфизма пород Бугской гнейсо-гранулитовой области.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Вариации концентраций несовместимых и совместимых элементов в флогопитовом лерцолите и гарцбургите совместно с изотопными отношениями Sr, Nd, Hf (Лобач-Жученко и др., 2017), свидетельствуют о сложном генезисе пород изученной линзы. Главными особенностями состава пород включения UR17/2 являются: а) повышенная железистость, б) высокие концентрации никеля, не коррелирующие с содержанием MgO, в) высокие содержания K (K₂O > Na₂O).

Для выяснения генезиса включения UR17/2 необходимо учитывать его особенности: внутреннее симметричное зональное строение, последо-

ГЕОХИМИЯ том 68 № 6 2023

вательность минералообразования и специфические составы минералов. Отдельного внимания заслуживает природа флогопитового и паргаситового ортопироксенитов.

Для расшифровки генезиса пород необходимо сравнение их с включениями ультрабазитов в континентальной коре, представленных двумя главными типами: внутрикоровыми дифференциатами основных магм (стратиформных интрузий) и мантийных реститов.

Если сравнивать перидотиты изученной линзы с перидотитами — фрагментами расслоенных интрузий и реститами субкратонной литосферной мантии, то следует отметить нижеследующее.

Характерной особенностью расслоенных интрузий является неоднородность состава пород и минералов. Вариации железистости наблюдаются даже в прослоях внешне однородных дунитов. Например, в Сарановском ультрабазитовом комплексе аподунитовые серпентиниты и гарцбургиты имеют железистость от 12 до 18% (Штейнберг, Лагутина, 1984), а в расслоенном массиве Стольцбург в слоях дунитов и перидотитов содержание MgO варьирует от 29 до 38 вес. % (Anhaeusser, 2001). Магнезиальность перидотитов архейской расслоенной интрузии Фискенессет (ЮЗ Гренландия) варьирует от 0.74 до 0.81. Перидотиты этой интрузии рассматриваются как продукты фракционной кристаллизашии базальтового расплава, а также как самостоятельные силлы перидотитов (Polat et al., 2009). Перидотиты интрузии Фискенессет с содержанием SiO₂, равным таковому линзы UR17/2, имеет большие концентрации CaO, FeO, Al₂O₃, меньшую величину #mg = 0.80.

Близкие геохимические характеристики с перидотитами изученной линзы имеют два включения гарцбургита в ортогнейсах комплекса Итсак (ЮЗ Гренландия), которые рассматриваются как фрагменты расслоенной интрузии (Friend et al., 2002). Они идентичны с линзой UR17/2 как по составу породы в целом, так и составами оливина и ортопироксена, а отличие – в большем содержании NiO в породах линзы UR17/2. Отнесение данных двух включений гарцбургита комплекса Итсак к фрагментам расслоенного комплекса базируется только на их магнезиальности, не типичной для пород мантии (Friend et al., 2002).

Ортопироксениты линзы UR17/2 от ортопироксенитов архейских расслоенных интрузий Южной Африки (Anhaeusser, 2001) и расслоенных силлов Канады (Desharnais et al., 2000) отличаются меньшими содержаниями FeO и CaO и большими – щелочей и MgO.

Особенностью ультрамафитов расслоенных интрузий является отсутствие регрессивной серпентинизации. Указывается, что наблюдаемая серпентинизация в расслоенных массивах контролируется локальными зонами проницаемости и носит наложенный характер (Штейнберг, Лагутина, 1984). В перидотитах UR17/2 серпентинизация слабая, но затрагивает все зерна оливинов, и происходила, скорее всего, в ходе регрессивных преобразований.

Можно заключить, что перидотиты линзы UR17/2 близки к перидотитам расслоенных интрузий пониженной магнезиальностью, но принципиально отличаются постоянством состава, в том числе отношения Fe/Mg как в породах, так и в алюмосиликатных минералах.

Сравнение перидотитов линзы UR17/2 с ксенолитами мантии, которые присутствуют в кимберлитах древних кратонов, а также в вулканических поясах, представляет сложную задачу из-за вариаций составов реститов разных кратонах. Также следует иметь в виду, что основная часть информации относится к гранат-содержащим разностям ксенолитов, т.е. более глубинным породам.

Ксенолиты чаще представлены гранатовыми и, в меньшей степени, шпинелевыми лерцолитами, гарцбургитами и верлитами. Модальный состав шпинелевых перидотитов шпинель-пироксенитовой субфации (Соболев и др., 1974) близок к модальному составу перидотитов линзы UR17/2 и отличается от абиссальных перидотитов (океанической мантии) большим количеством *Орх* и меньшим *Ol*.

При сравнении состава линзы UR17/2 с реститами субконтинентальной мантии следует отметить, что повышенная железистость пород UR17/2 (#mg = 0.86) не соответствует стандартной магнезиальности (#mg = 0.926) ксенолитов литосферной мантии, установленной на многих кратонах (Boyd, 1978). В то же время, магнезиальность верхней мантии под различными кратонами варьирует. Наличие в кимберлитах кратона Каапвааль и кратона Слейв ксенолитов мантии с повышенной железистостью (Pearson et al., 2003; Коруюча et al., 1999) свидетельствует о присутствии в субкратонной литосфере участков, обогащенных железом. Для северной части кратона Слейв установлена геохимическая стратификация литосферной мантии с выделением на глубине 150 км слоя, мощностью ~50 км, обогащенного железом (с #mg 0.88) (Kopylova, Russell, 2000).

Предположение о возможном существовании в мантии различных по составу доменов, возникших в архее, высказано рядом исследователей (Vervoort, Patchett, 1996; Kamber et al., 2003; Frei et al., 2004). Гетерогенность литосферной мантии, первичная или возникшая в течение геологической истории, находит подтверждение в широкой вариации магнезиальности перидотитов различных кратонов и различных доменов одного кратона (Pearson, Witting, 2008). Тем не менее, перидотиты UR 17/2 более железистые, чем наиболее железистые реститы мантии. Соответственно, они содержат и более железистые оливин, ортопироксен, раннюю шпинель.

Для перидотитов ксенолитов с повышенной железистостью (Harte et al., 1987) предполагается, что они представляют продукты кристаллизации ранних расплавов (Simon et al., 2002). Для ксенолитов дунитов из многих трубок (Boyd, Nixon, 1978), которые отличаются от лерцолитов и гарцбургитов большей железистостью (#mg = 0.869-0.894), предполагается кумулусное образование. Близким составом с UR17/2 обладают ксенолиты верлитов из кимберлитовой трубки на Кольском полуострове (Beard et al., 2007). Ортопироксены верлитов сходны с ортопироксенами перидотитов $UR_{17/2}$ низкими содержаниями $Al_{2}O_{3}$ (<1 вес. %) и Cr_2O_3 (<0.5 вес. %), величиной #mg = 0.87, составом шпинели. На графике #mg vs Cr# (рис. 56) оливин-шпинелевые пары верлитов, как и перидотитов UR17/2, располагаются правее мантийного оливин-шпинелевого тренда OSMA (Arrai, 1994).

Шпинель верлитов, как и шпинель из пикритов Норильска (Криволуцкая, 2011), имеет повышенные содержания TiO_2 и ZnO. Преобладающим сульфидом верлитов, как и перидотитов UR17/2, является пентландит.

Повышенная железистость ультрамафитов UR17/2, как и других ультрамафитов Украинского щита, может отражать обогащенный железом состав литосферной мантии под Сарматским кратоном и тем самым не противоречить предположению о реститовой природе перидотитов линзы. Но существенным отличием химического состава перидотитов UR17/2 от реститов древней мантии является отношение Ca/Al, среднее значение которого у архейской мантии равно 0.73 (Boyd, 1989), а в лерцолите UR17/2 оно существенно выше: 1.53 и 2.21, в гарцбургитах варьирует от 1.05 до 0.03.

Включения гарцбургитов в гнейсах ЮЗ Гренландии, рассматриваемые как тектонические фрагменты мантии (обр. 42, Friend et al., 2002), отличаются от гарцбургитов UR17/2 большими концентрациями SiO₂, Al₂O₃ и MgO (#mg = 0.90) и отношением Ca/Al = 0.30, не отвечающим среднему значению перидотитов ксенолитов архейской мантии. На диаграммах Al vs Ca (Fig. 3, Boyd, 1989) фигуративные точки лерцолитов включения UR17/2 располагаются вне поля кратонных перидотитов за счет большего содержания кальция, а из трех точек гарцбургитов две расположены вблизи поля кратонных перидотитов. Гарцбургит включения ЮЗ Гренландии (№ 47; Friend et al., 2002) также находится вне поля кратонных перидотитов, но за счет большего содержания глинозема.

Пониженная магнезиальность перидотитов включения UR17/2 коррелируется с пониженной магнезиальностью оливина (Fo = 85.6), составляющего более 60% объема перидотитов линзы. Магнезиальность изученных оливинов отличает-

ся от #mg большинства оливинов ультраосновных пород, ксенолитов кратонной и более молодой мантии, расчетной #mg оливина PM, орогенных лерцолитов Альпийского пояса, абиссальных перидотитов океанического дна, содержание форстерита в *Ol* которых находится, как правило, в пределах 89–92 (Herzberg et al., 2016).

Содержание FeO в оливине зависит от коэффициента распределения (Kd^{ol/m}), который определяется содержанием FeO в расплаве, температурой, давлением и фугитивностью кислорода (Takahashi, 1978; Sugawara, 2000; Herzberg et al., 2016 и др.). Важным моментом является коэффициент распределения отношения Fe⁺²/Mg в системе "оливин-расплав" (см. обзор в статье Takahashi, 1978). Было показано, что в системе, в которой оливин равновесен с расплавом, этот коэффициент равен ~0.3 (Roeder, Emslie, 1970), что обычно и используется для оценки отношения MgO/FeO в расплаве, равновесном с оливином. В перидотите UR17/2 отношение Fe/Mg^{0l}/Fe/Mg^{порода} равно 1.25. Это означает, что оливин не равновесен с расплавом, имеющим такой же состав, как вмещающая порода; оливин равновесен с расплавом, отношение Fe/Mg которого отвечает значению 0.60-0.55. Иными словами, расплав, из которого кристаллизовался данный оливин, содержал значительно больше железа и/или меньше магния, чем в породе, в которой он находится.

Помимо железистости, отношений Fe/Mg и Ca/Al, породы линзы отличаются от ксенолитов мантии повышенными содержаниями никеля.

Таким образом, флогопитовые перидотиты UR17/2 при сходном с примитивной мантией содержании MgO характеризуются высоким содержанием FeO (11 мас. %), пониженной (0.86) величиной #mg и высоким содержанием Ni, среднее содержание которого в лерцолитах UR17/2 равно 2760 ppm, в гарцбургитах — 3737 ppm (табл. 1). Эти характеристики отличают изученные ультрамафиты от большинства других магматических и мантийных ультрамафитов (Palme, O'Neil, 2003).

Нельзя не отметить, что повышенное содержание Fe, Ni и K характерны для импактных расплавов. Экспериментальными работами установлено, что при высокоскоростном ударе последовательность испарения элементов определяется их летучестью. В результате этого происходит обогащение конденсатов летучими K_2O , Na_2O и FeO относительно умеренно летучих SiO₂, MgO и труднолетучих CaO, TiO₂ и Al₂O₃ (Яковлев и др., 1991, 2011; Яковлев, Люль, 1992; Сорокин и др., 2020). Результаты экспериментов согласуются с составами импактных расплавов Попигайской астроблемы (Kettrup et al., 2003), кратеров Брент и Ильинецкий (Dressler, Reimold, 2001) и некоторых других. Ряд ультрамафитов, связанных с импактами, например, ультрамафиты структуры

ГЕОХИМИЯ том 68 № 6 2023

Вредефорт, имеют, как и изученные нами породы, высокие отношения Ni/Cr (рис. 2 в Лобач-Жученко и др., 2021а). Но предположение об импактной природе пород линзы требует дальнейшего изучения.

Преобладающая часть никеля ультрабазитов находится в оливине. Содержание же никеля в *Ol* определяется его количеством в расплаве (Herzberg et al., 2016), коэффициентом распределения $(D_{Ni}^{Ol-melt})$, который контролируется температурой, давлением и фугитивностью кислорода (Hart, Davis, 1978; Sobolev et al., 2007; Li, Ripley, 2010; Herzberg et al., 2016) и степенью полимеризации расплава (Kushiro, Mysen, 2002).

В перидотитах изученного включения содержание Ni в оливинах варьирует от 4730 ppm в лерцолите (центр линзы) до 5612 ppm в гарцбургите (краевая часть включения); среднее значение, измеренное SIMS методом, равно 5206 ppm (Приложение, табл. Д2). Эти величины не согласуется с его магнезиальностью (Fo = 86), т. к. подобные высокие содержания Ni в Ol (от 1000 до 5000 ppm) обычны для пород с #mg > 0.89 (Sobolev et al., 2007). Оливин мантии содержит 2200–3400 ppm Ni, а магматический оливин в случае фракционирования имеет более низкие (до 800 ppm) его концентрации. Более высокие содержания, до 9000 ppm, характерны для расплавов повышенной щелочности (Foley et al., 2013).

Содержание никеля в породах линзы обусловлено количеством оливина (60% объема породы), содержащим ~0.5 мас. % Ni, и флогопитом (ок. 10% объема породы) с содержанием никеля (0.17-0.33 мас. %). Но особенностью оливина изученной линзы является отсутствие корреляции содержания Ni с его магнезиальностью (рис. 5). Установлена строгая зависимость содержания никеля в оливине от его магнезиальности, эволюционирующая от коматиитов до PM (Herzberg et al., 2016) с содержанием в перидотитах около 3000 ppm Ni. Оливины UR17/2 расположены вне тренда эволюции составов при частичном плавлении перидотитов (Herzberg et al., 2016) (рис. 5) и находятся вблизи пикритов Гавайских о-вов и Новулкано-плутонического рильского комплекса (Lobach–Zhuchenko et al., 2021). В координатах Ni ррт vs Fo%, фигуративные точки составов оливинов UR17/2 располагаются вдали от поля оливинов из ксенолитов мантии и находятся вблизи тренда смешения и фракционирования магм (рис. 5). Причиной высокого содержания Ni в изученном оливине может быть повышенное содержание в расплаве калия, повышенные отношения K2O/Na2O и K_2O/Al_2O_3 , которые обуславливают очень высокий коэффициент распределения Ni в оливин (Prelevic, Foley, 2007). Это может иметь значение, если высокое содержание калия было присуще расплаву, из которого кристаллизовался оливин.

Избыток Ni по отношению к магнезиальности отмечен, как сказано выше, для оливинов из пикритов Гавайских островов и Норильского комплекса. В качестве объяснения предложено несколько моделей: 1) особый состав источника, образованный при смешении перидотита с пироксенитом (Sobolev et al., 2007); 2) повышенное давление (Li, Ripley, 2010; Niu et al., 2011; Putirka et al., 2008); 3) увеличение Fe и Ni в результате добавления материала из ядра Земли или с границы ядро-мантия (плюмы) в мантийный источник пикритов (Рябчиков, 2003, 2009; Humayun et al., 2004). Предложенные модели объясняют высокие концентрации никеля в расплаве и, соответственно, в оливине.

Симметричное зональное строение линзы, наличие гибридной каймы ортопироксенита, обогащенной в сравнении с гарцбургитом SiO_2 , Na_2O , Al_2O_3 , присутствие в гнейсоэндербите тонкой полосы, насыщенной лейкократовым материалом, по-видимому, образованной в результате его частичного плавления на контакте с горячим расплавом, согласуются с тем, что породы линзы представляют продукт кристаллизации расплава.

Ключевым вопросом является состав исходного расплава. Гибридизация расплава материалом эндербита, имевшая место до кристаллизации ортопироксена, магнезиальность которого уменьшается при переходе от гарцбургита к ортопироксениту, затрудняют оценку состава расплава. Проверка магматической кристаллизации минералов расплавов состава лерцолита и гарцбургита UR17/2 с применением программы pMELTS 5.6.1 (Ghiorso et al., 2002) продемонстрировала, что рассчитанные последовательность кристаллизации минералов и их магнезиальность существенно отличаются от их наблюдаемых взаимоотношений в шлифах и фактического состава. Также расчеты показали, что исходный состав не соответствует перидотиту.

По данным нашего моделирования кристаллизации минералов из расплава перидотитового состава (в программе "MELTS", Asimow, Ghiorso, 1998), первые кристаллизующиеся шпинели должны иметь высокое содержание как магния, так и хрома. Это позволяет предполагать, что наблюдаемые в породах шпинели скорее являются метаморфогенными: они содержат относительно немного хрома и имеют низкую магнезиальность. Из характера замещения ранних шпинелей и соотношению их с другими минералами следует, что метаморфогенными определенно являются более железистые шпинели, которые отличаются и иным трендом составов, направленным в сторону чистого магнетита (рис. 7а).

Как отмечено выше, оливин линзы равновесен с расплавом, отношение Fe/Mg в котором находится в пределах 0.60–0.55, что типично для магм среднего-основного состава. Содержание 1.5 вес. % TiO₂ в шпинели, включенной в оливин, указывает на повышенную щелочность расплава, из которого кристаллизовались оливин и шпинель (Al-феррихромит). Хромиты с повышенным содержанием TiO₂ характерны для субщелочных и щелочных ультраосновных — основных комплексов пород. Можно предполагать, что исходный состав был близок к пикриту, в процессе кристаллизации которого кристаллизовался кумулусный оливин.

выводы

Учитывая геохимические особенности изученных перидотитов, зачастую противоречивость некоторых геохимических параметров пород и минералов, можно предварительно предложить следующую последовательность событий, определивших формирование минералов и перидотитовой линзы в целом.

Главные события происходили ~2814 ± 51 млн лет:

1) Кристаллизация из расплава предположительно пикритового состава оливина и шпинели (Al-хромита) с образованием кумулата, кристаллизация клинопироксена.

 Гибридизация расплава материалом вмещающего гнейсоэндербита.

3) Кристаллизация ортопироксена и замещение им клинопироксена.

На этапе 2785-2715 млн лет имело место:

4) Понижение температуры, появление водного флюида, обогащенного калием и кристаллизация флогопита. Одновременно происходит кристаллизация или перекристаллизация некоторых сульфидов.

5) Пластические деформации, образование сдвиговых зон и синхронный гранулитовый мета-морфизм.

6) Регрессивный метаморфизм, поздние низкотемпературные изменения минералов и локальное рассланцевание пород.

В совокупности указанные процессы определили зональное строение и вещественное разнообразие перидотитовой линзы.

Авторы весьма признательны Б.А. Базылеву (ГЕОХИ РАН) и анонимному рецензенту за ценные замечания и поставленные вопросы, работа над которыми существенно улучшила рукопись статьи. Также авторы выражают благодарность В.В. Балаганскому (ГИ КНЦ РАН), Л.М. Степанюку (ИГМР НАН Украины) за участие в полевых исследованиях, О.Л. Галанкиной (ИГГД РАН) за проведенный анализ состава породообразующих минералов.

Работа выполнена в рамках Госзаданий (темы НИР FMUW-2022-0004, FMUW-2022-0002).

ПРИЛОЖЕНИЕ

Таблица Д	[1 . X _B	анимі	ский	соста	В МИ	нера	TOB II	ерид	отитс	вой.	линз	ы UR	:17/2															
Порода Об	разец	Ми- нерал т	л <u>∘</u> №	SiO ₂	FiO ₂ A	d ₂ O ₃	FeO	4n0	MgO (CaO N	Va2O K	(20)	VIO C	r ₂ O ₃ C	ум- ма	Si	Ë	9 14	Cr	2 ⁺ Fe	3+ M	n M	g C2	Na	K	Ż	Сум ма	#Mg
PhI-Lhz UR	17/2	Ю	5* 3	9.43 t	d.l. b	.d.l.	14.19	0.13 4	15.68 b	.d.l.	n.d. r	1.d. 0	. <i>5</i> 7 I	.b.r	100 0	.986		-	- 0.	269 0.0	0.00	03 1.7	- 0.	Ι	Ι	0.012	3	0.86
Phi-Lhz UR	17/2	01	11 3	39.31 E	h.d.l. b	.d.l.	14.84 (0.32 4	15.33 b	.d.l.	n.d. r	1.d. 0	.21 r	.p.r	100 0	.985			- 0.	281 0.0	30 0.00	07 1.6	- 6	Ι	Ι	0.00	ŝ	0.86
Phi-Lhz UR	17/2	01	13 3	39.77 t	h.d.l. b	.d.l.	13.99	0.10 4	15.63 b	o.d.l.	n.d. r	1.d. 0	.51 r	.p.r	100 0	.994		-	- 0.	281 0.0	0.0	02 1.7	- 0	Ι	Ι	0.010	З	0.86
Phi-Lhz UR	17/2	01	15 3	39.64 E	h.d.l. b	.d.l.	13.68	0.11 4	15.98 b	o.d.l.	n.d. r	ı.d. 0	.60 r	.p.r	100 0	989.		1	- 0.	264 0.0	0.0	02 1.7	-	Ι	Ι	0.012	З	0.87
Phi-Lhz UR	17/2	01	17 3	39.58 t) I.b.	0.05	14.69	0.15 4	15.03 b	.d.l.	n.d. r	1.d. 0	.51 r	.b.t	100 0	.993	<u> </u>	002	- 0.	295 0.0	0.0	03 1.6		I	Ι	0.010	3	0.85
PhI-Lhz UR	17/2	Ю	24 4	40.83 E	h.d.l. b	.d.l.	14.58 (0.07	14.23 b	.d.l.	n.d. r	ı.d. 0	.29 r	.p.r	100 1	.027	1	-	- 0.	307	- 0.0	02 1.6	9	Ι	Ι	0.00	3	0.84
Phi-Lhz UR	17/2	01	27 3	39.83 t	h.d.l. b	.d.l.	14.50	0.13 4	14.98 b	o.d.l.	n.d. r	1.d. 0	.56 r	.b.r	100 0	666.		1	- 0.	303 0.(0.0	03 1.6		I	Ι	0.011	З	0.85
PhI-Lhz UR	17/2	01	30 3	39.84 E	h.d.l. b	.d.l.	14.44 ().08 4	t5.13 (0.16	n.d. r	ı.d. 0	.35 r	.d.	100 0	866.		1	- 0.	299 0.0	03 0.00	02 1.6	- 6	Ι	Ι	0.007	3	0.85
PhI-Lhz UR	17/2	01	34 3	39.87 E	h.d.l. b	.d.l.	14.65	0.26 4	14.69 b	.d.l.	n.d. r	ı.d. 0	.52 r	.d.	100 1	.002		1	- 0.	308	- 0.0)6 1.6	-	Ι	Ι	0.011	3	0.84
Phi-Lhz UR	17/2	01	35 3	39.93 E	, I.b.	0.17	14.25	0.06 4	14.96 b	.d.l.	n.d. r	ı.d. 0	.63 r	.p.r	100 1	.001	<u> </u>	005	- 0.	- 662	- 0.0	01 1.6	8	Ι	Ι	0.013	3	0.85
Phi-Lhz UR	17/2	01	44	40.26 t	h.d.l. b	.l.b.c	13.83	0.14 4	45.19 b	.d.l.	n.d. r	ייd. 0	1.57 I	.b.r	100 1	.008		1	- 0.	- 062	- 0.0	03 1.6	- 6	I	I	0.012	3	0.85
PhI-Lhz UR	17/2	01	54 3	39.74 t	h.d.l. b	.d.l.	14.13	0.15 4	15.44 b	.d.l.	n.d. r	1.d. 0	.54 r	.d.	100 0	.995	1	1	- 0.	285 0.0	0.0	03 1.7	0	I	Ι	0.011	Э	0.86
Phi-Lhz UR	17/2	01	30* 3	39.14 E	.d.l. b	.d.l.	15.00	0.13 4	15.03 b	.d.l.	n.d. r	1.d. 0	.70 r	.p.r	100 0	.983	1	-	- 0.	280 0.0	35 0.00	03 1.6	6	Ι	I	0.014	ŝ	0.86
Phi-Lhz UR	17/2	01	37* 4	40.10 E	h.d.l. b	.d.l.	14.38	0.05 4	15.09 b	.d.l.	n.d. r	1.d. 0	.39 I	.p.r	100	.005		-	- 0	301	- 0.0	01 1.6		I	I	300.0	3	0.85
Phi-Lhz UR	17/2	01	38* 4	40.07 E	i.d.l. b	.l.b.c	14.66	0.15 4	14.42 b	.d.l.	n.d. r	1.d. 0	т 69.	.b.t	100	.008			- 0.	. 608	- 0.0	03 1.6		Ι	I	0.014	ŝ	0.84
Phi-Lhz UR	17/2	01*	31 4	t0.27 ().02 b	.d.l.	14.37	0.16 4	16.25 b	.d.l.	n.d. r	ı.d. 0	.45 0	.01	102 0	.992 0.	000	0.0	000 0.	282 0.0	0.0	03 1.7	0	Ι	Ι	0.00	33	0.85
PhI-Lhz UR	17/2	01*	32 4	10.39 ().03 t	.d.l.	14.45	0.18 4	15.76 b	o.d.l. t	o.d.l. 0	0 10.0	.40 b.	.d.l.	101 1	.000	001	1	- 0.	- 662	- 0.00	04 1.6	- 6	I	0.00	300.0	ŝ	0.85
Phi-Lhz UR	17/2	01*	35 4	10.93	J.01 b	.d.l.	12.77	0.13 4	17.54 (0.02	0.01 b.	.d.l. 0	.46 0	10.0	102 0	.998 0.	000	0.	000 0.	257 0.0	04 0.0	03 1.7	3 0.00	1 0.00	-	0.00	3	0.87
Phi-Lhz UR	17/2	01*	42 4	40.12 E	h.d.l. b	.d.l.	13.68 (0.24 4	16.80 b	o.d.l. t	o.d.l. 0	0.02 0	.42 b.	.d.l.	101 0	.987	1	-	- 0.	256 0.0	0.00	05 1.7		Ι	00.00	1 0.008	ŝ	0.86
Phi-Lhz UR	17/2	01*	46	40.92 F	i.d.l. b	.l.b.c	13.68	9.27 4	16.39 b	o.d.l. t	o.d.l. 0	0 10.0	.42 b.	.d.l.	102 1	.005	1	-	0. 	- 281	- 0.0(06 1.7	- 0	Ι	0.00	300.0	ŝ	0.86
Phi-Lhz UR	17/2	01*	47 4	10.30	10.C	.d.l.	13.40	0.19	46.13 b	o.d.l. t	o.d.l. 0	01 0	1.41 b.	.d.l.	100 1	.001 0.	000		0.	278 -	- 0.00	04 1.7	1	I	0.00	300.0	ŝ	0.86
PhI-Lhz UR	17/2	01*	55 4	40.53 t	h.d.l. b	.l.b.c	13.93 (0.22 4	16.57 (0.04 t	o.d.l. 0	0 10.0	.39 b.	.d.l.	102 0	.995		-	- 0.	276 0.0	010 0.00	05 1.7	0 0.00	-	0.00	300.0	ŝ	0.86
Phi-Lhz UR	17/2	01*	58 4	10.53 ().02	0.01	13.52 (0.22 4	16.60 (0.01	0.01 b.	.d.l. 0	.44 0	0.02	101 0	.997 0.	000 0.	000 0.	000 0.	274 0.0	05 0.00	05 1.7	1 0.00	0 0.00	-	0.00	3	0.86
Phi-Lhz UR	17/2	01*	59 4	40.40 t).d.l.	0.01	14.05	0.22 4	16.00 (0.00 t	o.d.l. b.	.d.l. 0	.41 0	.00	101	000	<u> </u>	000	- 0.	290 0.0	0.0	05 1.7	0	Ι	I	300.0	ŝ	0.85
Phi Hzb UR	17/2-2	01	7* 4	10.00 E	.d.l. b	.l.b.c	14.48 t	o.d.l. 4	15.21 b	.d.l.	n.d. r	1.d. 0	.31 r	л.d.	100	.002	1		- 0.	303		. 1.6	- 6	Ι	I	0.00	ŝ	0.85
PhI Hzb UR	17/2-2	Ю	14* 4	10.05 E	.d.l. b	.d.l.	13.99 E	o.d.l. 4	15.34 b	.d.l.	n.d. r	ı.d. 0	.39 r	.p.r	100	.003		I	- 0.	293	 	. 1.6	- 6	Ι	I	300.0	ŝ	0.85
Phi Hzb UR	17/2-2	01	36* 3	39.58 t	.d.l. b	.d.l.	14.89 t	.d.l.	45.13 b	.d.l.	n.d. r	1.d. 0	.40 r	J.d.	100 0	.993	1	1	0. 	297 0.0	- 115	. 1.6	6	Ι	I	0.008	ŝ	0.85
PhI Hzb UR	17/2-2	О	38* 4	40.46 t) .l.b.(0.05	14.46 t	o.d.l. 4	14.70 b	.d.l.	n.d. r	1.d. 0	.33 r	.b.r	100 1	.016	- 0.	002	- 0.	304 -		. 1.6		Ι		0.007	3	0.85

ОСОБЕННОСТИ СОСТАВА И ВОЗМОЖНЫЕ МЕХАНИЗМЫ ОБРАЗОВАНИЯ

ГЕОХИМИЯ

том 68 № 6

2023

Продолжение
Д1.
Таблица,

‡Mg	0.85	0.86	0.86	0.86	0.86	J.87	0.85	0.86	0.89	0.86	0.86	0.86	0.86	0.86	0.86	0.87	0.87	0.87	3.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	7 8 C
Сум- ма	3	3	e S	ŝ	ŝ	3	ŝ	ŝ	ŝ	ŝ	ŝ	e S	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	е С	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	
ž	0.008	0.002	0.003	0.005	0.013	0.002	0.003	0.006	0.012	0.005	0.006	0.004	0.003	0.007	0.003	0.002	0.002	0.003	0.010	0.010	0.009	0.011	0.009	0.010	0.009	0.010	0.010	0.009	0.004
К	I	I	I	Ι	Ι	Ι	I	I	Ι	Ι	Ι	I	Ι	Ι	Ι	Ι	Ι	Ι	0.000	Ι	0.000	0.000	Ι	Ι	I	Ι	0.000	Ι	I
Na	I	I	Ι	I	Ι	Ι	Ι	I	Ι	Ι	Ι	Ι	I	Ι	Ι	Ι	Ι	Ι	0.001	Ι	0.001	0.001	Ι	Ι	Ι	Ι	Ι	Ι	I
Ca	Ι	I	I	Ι	I	Ι	Ι	I	Ι	I	Ι	0.001	Ι	Ι	Ι	Ι	Ι	Ι	0.000	0.000	Ι	0.001	0.000	Ι	Ι	I	0.000	0.000	Ι
Mg	1.69	1.71	1.71	1.71	1.70	1.72	1.70	1.71	1.74	1.70	1.71	1.70	1.72	1.70	1.71	1.74	1.73	1.75	1.72	1.69	1.71	1.73	1.71	1.71	1.72	1.72	1.71	1.72	1.71
Mn	0.003	I	0.002	0.002	0.003	0.003	0.002	0.002	Ι	Ι	0.002	0.002	0.003	0.005	0.002	Ι	Ι	Ι	0.004	0.004	0.005	0.004	0.004	0.004	0.005	0.004	0.003	0.004	0.001
Fe^{3+}	I	T	I	I	0.009	0.008	I	0.017	0.040	Ι	Ι	I	I	Ι	Ι	Ι	Ι	0.001	0.017	Ι	0.025	0.042	0.018	Ι	0.019	0.013	0.018	0.019	0.021
Fe ²⁺	0.298	0.287	0.276	0.278	0.278	0.267	0.289	0.277	0.225	0.279	0.271	0.275	0.274	0.273	0.274	0.255	0.253	0.252	0.253	0.283	0.260	0.233	0.264	0.279	0.259	0.262	0.266	0.262	0.277
Ċ	Ι	I	I	I	Ι	I	I	I	Ι	Ι	Ι	I	I	Ι	Ι	Ι	Ι	Ι	000.0	000.0).000	Ι	000.0	000.0	0.001	000.0	000.0	Ι	I
R	I	0.001	0.005	0.005	Ι	0.009	0.011	0.003	Ι	0.005	0.004	I	Ι	Ι	Ι	Ι	Ι	Ι		0.001		Ι				0.000		Ι	I
Ξ	I	I	I	I	Ι	I	I	I	Ι	I	I	I	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	I	0.000	Ι	Ι	Ι	I	Ι	Ι	Ι
Si	1.001	1.000	1.008	1.000	0.996	0.991	1.000	0.990	0.980	1.010	1.005	1.016	1.005	1.018	1.014	1.008	1.020	1.000	0.992	1.007	0.988	0.979	0.991	1.001	0.990	0.993	0.991	0.991	0.990
Сум- ма	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	101	101	101	101	102	101	101	101	101	100	100
<u>3</u> 0	ď.	ď.	ď.	÷	l.	l.	l.	I.	l.	l.	l.				l.	I.	l.	l.	1	2	1	l.	2	-	~	0	_		
G12	ü.	ц.	ц.	n.e	n.6	n.6	n.6	n.c	n.c	n.6	n.c	n.d	n.d	n.d	n.c	n.c	n.c	n.c	0.0	0.0	0.0	þ.d.	0.0	0.0	0.0	0.0	0.0	b.d.	n.d
NiO Cr ₂	0.38 n.	0.08 n.	0.17 n.	0.24 n.e	0.64 n.c	0.11 n.c	0.15 n.c	0.29 n.c	0.58 n.c	0.26 n.c	0.30 n.c	0.20 n.d	0.16 n.d	0.33 n.d	0.17 n.c	0.10 n.d	0.08 n.d	0.16 n.c	0.51 0.0	0.48 0.0	0.46 0.0	0.53 b.d.	0.47 0.03	0.49 0.0	0.46 0.00	0.49 0.03	0.50 0.01	0.44 b.d.	0.19 n.d
K ₂ 0 Ni0 Cr ₂	n.d. 0.38 n.	n.d. 0.08 n.	n.d. 0.17 n.	n.d. 0.24 n.e	n.d. 0.64 n.c	n.d. 0.11 n.c	n.d. 0.15 n.c	n.d. 0.29 n.c	n.d. 0.58 n.c	n.d. 0.26 n.c	n.d. 0.30 n.c	n.d. 0.20 n.d	n.d. 0.16 n.d	n.d. 0.33 n.d	n.d. 0.17 n.c	n.d. 0.10 n.d	n.d. 0.08 n.d	n.d. 0.16 n.c	0.01 0.51 0.0	0.00 0.48 0.0	0.01 0.46 0.0	0.01 0.53 b.d.	b.d.l. 0.47 0.03	b.d.l. 0.49 0.0	b.d.l. 0.46 0.00	0.00 0.49 0.03	0.01 0.50 0.01	b.d.l. 0.44 b.d.	n.d. 0.19 n.d
Na ₂ O K ₂ O NiO Cr ₂	n.d. n.d. 0.38 n.	п.d. п.d. 0.08 п.	n.d. n.d. 0.17 n.	n.d. n.d. 0.24 n.c	n.d. n.d. 0.64 n.c	n.d. n.d. 0.11 n.c	n.d. n.d. 0.15 n.c	n.d. n.d. 0.29 n.c	n.d. n.d. 0.58 n.c	n.d. n.d. 0.26 n.c	n.d. n.d. 0.30 n.d	n.d. n.d. 0.20 n.d	n.d. n.d. 0.16 n.d	n.d. n.d. 0.33 n.d	n.d. n.d. 0.17 n.d	n.d. n.d. 0.10 n.d	n.d. 0.08 n.d	n.d. n.d. 0.16 n.c	0.01 0.01 0.51 0.0	b.d.l. 0.00 0.48 0.0	0.01 0.01 0.46 0.0	0.01 0.01 0.53 b.d.	b.d.l. b.d.l. 0.47 0.00	b.d.l. b.d.l. 0.49 0.0	b.d.l. b.d.l. 0.46 0.00	b.d.l. 0.00 0.49 0.03	b.d.l. 0.01 0.50 0.01	b.d.l. b.d.l. 0.44 b.d.	n.d. n.d. 0.19 n.d
CaO Na2O K2O NiO Cr2	b.d.l. n.d. n.d. 0.38 n.	b.d.l. n.d. n.d. 0.08 n.	b.d.l. n.d. n.d. 0.17 n.	b.d.l. n.d. n.d. 0.24 n.c	b.d.l. n.d. n.d. 0.64 n.c	b.d.l. n.d. n.d. 0.11 n.c	b.d.l. n.d. n.d. 0.15 n.c	b.d.l. n.d. n.d. 0.29 n.c	b.d.l. n.d. n.d. 0.58 n.c	b.d.l. n.d. n.d. 0.26 n.c	b.d.l. n.d. n.d. 0.30 n.d	0.04 n.d. n.d. 0.20 n.d	b.d.l. n.d. n.d. 0.16 n.d	b.d.l. n.d. n.d. 0.33 n.d	b.d.l. n.d. n.d. 0.17 n.d	b.d.l. n.d. n.d. 0.10 n.d	b.d.l. n.d. n.d. 0.08 n.d	b.d.l. n.d. n.d. 0.16 n.c	0.01 0.01 0.01 0.51 0.0	0.01 b.d.l. 0.00 0.48 0.0	b.d.l. 0.01 0.01 0.46 0.0	0.03 0.01 0.01 0.53 b.d.	0.01 b.d.l. b.d.l. 0.47 0.0	b.d.l. b.d.l. b.d.l. 0.49 0.0	b.d.l. b.d.l. b.d.l. 0.46 0.00	b.d.l. b.d.l. 0.00 0.49 0.03	0.01 b.d.l. 0.01 0.50 0.01	0.01 b.d.l. b.d.l. 0.44 b.d.	b.d.l. n.d. n.d. 0.19 n.d
MgO CaO Na ₂ O K ₂ O NiO Cr ₂	45.28 b.d.l. n.d. n.d. 0.38 n.	46.03 b.d.l. n.d. n.d. 0.08 n.	45.87 b.d.l. n.d. n.d. 0.17 n.	46.03 b.d.l. n.d. n.d. 0.24 n.c	45.68 b.d.l. n.d. n.d. 0.64 n.c	46.35 b.d.l. n.d. n.d. 0.11 n.c	45.56 b.d.l. n.d. n.d. 0.15 n.c	45.79 b.d.l. n.d. n.d. 0.29 n.c	47.16 b.d.l. n.d. n.d. 0.58 n.c	45.72 b.d.l. n.d. n.d. 0.26 n.c	46.14 b.d.l. n.d. n.d. 0.30 n.d	45.78 0.04 n.d. n.d. 0.20 n.d	46.19 b.d.l. n.d. n.d. 0.16 n.d	45.61 b.d.l. n.d. n.d. 0.33 n.d	45.89 b.d.l. n.d. n.d. 0.17 n.d	46.94 b.d.l. n.d. n.d. 0.10 n.d	46.62 b.d.l. n.d. n.d. 0.08 n.d	47.27 b.d.l. n.d. n.d. 0.16 n.c	46.84 0.01 0.01 0.01 0.51 0.0	45.76 0.01 b.d.l. 0.00 0.48 0.0	46.45 b.d.l. 0.01 0.01 0.46 0.0	47.07 0.03 0.01 0.01 0.53 b.d.	46.98 0.01 b.d.l. b.d.l. 0.47 0.07	46.14 b.d.l. b.d.l. b.d.l. 0.49 0.0	46.52 b.d.l. b.d.l. b.d.l. 0.46 0.00	46.71 b.d.l. b.d.l. 0.00 0.49 0.03	46.56 0.01 b.d.l. 0.01 0.50 0.01	46.12 0.01 b.d.l. b.d.l. 0.44 b.d.	45.87 b.d.l. n.d. n.d. 0.19 n.d
MnO MgO CaO Na ₂ O K ₂ O NiO Cr ₂	0.13 45.28 b.d.l. n.d. n.d. 0.38 n.	b.d.l. 46.03 b.d.l. n.d. n.d. 0.08 n.	0.11 45.87 b.d.l. n.d. n.d. 0.17 n.	0.08 46.03 b.d.l. n.d. n.d. 0.24 n.	0.12 45.68 b.d.l. n.d. n.d. 0.64 n.c	0.16 46.35 b.d.l. n.d. n.d. 0.11 n.c	0.08 45.56 b.d.l. n.d. n.d. 0.15 n.c	0.11 45.79 b.d.l. n.d. n.d. 0.29 n.c	b.d.l. 47.16 b.d.l. n.d. n.d. 0.58 n.c	b.d.l. 45.72 b.d.l. n.d. n.d. 0.26 n.c	0.08 46.14 b.d.l. n.d. n.d. 0.30 n.d	0.10 45.78 0.04 n.d. n.d. 0.20 n.d	0.14 46.19 b.d.l. n.d. n.d. 0.16 n.d	0.25 45.61 b.d.l. n.d. n.d. 0.33 n.d	0.11 45.89 b.d.l. n.d. n.d. 0.17 n.d	0.01 46.94 b.d.l. n.d. n.d. 0.10 n.d	b.d.l. 46.62 b.d.l. n.d. n.d. 0.08 n.d	b.d.l. 47.27 b.d.l. n.d. n.d. 0.16 n.c	0.18 46.84 0.01 0.01 0.01 0.51 0.0	0.19 45.76 0.01 b.d.l. 0.00 0.48 0.0	0.23 46.45 b.d.l. 0.01 0.01 0.46 0.0	0.18 47.07 0.03 0.01 0.01 0.53 b.d.	0.19 46.98 0.01 b.d.l. b.d.l. 0.47 0.07	0.21 46.14 b.d.l. b.d.l. b.d.l. 0.49 0.0	0.24 46.52 b.d.l. b.d.l. b.d.l. 0.46 0.0	0.19 46.71 b.d.l. b.d.l. 0.00 0.49 0.03	0.16 46.56 0.01 b.d.l. 0.01 0.50 0.01	0.20 46.12 0.01 b.d.l. b.d.l. 0.44 b.d.	0.07 45.87 b.d.l. n.d. n.d. 0.19 n.d
FeO MnO MgO CaO Na2O K2O NiO Cr2	14.22 0.13 45.28 b.d.l. n.d. n.d. 0.38 n.	13.76 b.d.l. 46.03 b.d.l. n.d. n.d. 0.08 n.	13.24 0.11 45.87 b.d.l. n.d. n.d. 0.17 n.	13.33 0.08 46.03 b.d.l. n.d. n.d. 0.24 n.	13.73 0.12 45.68 b.d.l. n.d. n.d. 0.64 n.c	13.22 0.16 46.35 b.d.l. n.d. n.d. 0.11 n.c	13.82 0.08 45.56 b.d.l n.d. n.d. 0.15 n.c	14.07 0.11 45.79 b.d.l n.d. 0.29 n.c	12.75 b.d.l. 47.16 b.d.l. n.d. n.d. 0.58 n.c	13.35 b.d.l. 45.72 b.d.l. n.d. n.d. 0.26 n.c	13.02 0.08 46.14 b.d.l n.d. n.d. 0.30 n.c	13.16 0.10 45.78 0.04 n.d. n.d. 0.20 n.d	13.17 0.14 46.19 b.d.l. n.d. 0.16 n.d	13.05 0.25 45.61 b.d.l. n.d. n.d. 0.33 n.d	13.16 0.11 45.89 b.d.l n.d. n.d. 0.17 n.c	12.30 0.01 46.94 b.d.l. n.d. n.d. 0.10 n.c	12.19 b.d.l. 46.62 b.d.l. n.d. n.d. 0.08 n.c	12.20 b.d.l. 47.27 b.d.l. n.d. n.d. 0.16 n.c	13.09 0.18 46.84 0.01 0.01 0.01 0.51 0.0	13.63 0.19 45.76 0.01 b.d.l. 0.00 0.48 0.0	13.76 0.23 46.45 b.d.l. 0.01 0.01 0.46 0.0	13.35 0.18 47.07 0.03 0.01 0.01 0.53 b.d.	13.76 0.19 46.98 0.01 b.d.l. b.d.l. 0.47 0.0	13.43 0.21 46.14 b.d.l. b.d.l. b.d.l. 0.49 0.0	13.40 0.24 46.52 b.d.l. b.d.l. b.d.l. 0.46 0.0	13.32 0.19 46.71 b.d.l. b.d.l. 0.00 0.49 0.03	13.78 0.16 46.56 0.01 b.d.l. 0.01 0.50 0.01	13.43 0.20 46.12 0.01 b.d.l. b.d.l. 0.44 b.d.	14.24 0.07 45.87 b.d.l. n.d. n.d. 0.19 n.d
A_2O_3 FeO MnO MgO CaO Na ₂ O K ₂ O NiO Cr_2	b.d.l. 14.22 0.13 45.28 b.d.l. n.d. n.d. 0.38 n.	0.03 13.76 b.d.l. 46.03 b.d.l. n.d. 0.08 n.	0.17 13.24 0.11 45.87 b.d.l. n.d. n.d. 0.17 n.	0.18 13.33 0.08 46.03 b.d.l. n.d. n.d. 0.24 n.	b.d.l. 13.73 0.12 45.68 b.d.l. n.d. n.d. 0.64 n.c	0.32 13.22 0.16 46.35 b.d.l. n.d. n.d. 0.11 n.c	0.36 13.82 0.08 45.56 b.d.l. n.d. n.d. 0.15 n.c	0.10 14.07 0.11 45.79 b.d.l. n.d. n.d. 0.29 n.c	b.d.l. 12.75 b.d.l. 47.16 b.d.l. n.d. n.d. 0.58 n.c	0.17 13.35 b.d.l. 45.72 b.d.l. n.d. n.d. 0.26 n.c	0.12 13.02 0.08 46.14 b.d.l. n.d. n.d. 0.30 n.c	b.d.l. 13.16 0.10 45.78 0.04 n.d. n.d. 0.20 n.d	b.d.l. 13.17 0.14 46.19 b.d.l. n.d. n.d. 0.16 n.d	b.d.l. 13.05 0.25 45.61 b.d.l. n.d. n.d. 0.33 n.d	b.d.l. 13.16 0.11 45.89 b.d.l. n.d. n.d. 0.17 n.c	b.d.l. 12.30 0.01 46.94 b.d.l. n.d. n.d. 0.10 n.c	b.d.l. 12.19 b.d.l. 46.62 b.d.l. n.d. n.d. 0.08 n.c	b.d.l. 12.20 b.d.l. 47.27 b.d.l. n.d. n.d. 0.16 n.c	b.d.l. 13.09 0.18 46.84 0.01 0.01 0.01 0.51 0.0	0.03 13.63 0.19 45.76 0.01 b.d.l. 0.00 0.48 0.0	b.d.l. 13.76 0.23 46.45 b.d.l. 0.01 0.01 0.46 0.0	b.d.l. 13.35 0.18 47.07 0.03 0.01 0.01 0.53 b.d.	b.d.l. 13.76 0.19 46.98 0.01 b.d.l. b.d.l. 0.47 0.0	b.d.l. 13.43 0.21 46.14 b.d.l. b.d.l. b.d.l. 0.49 0.0	b.d.l. 13.40 0.24 46.52 b.d.l. b.d.l. b.d.l. 0.46 0.0	0.01 13.32 0.19 46.71 b.d.l. b.d.l. 0.00 0.49 0.03	b.d.l. 13.78 0.16 46.56 0.01 b.d.l. 0.01 0.50 0.01	b.d.l. 13.43 0.20 46.12 0.01 b.d.l. b.d.l. 0.44 b.d.	b.d.l. 14.24 0.07 45.87 b.d.l. n.d. n.d. 0.19 n.d
$TiO_2 \left[AI_2O_3 \right] FeO \left[MnO \right] MgO \left[CaO \right] Na_2O \left[K_2O \right] NiO \left[Cr_2 \right] $	b.d.l. b.d.l. 14.22 0.13 45.28 b.d.l. n.d. n.d. 0.38 n.	b.d.l. 0.03 13.76 b.d.l. 46.03 b.d.l. n.d. n.d. 0.08 n.	b.d.l. 0.17 13.24 0.11 45.87 b.d.l. n.d. 0.17 n.	b.d.l. 0.18 13.33 0.08 46.03 b.d.l. n.d. n.d. 0.24 n.	b.d.l. b.d.l. 13.73 0.12 45.68 b.d.l. n.d. n.d. 0.64 n.c	b.d.l. 0.32 13.22 0.16 46.35 b.d.l. n.d. n.d. 0.11 n.c	b.d.l. 0.36 13.82 0.08 45.56 b.d.l. n.d. n.d. 0.15 n.c	b.d.l. 0.10 14.07 0.11 45.79 b.d.l. n.d. n.d. 0.29 n.c	b.d.l. b.d.l. 12.75 b.d.l. 47.16 b.d.l. n.d. n.d. 0.58 n.c	b.d.l. 0.17 13.35 b.d.l. 45.72 b.d.l. n.d. n.d. 0.26 n.c	b.d.l. 0.12 13.02 0.08 46.14 b.d.l. n.d. n.d. 0.30 n.c	b.d.l. b.d.l. 13.16 0.10 45.78 0.04 n.d. n.d. 0.20 n.d	b.d.l. b.d.l. 13.17 0.14 46.19 b.d.l. n.d. n.d. 0.16 n.d	b.d.l. b.d.l. 13.05 0.25 45.61 b.d.l. n.d. n.d. 0.33 n.d	b.d.l. b.d.l. 13.16 0.11 45.89 b.d.l. n.d. n.d. 0.17 n.c	b.d.l. b.d.l. 12.30 0.01 46.94 b.d.l. n.d. n.d. 0.10 n.c	b.d.l. b.d.l. 12.19 b.d.l. 46.62 b.d.l. n.d. n.d. 0.08 n.c	b.d.l. b.d.l. 12.20 b.d.l. 47.27 b.d.l. n.d. n.d. 0.16 n.c	b.d.l. b.d.l. 13.09 0.18 46.84 0.01 0.01 0.01 0.51 0.0	b.d.l. 0.03 13.63 0.19 45.76 0.01 b.d.l. 0.00 0.48 0.0	b.d.l. b.d.l. 13.76 0.23 46.45 b.d.l. 0.01 0.01 0.46 0.0	0.01 b.d.l. 13.35 0.18 47.07 0.03 0.01 0.01 0.53 b.d.	b.d.l. b.d.l. 13.76 0.19 46.98 0.01 b.d.l. b.d.l. 0.47 0.0	b.d.l. b.d.l. 13.43 0.21 46.14 b.d.l. b.d.l. b.d.l. 0.49 0.0	b.d.l. b.d.l. 13.40 0.24 46.52 b.d.l. b.d.l. b.d.l. 0.46 0.0	b.d.l. 0.01 13.32 0.19 46.71 b.d.l. b.d.l. 0.00 0.49 0.03	b.d.l. b.d.l. 13.78 0.16 46.56 0.01 b.d.l. 0.01 0.50 0.01	b.d.l. b.d.l. 13.43 0.20 46.12 0.01 b.d.l. b.d.l. 0.44 b.d.	b.d.l. b.d.l. 14.24 0.07 45.87 b.d.l. n.d. n.d. 0.19 n.d
$ siO_2 \ \ TiO_2 \ \ Al_2O_3 \ \ FeO \ \ MnO \ \ MgO \ \ CaO \ \ Na_2O \ \ K_2O \ \ NiO \ \ Cr_2 $	39.98 b.d.l b.d.l 14.22 0.13 45.28 b.d.l n.d. n.d. 0.38 n.	40.10 b.d.l 0.03 13.76 b.d.l 46.03 b.d.l n.d. n.d. 0.08 n.	40.44 b.d.l. 0.17 13.24 0.11 45.87 b.d.l. n.d. n.d. 0.17 n.	40.15 b.d.l. 0.18 13.33 0.08 46.03 b.d.l. n.d. n.d. 0.24 n.	39.83 b.d.l. b.d.l. 13.73 0.12 45.68 b.d.l. n.d. n.d. 0.64 n.	39.85 b.d.l. 0.32 13.22 0.16 46.35 b.d.l. n.d. n.d. 0.11 n.c	40.02 b.d.l. 0.36 13.82 0.08 45.56 b.d.l. n.d. n.d. 0.15 n.c	39.64 b.d.l. 0.10 14.07 0.11 45.79 b.d.l. n.d. n.d. 0.29 n.c	39.51 b.d.l. b.d.l. 12.75 b.d.l. 47.16 b.d.l. n.d. n.d. 0.58 n.c	40.49 b.d.l. 0.17 13.35 b.d.l. 45.72 b.d.l. n.d. 0.26 n.c	40.35 b.d.l. 0.12 13.02 0.08 46.14 b.d.l. n.d. n.d. 0.30 n.c	40.72 b.d.l. b.d.l. 13.16 0.10 45.78 0.04 n.d. n.d. 0.20 n.d	40.34 b.d.l. b.d.l. 13.17 0.14 46.19 b.d.l. n.d. n.d. 0.16 n.d	40.75 b.d.l. b.d.l. 13.05 0.25 45.61 b.d.l. n.d. n.d. 0.33 n.d	40.67 b.d.l. b.d.l. 13.16 0.11 45.89 b.d.l. n.d. n.d. 0.17 n.c	40.65 b.d.l. b.d.l. 12.30 0.01 46.94 b.d.l. n.d. n.d. 0.10 n.c	41.10 b.d.l. b.d.l. 12.19 b.d.l. 46.62 b.d.l. n.d. n.d. 0.08 n.c	40.38 b.d.l. b.d.l. 12.20 b.d.l. 47.27 b.d.l. n.d. n.d. 0.16 n.	40.20 b.d.l. b.d.l. 13.09 0.18 46.84 0.01 0.01 0.01 0.51 0.0	40.53 b.d.l. 0.03 13.63 0.19 45.76 0.01 b.d.l. 0.00 0.48 0.0	39.94 b.d.l. b.d.l. 13.76 0.23 46.45 b.d.l. 0.01 0.01 0.46 0.0	39.72 0.01 b.d.l. 13.35 0.18 47.07 0.03 0.01 0.01 0.53 b.d.	40.49 b.d.l. b.d.l. 13.76 0.19 46.98 0.01 b.d.l. b.d.l. 0.47 0.0	40.34 b.d.l. b.d.l. 13.43 0.21 46.14 b.d.l. b.d.l. b.d.l. 0.49 0.0	39.99 b.d.l. b.d.l. 13.40 0.24 46.52 b.d.l. b.d.l. b.d.l. 0.46 0.0	40.26 b.d.l. 0.01 13.32 0.19 46.71 b.d.l. b.d.l. 0.00 0.49 0.03	40.20 b.d.l. b.d.l. 13.78 0.16 46.56 0.01 b.d.l. 0.01 0.50 0.01	39.70 b.d.l. b.d.l. 13.43 0.20 46.12 0.01 b.d.l. b.d.l. 0.44 b.d.	39.63 b.d.l. b.d.l. 14.24 0.07 45.87 b.d.l. n.d. n.d. 0.19 n.d
$\frac{N_0}{N_0 + K_1}$ SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO Cr ₂	26* 39.98 b.d.l. b.d.l. 14.22 0.13 45.28 b.d.l. n.d. 0.38 n.	1* 40.10 b.d.l. 0.03 13.76 b.d.l. 46.03 b.d.l. n.d. 0.08 n.	2 40.44 b.d.l. 0.17 13.24 0.11 45.87 b.d.l. n.d. n.d. 0.17 n.	7 40.15 b.d.l 0.18 13.33 0.08 46.03 b.d.l n.d. n.d. 0.24 n.	7 39.83 b.d.l. b.d.l. 13.73 0.12 45.68 b.d.l. n.d. n.d. 0.64 n.d	18 39.85 b.d.l. 0.32 13.22 0.16 46.35 b.d.l. n.d. n.d. 0.11 n.d	19* 40.02 b.d.l. 0.36 13.82 0.08 45.56 b.d.l. n.d. n.d. 0.15 n.c	20 39.64 b.d.l. 0.10 14.07 0.11 45.79 b.d.l. n.d. n.d. 0.29 n.c	20 39.51 b.d.l. b.d.l. 12.75 b.d.l. 47.16 b.d.l. n.d. n.d. 0.58 n.d	27 40.49 b.d.l. 0.17 13.35 b.d.l. 45.72 b.d.l. n.d. n.d. 0.26 n.d	28 40.35 b.d.l 0.12 13.02 0.08 46.14 b.d.l n.d. n.d. 0.30 n.c	41 40.72 b.d.l b.d.l 13.16 0.10 45.78 0.04 n.d. n.d. 0.20 n.d	42 40.34 b.d.l b.d.l 13.17 0.14 46.19 b.d.l n.d. n.d. 0.16 n.d	43* 40.75 b.d.l. b.d.l. 13.05 0.25 45.61 b.d.l. n.d. n.d. 0.33 n.d	44 40.67 b.d.l. b.d.l. 13.16 0.11 45.89 b.d.l. n.d. n.d. 0.17 n.d	52 40.65 b.d.l. b.d.l. 12.30 0.01 46.94 b.d.l. n.d. n.d. 0.10 n.d.	59 41.10 b.d.l. b.d.l. 12.19 b.d.l. 46.62 b.d.l. n.d. 0.08 n.d.	60* 40.38 b.d.l. b.d.l. 12.20 b.d.l. 47.27 b.d.l. n.d. n.d. 0.16 n.d.	1 40.20 b.d.l. b.d.l. 13.09 0.18 46.84 0.01 0.01 0.01 0.51 0.0	4 40.53 b.d.l. 0.03 13.63 0.19 45.76 0.01 b.d.l. 0.00 0.48 0.0	9 39.94 b.d.l b.d.l 13.76 0.23 46.45 b.d.l 0.01 0.01 0.46 0.0	12 39.72 0.01 b.d.l. 13.35 0.18 47.07 0.03 0.01 0.01 0.53 b.d.	14 40.49 b.d.l. b.d.l. 13.76 0.19 46.98 0.01 b.d.l. b.d.l. 0.47 0.0	19 40.34 b.d.l. b.d.l. 13.43 0.21 46.14 b.d.l. b.d.l. b.d.l. 0.49 0.0	21 39.99 b.d.l. b.d.l. 13.40 0.24 46.52 b.d.l. b.d.l. b.d.l. 0.46 0.0	25 40.26 b.d.l. 0.01 13.32 0.19 46.71 b.d.l. b.d.l. 0.00 0.49 0.07	26 40.20 b.d.l. b.d.l. 13.78 0.16 46.56 0.01 b.d.l. 0.01 0.50 0.01	29 39.70 b.d.l. b.d.l. 13.43 0.20 46.12 0.01 b.d.l. b.d.l. 0.44 b.d.	1 39.63 b.d.l. b.d.l. 14.24 0.07 45.87 b.d.l. n.d. 0.19 n.d
Mи- № SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O NiO Cr2	<i>Ol</i> 26* 39.98 b.d.l. b.d.l. 14.22 0.13 45.28 b.d.l. n.d. n.d. 0.38 n.	<i>Ol</i> 1* 40.10 b.d.l. 0.03 13.76 b.d.l. 46.03 b.d.l. n.d. n.d. 0.08 n.	<i>Ol</i> 2 40.44 b.d.l. 0.17 13.24 0.11 45.87 b.d.l. n.d. n.d. 0.17 n.	<i>Ol</i> 7 40.15 b.d.l. 0.18 13.33 0.08 46.03 b.d.l. n.d. n.d. 0.24 n.	<i>Ol</i> 7 39.83 b.d.l. b.d.l. 13.73 0.12 45.68 b.d.l. n.d. n.d. 0.64 n.d	<i>Ol</i> 18 39.85 b.d.l. 0.32 13.22 0.16 46.35 b.d.l. n.d. n.d. 0.11 n.d.	<i>Ol</i> 19* 40.02 b.d.l. 0.36 13.82 0.08 45.56 b.d.l. n.d. n.d. 0.15 n.c	<i>Ol</i> 20 39.64 b.d.l. 0.10 14.07 0.11 45.79 b.d.l. n.d. n.d. 0.29 n.c	<i>Ol</i> 20 39.51 b.d.l. b.d.l. 12.75 b.d.l. 47.16 b.d.l. n.d. n.d. 0.58 n.c	<i>Ol</i> 27 40.49 b.d.l. 0.17 13.35 b.d.l. 45.72 b.d.l. n.d. n.d. 0.26 n.c	<i>Ol</i> 28 40.35 b.d.l. 0.12 13.02 0.08 46.14 b.d.l. n.d. n.d. 0.30 n.c	<i>Ol</i> 41 40.72 b.d.l. b.d.l. 13.16 0.10 45.78 0.04 n.d. n.d. 0.20 n.d	<i>Ol</i> 42 40.34 b.d.l. b.d.l. 13.17 0.14 46.19 b.d.l. n.d. n.d. 0.16 n.d	<i>Ol</i> 43* 40.75 b.d.l. b.d.l. 13.05 0.25 45.61 b.d.l. n.d. n.d. 0.33 n.d	<i>Ol</i> 44 40.67 b.d.l. b.d.l. 13.16 0.11 45.89 b.d.l. n.d. n.d. 0.17 n.c	<i>Ol</i> 52 40.65 b.d.l. b.d.l. 12.30 0.01 46.94 b.d.l. n.d. n.d. 0.10 n.d.	<i>Ol</i> 59 41.10 b.d.l. b.d.l. 12.19 b.d.l. 46.62 b.d.l. n.d. n.d. 0.08 n.c	<i>Ol</i> 60* 40.38 b.d.l. b.d.l. 12.20 b.d.l. 47.27 b.d.l. n.d. n.d. 0.16 n.d.	<i>O</i> /* 1 40.20 b.d.l. b.d.l. 13.09 0.18 46.84 0.01 0.01 0.01 0.51 0.0	<i>Ol</i> * 4 40.53 b.d.l. 0.03 13.63 0.19 45.76 0.01 b.d.l. 0.00 0.48 0.0	<i>Ol</i> * 9 39.94 b.d.l. b.d.l. 13.76 0.23 46.45 b.d.l. 0.01 0.01 0.46 0.0	<i>Ol</i> * 12 39.72 0.01 b.d.l. 13.35 0.18 47.07 0.03 0.01 0.01 0.53 b.d.	<i>Ol</i> * 14 40.49 b.d.l. b.d.l. 13.76 0.19 46.98 0.01 b.d.l. b.d.l. 0.47 0.0	<i>Ol</i> * 19 40.34 b.d.l. b.d.l. 13.43 0.21 46.14 b.d.l. b.d.l. b.d.l. 0.49 0.0	<i>Ol</i> * 21 39.99 b.d.l. b.d.l. 13.40 0.24 46.52 b.d.l. b.d.l. b.d.l. 0.46 0.0	<i>Ol</i> * 25 40.26 b.d.l. 0.01 13.32 0.19 46.71 b.d.l. b.d.l. 0.00 0.49 0.07	<i>Ol</i> * 26 40.20 b.d.l. b.d.l. 13.78 0.16 46.56 0.01 b.d.l. 0.01 0.50 0.01	<i>Ol</i> * 29 39.70 b.d.l. b.d.l. 13.43 0.20 46.12 0.01 b.d.l. b.d.l. 0.44 b.d.	<i>Ol</i> 1 39.63 b.d.l. b.d.l. 14.24 0.07 45.87 b.d.l. n.d. n.d. 0.19 n.d
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	JR17/2-2 <i>Ol</i> 26* 39.98 b.d.l. b.d.l. 14.22 0.13 45.28 b.d.l. n.d. n.d. 0.38 n.	JR17/2-21 <i>Ol</i> 1* 40.10 b.d.l. 0.03 13.76 b.d.l. 46.03 b.d.l. n.d. n.d. 0.08 n.	JR17/2-21 O/ 2 40.44 b.d.l. 0.17 13.24 0.11 45.87 b.d.l. n.d. n.d. 0.17 n.	JR17/2-21 O/ 7 40.15 b.d.l. 0.18 13.33 0.08 46.03 b.d.l. n.d. n.d. 0.24 n.	JR17/2-21 O/ 7 39.83 b.d.l. b.d.l. 13.73 0.12 45.68 b.d.l. n.d. n.d. 0.64 n.	JR17/2-21 O/ 18 39.85 b.d.l. 0.32 13.22 0.16 46.35 b.d.l. n.d. n.d. 0.11 n.d	JR17/2-21 O/ 19* 40.02 b.d.l. 0.36 13.82 0.08 45.56 b.d.l. n.d. n.d. 0.15 n.c	JR17/2-21 O/ 20 39.64 b.d.l. 0.10 14.07 0.11 45.79 b.d.l n.d. n.d. 0.29 n.d	JR17/2-21 O/ 20 39.51 b.d.l. b.d.l. 12.75 b.d.l. 47.16 b.d.l. n.d. n.d. 0.58 n.c	JR17/2-21 O/ 27 40.49 b.d.l. 0.17 13.35 b.d.l. 45.72 b.d.l n.d. n.d. 0.26 n.c	JR17/2-21 O/ 28 40.35 b.d.l. 0.12 13.02 0.08 46.14 b.d.l. n.d. n.d. 0.30 n.d	JR17/2-21 O/ 41 40.72 b.d.l. b.d.l. 13.16 0.10 45.78 0.04 n.d. n.d. 0.20 n.d	JR17/2-21 O/ 42 40.34 b.d.l b.d.l 13.17 0.14 46.19 b.d.l n.d. n.d. 0.16 n.d	JR17/2-21 <i>Ol</i> 43* 40.75 b.d.l. b.d.l. b.d.l. 13.05 0.25 45.61 b.d.l. n.d. n.d. 0.33 n.d	JR17/2-21 O/ 44 40.67 b.d.l b.d.l 13.16 0.11 45.89 b.d.l n.d. n.d. 0.17 n.c	JR17/2-21 O/ 52 40.65 b.d.l. b.d.l. 12.30 0.01 46.94 b.d.l. n.d. n.d. 0.10 n.d	JR17/2-21 O/ 59 41.10 b.d.l b.d.l 12.19 b.d.l. 46.62 b.d.l n.d. n.d. 0.08 n.c	JR17/2-21 O/ 60* 40.38 b.d.l. b.d.l. 12.20 b.d.l. 47.27 b.d.l. n.d. n.d. 0.16 n.	JR17/2-21 O/* 1 40.20 b.d.l b.d.l b.d.l 13.09 0.18 46.84 0.01 0.01 0.01 0.51 0.0	$18.17/2-21 O/* \qquad 4 \qquad 40.53 b.d.1 0.03 13.63 0.19 45.76 0.01 b.d.1 0.00 0.48 0.03 0.03 0.16 $	JR17/2-21 0/* 9 39.94 b.d.l. b.d.l. 13.76 0.23 46.45 b.d.l. 0.01 0.01 0.46 0.0	JR17/2-21 O/* 12 39.72 0.01 b.d.l. 13.35 0.18 47.07 0.03 0.01 0.01 0.53 b.d.	JR17/2-21 O/* 14 40.49 b.d.l. b.d.l. 13.76 0.19 46.98 0.01 b.d.l. b.d.l. 0.47 0.0	JR17/2-21 O/* 19 40.34 b.d.l. b.d.l. 13.43 0.21 46.14 b.d.l. b.d.l. b.d.l. 0.49 0.0	JR17/2-21 0/* 21 39.99 b.d.l. b.d.l. 13.40 0.24 46.52 b.d.l. b.d.l. b.d.l. 0.46 0.0	$ 1 \mathbb{R}^{17/2-21} O^{1*} 25 40.26 \text{b.d.l.} 0.01 13.32 0.19 46.71 \text{b.d.l.} \text{b.d.l.} 0.00 0.49 0.07 0.01 0.16$	1 R 17/2-21 O/* 26 40.20 b.d.l. b.d.l. 13.78 0.16 46.56 0.01 b.d.l. 0.01 0.50 0.01 0.51 0.01 0.50 0.01 0.51 0	JR17/2-21 0/* 29 39.70 b.d.l. b.d.l. 13.43 0.20 46.12 0.01 b.d.l. b.d.l. b.d.l. b.d.	JR17/2-211 0/ 1 39.63 b.d.1. b.d.1. b.d.1. 14.24 0.07 45.87 b.d.1. n.d. n.d. 0.19 n.d

Продолжение
Д1.
Таблица

#Mg	0.85	0.85	0.86	0.87	0.86	0.85	0.85	0.86	0.87	0.86	0.85	0.86	0.86	0.85	0.86	0.85	0.87	0.86	0.86	0.86	0.87	0.87	0.86	0.86	0.86	0.86	0.87
Сум- ма	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
ż	0.003	0.008	0.005	0.002	0.004	0.009	0.010	0.003	0.004	0.006	0.001	0.004	0.001	0.004	0.010	0.004	0.006	0.008	0.003	0.006	0.014	0.012	0.011	0.010	0.016	0.018	0.017
a K			1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1				1	I	1	1	
Ca Ca			 																								
Mg	1.69	1.68	1.71	1.72	1.71	1.68	1.68	1.70	1.72	1.70	1.70	1.72	1.71	1.69	1.70	1.70	1.72	1.71	1.71	1.70	1.73	1.71	1.70	1.71	1.71	1.69	1.72
Mn	0.004	0.001	0.003	0.001	0.001	0.001	I	0.002	0.004	I	0.004	0.001	0.001	I	I	0.004	Ι	0.001	0.004	0.001	0.004	0.007	0.005	0.004	0.002	0.006	0.003
Fe ³⁺	I	I	0.002	0.032	I	I	I	0.012	0.022	I	0.006	I	0.009	I	I	I	0.024	0.010	0.005	Ι	0.009	0.019	0.017	0.009	0.001	Ι	0.027
Fe ²⁺	0.298	0.296	0.282	0.264	0.286	0.308	0.303	0.288	0.254	0.285	0.292	0.274	0.287	0.286	0.279	0.288	0.262	0.281	0.285	0.281	0.250	0.258	0.280	0.268	0.276	0.282	0.249
Ľ	I	I	Ι	I	I	I	I	I	Ι	Ι	Ι	I	I	I	I	I	Ι	Ι	Ι	I	I	I	Ι	Ι	I	Ι	I
R	0.006	Ι	0.004	0.004	0.006	Ι	I	0.005	0.006	Ι	0.004	0.002	I	I	I	I	Ι	Ι	Ι	0.001	Ι	I	Ι	Ι	Ι	0.006	I
Τï	I															I							Ι	I		I	
Si	1.001	1.015	766.0	0.982	366.0	1.000	1.009	0.992	0.986	1.014	366.0	1.004	966.0	1.025	1.012	1.006	0.988	566.0	0.998	1.008	0.996	0.99(0.991	0.996	666.0	1.001	0.986
Сум- ма	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Cr ₂ O ₃	.p.u	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.																		
NiO	0.17	0.37	0.26	0.12	0.18	0.42	0.49	0.13	0.20	0.32	0.06	0.18	0.07	0.20	0.51	0.19	0.29	0.38	0.17	0.28	0.70	0.62	0.56	0.48	0.78	0.88	0.85
K ₂ 0	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.																			
Na ₂ O	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.																			
CaO	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.																			
MgO	45.22	44.85	45.86	46.13	45.87	44.97	44.87	45.58	46.49	45.48	45.58	46.20	45.83	45.17	45.62	45.60	46.31	45.79	45.82	45.77	46.61	46.05	45.41	46.11	45.81	45.20	46.23
MnO	0.19	0.04	0.15	0.04	0.05	0.05	b.d.l.	0.10	0.19	b.d.l.	0.19	0.04	0.05	b.d.l.	b.d.l.	0.19	b.d.l.	0.04	0.18	0.07	0.21	0.33	0.24	0.19	0.10	0.28	0.12
FeO	14.24	14.12	13.64	14.19	13.69	14.68	14.44	14.36	13.29	13.65	14.23	13.17	14.17	13.66	13.35	13.76	13.74	13.95	13.87	13.48	12.43	13.30	14.19	13.28	13.29	13.48	13.23
AI_2O_3	0.20	b.d.l.	0.15	0.12	0.22	b.d.l.	b.d.l.	0.16	0.19	b.d.l.	0.12	0.08	b.d.l.	0.02	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.19	b.d.l.						
TiO ₂	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.																			
SiO ₂	39.98	40.62	39.94	39.40	39.99	39.87	40.21	39.67	39.65	40.55	39.82	40.33	39.88	40.96	40.52	40.27	39.66	39.83	39.96	40.37	40.05	39.70	39.59	39.94	40.02	39.97	39.56
№ точки	*Þ	9	6 *	7	17	19	21	28	30	33	35	36	36	41	43	49*	50*	51	54*	57	18*	6	6	12	14*	15*	10^{*}
Ми- нерал	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Образец	UR17/2-211	UR17/2-211	UR17/2-211	UR17/2-211	UR17/2-2II	UR17/2-211	UR17/2-211	UR17/2-211	UR17/2-2II	UR17/2-2II	UR17/2-2II	UR17/2-2II	UR17/2-2II	UR17/2-211	UR17/2-2II	UR17/2-211	UR17/2-211	UR17/2-211	UR17/2-211	UR17/2-211	UR17/2-2v	UR17/2-2v	UR17/2-2v	UR17/2-2v	UR17/2-2v	UR17/2-2b	UR17/2-2b
Порода	q2H-lhq	Phl-Hzb	Ры-Нӡь	Ры-Нӡь	Ры-Нӡь	Phl-Hzb	Phl-Hzb	Phl-Hzb	Phl-Hzb	Phl-Hzb	РһІ-НӡЬ	Phl-Hzb	Phl-Hzb	Phl-Hzb	Phl-Hzb	Phl-Hzb	Phl-Hzb	Phl-Hzb	Phl-Hzb	РиІ-НӡЬ	Phl-Hzb						

ОСОБЕННОСТИ СОСТАВА И ВОЗМОЖНЫЕ МЕХАНИЗМЫ ОБРАЗОВАНИЯ

$\begin{array}{c} {\rm Fe}^{3+}/\\ {\rm Fe}^{3+}\\ +{\rm AI} \end{array}$	0.36 0.24	0.48	0.17	0.05	0.22	0.08	0.19	0.22	0.13	0.05	0.94	0.95	01.0	0.17		0.22		0.13	0.15		0.36	0.98		0.97	0.88		0.21	0.34		0.21	0.15	<i>cc</i> 0	1	0.19
Cr/ Cr+ + AI	0.61 0.51	0.60	0.46	0.37	0.49	0.40	0.40	0.42	0.45	0.13	0.77	0.76	4C.U	0.54		0.56		0.52	0.59		0.59	0.75		0.80	0.72		0.60	0.62		09.0	0.53	0.45	2	0.44
$\begin{array}{c} Mg \\ Mg + \\ + Fe^{2+} \end{array}$	0.17 0.28	0.17	0.29	0.37	0.25	0.38	0.30	0.32	0.30	0.60	0.04	0.06	0.52	0.28		0.25		0.30	0.26		0.20	0.03		0.06	0.09		0.24	0.20		0.25	0.28	0.30	0000	0.29
Сум- ма	с с С	б	ŝ	3	3	Э	з	З	3	ŝ	Э	m d	r	б	,	3		ŝ	з		з	б		ŝ	3		ŝ	3		m	б	~	2	ю
v^{3+}	0.013 0.008	0.014	0.013	0.012	0.012	0.010	0.006	I	0.011	I	0.029	0.012	0.011	0.010		0.016		0.017	0.015		I	I		I	I		0.013	0.008		0.012	0.018	0.008	0000	0.013
ī	1 1	0.010	0.004	I	Ι	0.009	0.003	0.005	I	I	0.025	0.022	0.004	0.002		0.001		0.001	0.003		0.006	0.027		0.015	0.020		0.006	0.010		I		0.007		0.003
Zn	0.035 0.029	0.029	0.033	0.076	0.042	0.061	0.039	0.051	0.061	0.071	Ι		UCU.U	0.032		0.045		0.035	0.043		0.028	I		I	I		0.025	0.043		0.038	0.026	0.030	10000	0.043
Ca	1 1	I	I	I	Ι	I	I	Ι	Ι	I	I	I	I	I		I		I	I		I	I		I	I		I	I		0.004	0.006			I
Mg	0.173 0.279	0.169	0.288	0.359	0.251	0.359	0.294	0.314	0.291	0.562	0.044	0.064	41 <i>C</i> .U	0.281		0.260		0.301	0.260		0.202	0.033		0.059	0.090		0.246	0.196		0.249	0.284	000.0		0.290
Mn	- 0.000	0.011	0.006	I	Ι	0.001	I	Ι	Ι	0.007	Ι	I	I	0.008		I		0.008	0.003		I	I		I	I		I	I		0.00 200.0	0.012	0.004	- 0000	0.004
Fe ³⁺	0.336 0.259	0.503	0.194	0.058	0.234	0.096	0.243	0.270	0.142	0.086	1.432	1.470	0.092	0.165		0.206		0.125	0.127		0.371	1.781		1.640	1.254		0.184	0.312		0.180	0.145	0 257		0.218
Fe ²⁺	0.861 0.731	0.853	0.717	0.600	0.757	0.590	0.696	0.658	0.675	0.374	1.028	1.010	0.089	0.732		0.779		0.715	0.744		0.792	0.974		0.964	0.944		0.773	0.793		0.758	0.736	0,607	1/0.0	0.705
Cr	0.938 0.858	0.822	0.793	0.694	0.827	0.745	0.687	0.703	0.824	0.248	0.311	0.267	C84.U	0.940		0.920		0.915	1.047		0.924	0.114		0.227	0.463		1.029	1.002		1.038	0.933	0 744	-	0.756
Ā	0.602 0.813	0.545	0.930	1.190	0.852	1.129	1.015	0.972	0.989	1.639	0.093	0.084	دده.٥	0.795		0.721		0.859	0.735		0.650	0.038		0.057	0.177		0.697	0.612		0.689	0.814	0 075	3	0.953
Ħ	0.037 0.006	0.033	0.012	I	0.014	I	0.005	0.007	0.006	0.003	0.021	0.051	I	0.020		0.042		0.007	0.008		0.007	0.034		0.025	0.030		0.017	0.016		0.026	0.013	0.010		0.010
Si	0.006 0.017	0.012	0.010	0.011	0.011	I	0.013	0.021	Ι	0.010	0.019	0.021	020.0	0.016		0.011		0.019	0.016		0.020	I		0.013	0.024		0.00	0.010		0.002	0.014	0.014	10.0	0.008
To- tal	100	100	100	100	100	100	100	100	100	100	100	100	8	100		100		100	100		100	100		100	100		100	100		100	100	100		100
V_2O_3	0.47 0.32	0.50	0.63	0.49	0.46	0.40	0.24	b.d.l.	0.42	b.d.l.	1.00	0.43	0.42	0.37		0.59		0.64	0.55		b.d.l.	b.d.l.		b.d.l.	b.d.l.		0.48	0.29	!	0.47	0.71	0.30	0000	0.51
NiO	b.d.l. b.d.l.	0.38	0.17	b.d.l.	b.d.l.	0.37	0.10	0.21	b.d.l.	b.d.l.	0.88	0.78	0.14	0.09	2	0.02		0.02	0.13		0.22	0.94		0.51	0.72		0.24	0.37		b.d.l.	b.d.l.	8C U	07.0	0.10
ZnO	1.41 1.23	1.16	1.42	3.38	1.77	2.70	1.67	2.18	2.60	3.48	b.d.l.	b.d.l.	1.28	1.32		1.85		1.48	1.77		1.12	b.d.l.		b.d.l.	b.d.l.		1.04	1.72		1.56	1.08	1 67	10.1	1.82
CaO	b.d.l. b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	D.d.I.	b.d.l.		b.d.l.		b.d.l.	b.d.l.		b.d.l.	b.d.l.		b.d.l.	b.d.l.		b.d.l.	b.d.l.	;	0.11	0.18	1 4		b.d.l.
MgO	3.44 5.79	3.36	6.07	7.91	5.21	7.84	6.28	6.70	6.15	13.70	0.82	1.20	0.08	5.82		5.31		6.30	5.33		4.07	0.62		1.12	1.71		5.00	3.92		5.05	5.90	6 33		6.14
MnO	b.d.l. 0.01	0.38	0.22	b.d.l.	b.d.l.	0.03	b.d.l.	b.d.l.	b.d.l.	0.29	b.d.l.	b.d.l.	D.a.I.	0.30		b.d.l.		0.30	0.09		b.d.l.	b.d.l.		b.d.l.	b.d.l.		b.d.l.	b.d.l.		0.16	0.42	0.15		0.14
FeO	42.52 36.66	48.01	34.27	25.82	36.69	26.68	35.81	35.36	30.76	20.03	82.54	83.49	01.62	33.13		35.92		31.35	31.77		41.88	92.25		87.62	74.83		34.66	39.38		33.96	32.62	25 80	200	34.83
Cr ₂ O ₃	35.25 33.60	30.80	31.58	28.80	32.43	30.69	27.70	28.33	32.78	11.42	11.03	9.51	58.95	36.73		35.48		36.13	40.40		35.20	4.02		8.09	16.66		39.40	37.76		39.78	36.58	02.06		30.18
M2O3	15.17 21.37	13.71	24.84	33.14	22.40	31.19	27.48	26.27	26.41	50.56	2.21	2.01	10.22	20.84		18.65		22.75	19.03		16.61	0.89		1.37	4.28		17.91	15.47	1	17.70	21.40	74 76	2	25.53
TiO ₂ A	1.47 0.26	1.29	0.50	b.d.l.	0.59	b.d.l.	0.23	0.28	0.26	0.15	0.78	1.90	D.d.l.	0.81		1.71		0.28	0.32		0.29	1.27		0.93	1.12		0.67	0.63		1.04	0.52	0 51	10.00	0.41
SiO ₂	0.18 0.51	0.35	0.30	0.37	0.35	o.d.l. l	0.42	0.67	o.d.l.	0.37	0.52	0.58	10.0	0.50		0.33		0.60	0.49		0.60	.1.p.c		0.36	0.68		0.28	0.29	1	0.06	0.43	0.43	2	0.24
№ гоч- КИ	42 12*	40*	S	10	41*	23* 1	20	22	28	*6	7	51*	.71	16		23*		33*	34		°,	41*		č.	6*		Ś	•		35	33*	14*	-	15
Ми- нерал	Al-Crt Al-Crt	Fe-Crt	Pc	Pc	Pc	Pc	Pc	Pc	Pc	Pst	Mgt	Mgt	Al-UT	AI-Crt		Al-Crt		Al-Crt	Al-Crt		Al-Crt	Met	þ	Mgt	Ċ.	Mgt	Al-Crt	Al-Crt	1	Al-Crt	Al-Crt	D,	2	Pc
ра-	17/2	17/2	17/2	17/2	17/2	17/2	17/2	17/2	17/2	17/2	17/2	17/2	//11	177	ì	///		11/	///		///	/20	-	17/	//1		17/	17/	I	11/	1 12/ -	I 177	1	1
1 36	N UR	UR	Z UR	z UR	z UR	z UR	z UR	z UR	z UR	z UR	z UR	z UR	ч Ск	UR UR	2-2	UR	2-2	UR	2-2 UR	2-2	UR	2-2 UR	2-2	UR	2-2 UR	2-2	UR	2-2 UR	2-2	UK V	2-2 UR	2-2 1 I P	2-2	UR 2-2
和opo馮	PhI-Lh _i PhI-Lh _i	Phl-Lh2	Phl-Lh	Phl-Lh ₂	PhI-Lh	Phl-Lh;	Phl-Lh;	Phl-Lh:	Phl-Lh;	Phl-Lh:	Phl-Lh.	Phl-Lh.	-144	-Intern	H_{zb}	-Inf-	$H_{Z}b$	-lul-	-lyd Dhl-	H_{zh}	-lhl-	Hzh Phl-	dzH	-lhl-	-lul-	dzH	-Ihl-	-14d	q_{ZH}	Phl-	-IHI-	Hzb DhL	Hzb	-lhl- Hzb

ЛОБАЧ-ЖУЧЕНКО и др.

590

Таблица Д1. Продолжение

ГЕОХИМИЯ том 68 Nº 6 2023 ОСОБЕННОСТИ СОСТАВА И ВОЗМОЖНЫЕ МЕХАНИЗМЫ ОБРАЗОВАНИЯ

$\begin{array}{c} Fe^{3+} \\ Fe^{3+} \\ + AI \end{array}$	0.26	0.93	0.82	0.87	0.25	0.33	0.33	0.09	0.08	0.09	0.13	0.18	0.13	0.25	0.05	0.05	0.04	0.82	0.84	06.0	0.97	0.96	0.92	0.97
Cr/ Cr+ +AI	0.48	0.71	0.69	0.70	0.44	0.52	0.52	0.22	0.18	0.29	0.50	0.49	0.32	0.45	0.08	0.10	0.08	0.71	0.75	0.73	0.76	0.72	0.74	0.77
${ m Mg}/{ m Mg}+{ m Hg}+{ m Fe}^{2+}$	0.25	0.07	0.08	0.08	0.28	0.23	0.24	0.49	0.54	0.41	0.33	0.27	0.40	0.23	0.73	0.66	0.67	0.09	0.07	0.07	0.04	0.05	0.05	0.04
Сум- ма	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
V^{3+}	0.013	Ι	I	I	I	0.013	0.020	Ι	0.004	I	0.006	I	I	0.007	Ι	Ι	Ι	0.026	0.032	0.032	0.013	0.013	0.017	I
ïZ	0.004	0.017	0.012	0.012	0.012	0.011	Ι	0.004	0.013	0.007	0.005	I	Ι	0.023	0.009	0.012	0.006	0.027	0.031	0.033	0.019	0.020	0.016	0.029
Zn	0.043	Ι	I	I	0.033	0.032	0.040	0.060	0.065	0.057	0.049	0.053	0.056	0.051	0.091	0.081	0.078	Ι	I	I	I	Ι	Ι	Ι
Ca	I	Ι	I	0.006	I	I	Ι	I	I	I	ļ	I	I	I	Ι	Ι	Ι	Ι	I	I	ļ	Ι	Ι	Ι
Mg	0.251	0.075	0.087	0.078	0.275	0.236	0.251	0.465	0.511	0.394	0.319	0.255	0.377	0.218	0.668	0.606	0.626	0.099	0.083	0.078	0.046	0.053	0.053	0.036
Mn	I	Ι	I	I	I	I	Ι	0.002	0.005	I	0.009	I	0.011	I	Ι	0.001	Ι	I	I	0.027	I	Ι	Ι	I
Fe ³⁺	0.297	1.430	1.047	1.255	0.316	0.357	0.353	0.144	0.125	0.128	0.133	0.201	0.190	0.296	0.096	0.081	0.072	0.975	0.919	1.126	1.684	1.646	1.328	1.739
Fe ²⁺	0.750	1.004	066.0	0.957	0.693	0.793	0.776	0.476	0.431	0.566	0.640	0.693	0.561	0.747	0.247	0.308	0.302	1.038	1.090	1.068	1.000	0.996	1.065	0.962
Ľ	0.780	0.267	0.537	0.445	0.734	0.789	J.801	0.409	0.336	0.534	0.915	0.876	0.581	0.734	0.151	0.183	0.151	0.515	0.526	0.362	0.152	0.166	0.312	0.160
A	.841 (0.111).236 (.193 (.925).726 (0.733	1.434 (1.495	1.290	.916	.923 (1.221	.897 (1.725	1.720	1.753	0.208	0.178	0.132	.049	.064	0.110	.047
Ŧ	0.022 (960.	060.	.054 (.013 (.027 (.027 (003		.007			.004	.011 (.003	1	I	0.101 (.141 (.143 (.023 (0.022 (.081	0.013 0
Si	-	0	0	0	1	017 0	1	.004 0	.017	017 0	600.	I	0	015 0	0111 0	.008	.012	012 0	1	-	016 0	.020 0	018 0	014 0
To- tal	100	100	100	100	100	100 0	100	100 0	100 0	100 0	100 0	100	100	100 0	100 0	100 0	100 0	100 0	100	100	100 0	100 0	100 0	100 0
V ₂ O ₃	0.51	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.51	0.76	b.d.l.	0.16	b.d.l.	0.25	b.d.l.	b.d.l.	0.25	b.d.l.	b.d.l.	b.d.l.	0.91	1.12	1.10	0.44	0.47	0.61	b.d.l.
NiO	0.14	0.58	0.44	0.42	0.46	0.40	b.d.l.	0.17	0.55	0.28	0.18	b.d.l.	b.d.l.	0.89	0.42	0.55	0.26	0.96	1.10	1.14	0.65	0.70	0.56	1.01
ZnO	1.82	b.d.l.	b.d.l.	b.d.l.	1.41	1.31	1.66	2.81	3.10	2.58	2.07	2.22	2.53	2.12	4.61	4.06	3.95	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.
CaO	b.d.l.	b.d.l.	b.d.l.	0.17	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.
MgO	5.22	1.42	1.67	1.49	5.79	4.83	5.14	10.82	12.10	8.89	6.75	5.34	8.37	4.49	16.83	15.06	15.72	1.88	1.57	1.48	0.86	1.00	0.99	0.68
MnO	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.10	0.19	b.d.l.	0.32	b.d.l.	0.41	b.d.l.	b.d.l.	0.04	b.d.l.	b.d.l.	b.d.l.	0.91	b.d.l.	b.d.l.	b.d.l.	b.d.l.
FeO	38.71	82.19	69.40	75.22	37.95	41.91	41.24	25.69	23.49	27.89	29.12	33.38	29.69	38.31	15.40	17.25	16.76	68.40	67.69	73.77	90.10	88.92	80.31	90.64
Cr_2O_3	30.52	9.54	19.36	16.02	29.18	30.41	30.96	17.95	15.02	22.70	36.49	34.60	24.32	28.53	7.17	8.57	7.17	18.50	18.75	12.86	5.41	5.90	11.06	5.68
M ₂ O ₃ (22.08	2.67	5.71	4.65	24.68	18.77	19.00	t2.20	14.79	36.78	24.50	24.46	34.30	23.39	55.01	54.09	55.70	5.01	4.26	3.14	1.16	1.52	2.63	1.12
TiO ₂ /	0.89	3.60	3.41	2.03	0.53 2	1.09	1.08	0.13	- I.b.c	0.31	o.d.l.	b.d.l.	0.19	0.46	0.13	5.d.l.	p.d.l.	3.81	5.27	5.36	0.85	0.83	3.02	0.48
sio ₂	o.d.l.	o.d.l.	o.d.l.	o.d.l.	o.d.l.	0.53	o.d.l.	0.14	0.59 1	0.58	0.27	1.l.b.c	o.d.l.	0.47	0.42	0.29 1	0.44	0.33	o.d.l.	o.d.l.	0.44	0.57	0.51	0.39
№ точ- ки	49* 1	38* 1	56* 1	62 1	57 1	49	44*	32*	46	14	4	24* 1	15* 1	6	15*	47*	33*	50*	45* 1	14	39	40	12	13
Ми-	Pc	Ċ.	Mgt Cr-	Mgt Cr-	Mgt Pc	41-	Crt Al-	$_{Pc}^{Crt}$	Pc	Pc	Pc	Pc	Pc	Pc	Pns	Pns	Pns	C^{-}	Mgt Cr-	Mgt Cr-	Mgt Mgt	Mgt	Mgt	Mgt
зец	2-2I	2-2I	2-2I	2-2I	2-2I	2-2II	2-2II	2-2II	2-2II	2-2II	2-2II	2-2II	2-2II	2-2II	2-211	2-211	2-211	2-2II	2-2II	2-2II	2-211	2-2II	2-2II	2-2II
Oбрас	UR17/.	UR17/.	UR17/.	UR17/.	UR17/.	UR17/.	UR17/.	UR17/.	UR17/.	UR 17/.	UR 17/.	UR17/.	UR17/.	UR17/.	UR17/.	UR17/.	UR17/.	UR17/.	UR17/.	UR17/.	UR 17/.	UR17/.	UR17/.	UR17/.
По- рода	-Jhl-	-lul d2H	-lul džu	-lhq ULL	-lhq Dhl-	-lhq dzH	-lul-	-14d q2H	Hzh dzH	-lul d2H	-lh Ul-	-lul dzH	-lul d2H	-lul d2H	-14d	-14d d2H	-lul Dul-	-lul	-lhq Dhl-	-lul-	-lul d2H	-lul d2H	-lul d2H	Phl- Hzb
ТЕОХИМ	ия	т	ом 6	8	№ 6	20)23																	

Таблица Д1. Продолжение

ГЕОХИМИЯ том 68 № 6

и Д1. Продолжени	лнэжиопос	кень	16	0																		·								
$\left(\begin{array}{c} 06 \end{array} \right) = \left(\begin{array}{c} M_{H^{-}} \\ Hepan \end{array} \right) \left(\begin{array}{c} N_{0} \\ roy- \end{array} \right) \left(\begin{array}{c} Cr_{2}O_{3} \\ roy- \end{array} \right) \left(\begin{array}{c} FeO \\ roy- \end{array} \right) \left(\begin{array}{c} N_{0} \\ roy- \left(\begin{array}{c} N_{0} \\ roy- \\$	$ \begin{array}{c c} M_{H^{-}} & N_{0} \\ M_{Hepali} & Tou- \\ Hepali & KH \end{array} \hspace{0.5cm} SiO_{2} \hspace{0.5cm} TiO_{2} \hspace{0.5cm} Al_{2}O_{3} \hspace{0.5cm} Cr_{2}O_{3} \hspace{0.5cm} FeO \hspace{0.5cm} N \end{array} $	$\begin{bmatrix} N_{0} \\ roy- \\ \kappa M \end{bmatrix} \begin{bmatrix} N_{0} \\ roy- \\ M_{1}O_{3} \end{bmatrix} \begin{bmatrix} TO_{3} \\ A_{1}O_{3} \end{bmatrix} \begin{bmatrix} TO_{3} \\ FeO \end{bmatrix} \begin{bmatrix} M \\ R \end{bmatrix}$	$\left \text{SiO}_2 \right \text{TiO}_2 \left \text{A1}_2 \text{O}_3 \right \text{C1}_2 \text{O}_3 \left \text{FeO} \right \text{M}$	² TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO M	2 Al ₂ O ₃ Cr ₂ O ₃ FeO N	3 Cr ₂ O ₃ FeO M	FeO N	<u>></u>	InO N	1gO C	aO Na	¹ 20 K2	20 Ni	O Cyn Ma	4- Si	Ti	Ы	Cr	Fe ²⁺]	Fe ³⁺	Mn N	Ag C	la N	a K	N	Сум- ма	#Mg	En	s.	Ň
UR17/2 Opx* 33 57.28 0.04 0.84 0.06 9.06	$Opx^{*} 33 57.28 0.04 0.84 0.06 9.06 0.04 0.06 $	33 57.28 0.04 0.84 0.06 9.06	57.28 0.04 0.84 0.06 9.06 0	8 0.04 0.84 0.06 9.06	1 0.84 0.06 9.06	0.06 9.06	9.06		0.19 3.	3.08 0	.19 b.c	1.1. 0.(01 0.0	10]	1 1.98	0.001 (0.034	0.002 ().262 (0000.0	.006 1.	.71 0.0	- 100	00.00	0 0.001	4	87	86	3 0	
UR17/2 <i>Opx</i> * 34 57.42 0.07 0.88 0.10 9.24 0.2	<i>Opx</i> * 34 57.42 0.07 0.88 0.10 9.24 0.2	34 57.42 0.07 0.88 0.10 9.24 0.2	57.42 0.07 0.88 0.10 9.24 0.2	2 0.07 0.88 0.10 9.24 0.2	7 0.88 0.10 9.24 0.2	0.10 9.24 0.2	9.24 0.2	0.2	6 3.	3.48 0	.27 b.c	41. 0.(01 0.0	96 102	2 1.97 (0.002	0.036	0.003 (0.239 (0.026 0	.008 1.	.71 0.0	- 010	0.00	0 0.002	4	88	87	2	
UR17/2 Opx* 37 56.70 0.07 0.94 0.09 9.16 0.22	<i>Opx</i> * 37 56.70 0.07 0.94 0.09 9.16 0.22	37 56.70 0.07 0.94 0.09 9.16 0.22	56.70 0.07 0.94 0.09 9.16 0.22	⁷ 0 0.07 0.94 0.09 9.16 0.22	7 0.94 0.09 9.16 0.22	0.09 9.16 0.22	9.16 0.22	0.22	З.	2.80 0.	.37 0.	02 0.(01 0.0	100	0 1.97	0.002	0.039	0.003 ().247 (0190	.007 1.	.70 0.0	0.0	00.0	0 0.002	4	87	87	3 1	
UR17/2 Opx* 43 57.51 0.09 0.95 0.08 9.50 0.22	<i>Opx</i> * 43 57.51 0.09 0.95 0.08 9.50 0.22	43 57.51 0.09 0.95 0.08 9.50 0.22	57.51 0.09 0.95 0.08 9.50 0.22	1 0.09 0.95 0.08 9.50 0.22) 0.95 0.08 9.50 0.22	0.08 9.50 0.22	9.50 0.22	0.22	ŝ	2.94 0.	.29 0.	03 0.(00 0.0	102	2 1.98 (0.002	0.039	0.002 0	0.269 (0.004 0	.006 1.	.69 0.0	0.0	- 12	0.001	4	86	86	4	
$UR17/2$ Opx^* 48 57.46 0.04 0.83 0.09 9.31 0.21	Opx^{*} 48 57.46 0.04 0.83 0.09 9.31 0.21	48 57.46 0.04 0.83 0.09 9.31 0.21	57.46 0.04 0.83 0.09 9.31 0.21	6 0.04 0.83 0.09 9.31 0.21	4 0.83 0.09 9.31 0.21	0.09 9.31 0.21	9.31 0.21	0.21	ć	3.08 0.	.25 b.c	1.1 0.0	0.0 0.0	10]	1 1.98	0.001 (0.034	0.003 0).264 C	0040	.006 1.	.70 0.0	- 60	Ι	0.002	4	86	86	3 0	
UR17/2 <i>Opx</i> * 49 57.95 0.09 0.81 0.06 9.20 0.24	Opx^{*} 49 57.95 0.09 0.81 0.06 9.20 0.24	49 57.95 0.09 0.81 0.06 9.20 0.24	57.95 0.09 0.81 0.06 9.20 0.24	15 0.09 0.81 0.06 9.20 0.24	0.81 0.06 9.20 0.24	0.06 9.20 0.24	9.20 0.24	0.24	ć	3.30 0.	.25 b.c	1.1. b.d	1.1 0.0	102	2 1.98 (0.002	0.033	0.002 0).263	0	.007 1.	.70 0.0	- 60	I	0.001	4	86	86	40	
UR17/2 Opx* 52 58.18 0.00 0.07 0.04 8.57 0.19	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	52 58.18 0.00 0.07 0.04 8.57 0.19	58.18 0.00 0.07 0.04 8.57 0.19	8 0.00 0.07 0.04 8.57 0.19	0.07 0.04 8.57 0.19	0.04 8.57 0.19	8.57 0.19	0.19	è	4.24 0.	.43 b.c	1.1. b.d	1.1. 0.0	102	2 1.99		0.003	0.001 0	0.221	0.023 0	.006 1.	.74 0.0	- 116	1	0.001	4	89	88	1	
UR17/2 Opx* 60 57.12 0.06 0.79 0.09 9.53 0.24	Opx^* 60 57.12 0.06 0.79 0.09 9.53 0.24	60 57.12 0.06 0.79 0.09 9.53 0.24	<i>57.</i> 12 0.06 0.79 0.09 9.53 0.24	2 0.06 0.79 0.09 9.53 0.24	0.79 0.09 9.53 0.24	0.09 9.53 0.24	9.53 0.24	0.24	ŝ	2.70 0.	.21 b.c	1.1. b.d	1.1. 0.0	10]	1 1.98 (0.002	0.032	0.003 (0.275 (0 100.0	.007 1.	.69 0.0	- 800	I	0.002	4	86	86	40	
UR17/2-2 Opx 25* 56.89 b.d.l. 0.67 0.27 9.75 0.07	<i>Opx</i> 25* 56.89 b.d.l. 0.67 0.27 9.75 0.07	25* 56.89 b.d.l. 0.67 0.27 9.75 0.07	56.89 b.d.l. 0.67 0.27 9.75 0.07	39 b.d.l. 0.67 0.27 9.75 0.07	1. 0.67 0.27 9.75 0.07	0.27 9.75 0.07	9.75 0.07	0.07	3	2.04 0	.31 b.c	1.1. b.d	1.1. b.d	.1. 100	0 1.99		0.028	0.008).286	0	.002 1.	.67 0.0	- 112	Ι	Ι	4	85	84	5 1	
UR17/2-2 <i>Opx</i> 27* 57.02 b.d.l. 0.61 b.d.l. 9.57 0.07	<i>Opx</i> 27* 57.02 b.d.l. 0.61 b.d.l. 9.57 0.07	27* 57.02 b.d.l. 0.61 b.d.l. 9.57 0.07	57.02 b.d.l. 0.61 b.d.l. 9.57 0.07	12 b.d.l. 0.61 b.d.l. 9.57 0.07	1. 0.61 b.d.1. 9.57 0.07	b.d.l. 9.57 0.07	9.57 0.07	0.07	ŝ	2.45 0.	.28 b.c	1.1. b.d	1.1. b.d	.1. 100	0 1.99		0.025	1).280	0	.002 1.	.0 69.	- II	Ι	Ι	4	86	85	5 1	
UR17/2-2 <i>Opx</i> 8* 56.88 b.d.l. 0.68 b.d.l. 10.12 b.d.l.	<i>Opx</i> 8* 56.88 b.d.l. 0.68 b.d.l. 10.12 b.d.l.	8* 56.88 b.d.l. 0.68 b.d.l. 10.12 b.d.l.	56.88 b.d.l. 0.68 b.d.l. 10.12 b.d.l.	38 b.d.l. 0.68 b.d.l. 10.12 b.d.l.	1. 0.68 b.d.l. 10.12 b.d.l.	b.d.l. 10.12 b.d.l.	10.12 b.d.l.	o.d.l.	3	2.13 0	.19 b.c	1.1. b.d	1.1. b.d	.1. 100	0 1.99		0.028	1).296	Ι	- <u>-</u>	.68 0.0	- 100	Ι	Ι	4	85	84	5 0	
UR17/2-2 Opx 15* 56.38 b.d.l. 0.74 0.25 10.09 0.08	<i>Opx</i> 15* 56.38 b.d.l. 0.74 0.25 10.09 0.08	15* 56.38 b.d.l. 0.74 0.25 10.09 0.08	56.38 b.d.l. 0.74 0.25 10.09 0.08	38 b.d.l. 0.74 0.25 10.09 0.08	1. 0.74 0.25 10.09 0.08	0.25 10.09 0.08	10.09 0.08	0.08	ŝ	2.35 0	111 b.c	1.1. b.d	1.1. b.d	.1.	0 1.97	1	0.031	0.007	0.279 (0.016 0	.002 1.	0.0	- 104	Ι	I	4	86	86	4	
UR17/2-2 Opx 35* 56.97 b.d.l. 0.79 b.d.l. 9.61 0.12 3	<i>Opx</i> 35* 56.97 b.d.l. 0.79 b.d.l. 9.61 0.12 3	35* 56.97 b.d.l. 0.79 b.d.l. 9.61 0.12 3	56.97 b.d.l. 0.79 b.d.l. 9.61 0.12 3	77 b.d.l. 0.79 b.d.l. 9.61 0.12 3	1. 0.79 b.d.l. 9.61 0.12	b.d.l. 9.61 0.12	9.61 0.12	0.12	<u>~</u>	2.18 0.	.33 b.c	1.1. b.d	1.1. b.d	.1. 100	0 1.99		0.033		0.281	0	.004 1.	.68 0.(- 112	I	Ι	4	86	84	5 1	
UR17/2-2 Opx 37* 57.22 b.d.l. 0.68 b.d.l. 9.82 0.18 3	<i>Opx</i> 37* 57.22 b.d.l. 0.68 b.d.l. 9.82 0.18 3	37* 57.22 b.d.l. 0.68 b.d.l. 9.82 0.18 3	57.22 b.d.l. 0.68 b.d.l. 9.82 0.18 3	2 b.d.l. 0.68 b.d.l. 9.82 0.18 3	1. 0.68 b.d.l. 9.82 0.18 3	b.d.l. 9.82 0.18 3	9.82 0.18 3	0.18 3		1.89 0	.21 b.c	1.1. b.d	1.1. b.d	.1. 100	0 2.01		0.028).288	0	.005 1.	.67 0.0	- 800	I	Ι	4	85	83	6 0	
UR17/2-21 Opx 14* 56.10 b.d.1. 0.92 b.d.1. 9.50 0.16 3	I <i>Opx</i> 14* 56.10 b.d.l. 0.92 b.d.l. 9.50 0.16 3	14* 56.10 b.d.l. 0.92 b.d.l. 9.50 0.16 3	56.10 b.d.l. 0.92 b.d.l. 9.50 0.16 3	0 b.d.l. 0.92 b.d.l. 9.50 0.16 3	1. 0.92 b.d.l. 9.50 0.16 3	b.d.l. 9.50 0.16 3	9.50 0.16 3	0.16	~	2.92 0.	.39 b.c	1.1. b.d	1.1. b.d	.1. 100	0 1.96		0.038).226 (0.051 0	.005 1.	.71 0.0	- 15	Ι	Ι	4	86	88	2	
UR17/2-21 Opx 15 56.61 b.d.l. 1.02 b.d.l. 9.38 0.34 3	1 <i>Opx</i> 15 56.61 b.d.l. 1.02 b.d.l. 9.38 0.34 3	15 56.61 b.d.l. 1.02 b.d.l. 9.38 0.34 3	56.61 b.d.l. 1.02 b.d.l. 9.38 0.34 3	61 b.d.l. 1.02 b.d.l. 9.38 0.34 3	1. 1.02 b.d.l. 9.38 0.34 3	b.d.l. 9.38 0.34 3	9.38 0.34 3	0.34	-	2.36 0.	.30 b.c	1.1. b.d	1.1. b.d	.1. 100	0 1.98		0.042		0.271	0.003 0	.010 1.	.69 0.0	- 110	Ι	I	4	86	86	4	
UR17/2-21 Opx 16 56.80 b.d.l. 1.16 b.d.l. 9.21 0.22 3	1 <i>Opx</i> 16 56.80 b.d.l. 1.16 b.d.l. 9.21 0.22 3	16 56.80 b.d.l. 1.16 b.d.l. 9.21 0.22 3	56.80 b.d.l. 1.16 b.d.l. 9.21 0.22 3	30 b.d.l. 1.16 b.d.l. 9.21 0.22 3	1. 1.16 b.d.l. 9.21 0.22 3	b.d.l. 9.21 0.22 3	9.21 0.22 3	0.22 3		2.44 0	.17 b.¢	1.1. b.d	1.1. b.d	.1. 100) 1.98		0.048).269	0	.007 1.	.69 0.0	- 900	Ι	Ι	4	86	85	40	
UR17/2-21 Opx 17* 56.76 b.d.1 1.04 b.d.1. 9.49 0.19 3	1 <i>Opx</i> 17* 56.76 b.d.l. 1.04 b.d.l. 9.49 0.19 3	17* 56.76 b.d.l. 1.04 b.d.l. 9.49 0.19 3	56.76 b.d.l. 1.04 b.d.l. 9.49 0.19 33	76 b.d.l. 1.04 b.d.l. 9.49 0.19 3	1. 1.04 b.d.l. 9.49 0.19 3	b.d.l. 9.49 0.19 3	9.49 0.19 33	0.19 33		2.25 0.	.26 b.c	1.1. b.d	1.1. b.d	.1. 100	0 1.98		0.043		0.277	0	.006 1.	.68 0.(- 010	Ι	Ι	4	86	85	5 0	
UR17/2-21 Opx 29 57.86 b.d.l. 0.53 b.d.l. 7.84 0.27 3:	1 <i>Opx</i> 29 57.86 b.d.l. 0.53 b.d.l. 7.84 0.27 3:	29 57.86 b.d.l. 0.53 b.d.l. 7.84 0.27 3	57.86 b.d.l. 0.53 b.d.l. 7.84 0.27 3	6 b.d.l. 0.53 b.d.l. 7.84 0.27 3	1. 0.53 b.d.l. 7.84 0.27 3.	b.d.l. 7.84 0.27 3.	7.84 0.27 3.	0.27 33		3.51 b.	d.l. b.(1.1. b.d	1.1. b.d	.1. 100	0 2.01		0.022	1).228	0	.008 1.	.73	I	Ι	Ι	4	88	87	е Ю	С
UR17/2-21 Opx 30 57.41 b.d.l. 0.78 b.d.l. 9.18 0.04 3	1 <i>Opx</i> 30 57.41 b.d.1. 0.78 b.d.1. 9.18 0.04 3	30 57.41 b.d.l. 0.78 b.d.l. 9.18 0.04 3	57.41 b.d.l. 0.78 b.d.l. 9.18 0.04 3	1 b.d.l. 0.78 b.d.l. 9.18 0.04 3	1. 0.78 b.d.l. 9.18 0.04 3	b.d.l. 9.18 0.04 3	9.18 0.04 3	0.04 3		2.51 0.	.09 b.c	1.1. b.d	1.1. b.d	.1. 100	0 2.00		0.032).268	0	.001 1.	.0 69.	03	I	I	4	86	84	2	С
UR17/2-21 Opx 45 56.47 b.d.l. 0.90 b.d.l. 8.96 0.01 3	1 <i>Opx</i> 45 56.47 b.d.1. 0.90 b.d.1. 8.96 0.01 3	45 56.47 b.d.l. 0.90 b.d.l. 8.96 0.01 3	56.47 b.d.l. 0.90 b.d.l. 8.96 0.01 3	17 b.d.l. 0.90 b.d.l. 8.96 0.01 3	1. 0.90 b.d.l. 8.96 0.01 3	b.d.l. 8.96 0.01 3	8.96 0.01 3	0.01 3		3.46 0.	.20 b.c	1.1. b.d	1.1. b.d	.1. 100	0 1.96		0.037		0.221	.039		.73 0.0	- 00	Ι	I	4	87	88	-	
UR17/2-21 <i>Opx</i> 46* 57.19 b.d.l. 0.70 b.d.l. 8.35 0.15 3	[<i>Opx</i> 46* 57.19 b.d.1. 0.70 b.d.1. 8.35 0.15 3	46* 57.19 b.d.1. 0.70 b.d.1. 8.35 0.15 3	57.19 b.d.l. 0.70 b.d.l. 8.35 0.15 3	9 b.d.l. 0.70 b.d.l. 8.35 0.15 3	1. 0.70 b.d.l. 8.35 0.15 3	b.d.l. 8.35 0.15 3	8.35 0.15 3	0.15 3		3.58 0.	.02 b.c	1.1. b.d	1.1. b.d	.1. 100	0 1.99		0.029).242	0	.004 1.	.74 0.0	- 100	Ι	Ι	4	88	88	0	
UR17/2-21 Opx 53 56.85 b.d.l. 1.02 b.d.l. 8.38 0.21	[<i>Opx</i> 53 56.85 b.d.l. 1.02 b.d.l. 8.38 0.21	53 56.85 b.d.l. 1.02 b.d.l. 8.38 0.21	56.85 b.d.l. 1.02 b.d.l. 8.38 0.21	\$5 b.d.l. 1.02 b.d.l. 8.38 0.21	I. 1.02 b.d.l. 8.38 0.21	b.d.l. 8.38 0.21	8.38 0.21	0.21	ŝ	3.35 0	19 b.(1.1. b.c	1.1. b.d	.1. 100	0 1.98		0.042	1).235 (0 600.0	.006 1.	.73 0.0	- 200	I	I	4	88	88	0	-
UR17/2-21 Opx 17 56.81 b.d.l. 0.71 0.09 9.25 0.11	(<i>Opx</i> 17 56.81 b.d.l. 0.71 0.09 9.25 0.11	17 56.81 b.d.l. 0.71 0.09 9.25 0.11	56.81 b.d.l. 0.71 0.09 9.25 0.11	81 b.d.l. 0.71 0.09 9.25 0.11	1. 0.71 0.09 9.25 0.11	0.09 9.25 0.11	9.25 0.11	0.11	ŝ	2.49 0	.32 b.(1.1. b.c	1.1. 0.2	100	0 1.98		0.029	0.003 (0.270	0 	.003 1.).0 69.	- 112	Ι	0.006	4	86	85	4	
UR17/2-21 Opx 18 57.49 b.d.l. 0.66 b.d.l. 8.91 0.18	[<i>Opx</i> 18 57.49 b.d.l. 0.66 b.d.l. 8.91 0.18	18 57.49 b.d.l. 0.66 b.d.l. 8.91 0.18	57.49 b.d.l. 0.66 b.d.l. 8.91 0.18	¹⁹ b.d.l. 0.66 b.d.l. 8.91 0.18	I. 0.66 b.d.l. 8.91 0.18	b.d.l. 8.91 0.18	8.91 0.18	0.18	Ś	2.58 0	18 b.c	1.1. b.c	1.1. b.d	.1.	0 2.01		0.027	1).260	0 	.005 1.).0 69.	- 200	Ι	I	4	87	85	50	-
UR17/2-21 Opx* 2 56.06 0.07 0.79 0.14 8.85 0.22	O_{DX^*} 2 56.06 0.07 0.79 0.14 8.85 0.22	2 56.06 0.07 0.79 0.14 8.85 0.22	56.06 0.07 0.79 0.14 8.85 0.22	06 0.07 0.79 0.14 8.85 0.22	7 0.79 0.14 8.85 0.22	0.14 8.85 0.22	8.85 0.22	0.22	ŝ	2.99 0	.29 b.(1.1. 0.(00 0.0	100	0 1.96 (0.002	0.033	0.004 0).223 (0.036 0	.007 1.	.72 0.0	- II	Ι	0.003	4	88	88	1	
$UR17/2-2I \mid Opx^* \mid 3 \mid 57.40 \mid 0.05 \mid 0.68 \mid 0.10 \mid 9.31 \mid 0.20$	$\begin{bmatrix} Opx^* \\ 3 \end{bmatrix} 3 \begin{bmatrix} 57.40 \\ 0.05 \\ 0.05 \end{bmatrix} 0.68 \begin{bmatrix} 0.10 \\ 9.31 \\ 0.20 \end{bmatrix}$	3 57.40 0.05 0.68 0.10 9.31 0.20	57.40 0.05 0.68 0.10 9.31 0.20	0 0.05 0.68 0.10 9.31 0.20	5 0.68 0.10 9.31 0.20	0.10 9.31 0.20	9.31 0.20	0.20	Ś	2.96 0	15 b.c	1.1. b.c	1.1. 0.0	101 60	1 1.99	0.001	0.028	0.003).269	0 	.006 1.	.70 0.0	00	Ι	0.003	4	86	86	4	
UR17/2-21 <i>Opx</i> * 7 57.69 0.10 0.84 0.17 9.00 0.22	$\begin{bmatrix} Opx^* & 7 \\ 57.69 \\ 0.10 \\ 0.84 \\ 0.17 \\ 9.00 \\ 0.22 \end{bmatrix}$	7 57.69 0.10 0.84 0.17 9.00 0.22	<i>57.</i> 69 0.10 0.84 0.17 9.00 0.22	9 0.10 0.84 0.17 9.00 0.22	0.84 0.17 9.00 0.22	0.17 9.00 0.22	9.00 0.22	0.22	\mathfrak{c}	3.14 0.	.29 b.c	1.1. 0.(0.0 OC	9 102	2 1.98 (0.003	0.034	0.005 ().259	0	.006 1.	.70 0.0	- 110	Ι	0.003	4	86	86	4	
$UR17/2-2I$ Opx^* 8 57.61 0.08 0.771 0.11 9.10 0.17	$\begin{bmatrix} Opx^* & 8 57.61 0.08 0.771 0.11 9.10 0.17 \end{bmatrix}$	8 57.61 0.08 0.771 0.11 9.10 0.17	57.61 0.08 0.771 0.11 9.10 0.17	61 0.08 0.771 0.11 9.10 0.17	3 0.771 0.11 9.10 0.17	0.11 9.10 0.17	9.10 0.17	0.17	Ś	3.41 0	.23 b.c	1.1. 0.(01 0.0	8 102	2 1.98 (0.002	0.031	0.003 ().253 (008 0	.005 1.	.71 0.0	- 60	0.00	0 0.002	4	87	87	3	
UR17/2-21 Opx* 11 56.12 0.06 0.71 0.11 8.93 0.23	Opx^* 11 56.12 0.06 0.71 0.11 8.93 0.23	11 56.12 0.06 0.71 0.11 8.93 0.23	56.12 0.06 0.71 0.11 8.93 0.23	2 0.06 0.71 0.11 8.93 0.23	0.71 0.11 8.93 0.23	0.11 8.93 0.23	8.93 0.23	0.23	S.	3.15 0	13 b.c	1.1 0.(01 0.0	100	0 1.96 (0.002	0.029	0.003 (0.221	0.040	.007 1.	.73 0.0	05	0.00	0 0.002	4	89	88	1 0	
UR17/2-21 Opx* 13 56.31 0.06 0.74 0.10 9.39 0.21	O_{DX^*} 13 56.31 0.06 0.74 0.10 9.39 0.21	13 56.31 0.06 0.74 0.10 9.39 0.21	56.31 0.06 0.74 0.10 9.39 0.21	1 0.06 0.74 0.10 9.39 0.21	0.74 0.10 9.39 0.21	0.10 9.39 0.21	9.39 0.21	0.21	ς.	3.36 0.	.25 b.c	1.1. b.d	1.1. 0.0	901 60	0 1.95 (0.002	0.030	0.003 (0.212 0	0 190.0	.006 1.	.72 0.0	- 60	Ι	0.003	4	89	89	1 0	
UR17/2-21 Opx* 15 57.12 0.08 0.86 0.14 9.11 0.21 3	I Opx* 15 57.12 0.08 0.86 0.14 9.11 0.21 3	15 57.12 0.08 0.86 0.14 9.11 0.21 3	57.12 0.08 0.86 0.14 9.11 0.21 3	2 0.08 0.86 0.14 9.11 0.21 3	3 0.86 0.14 9.11 0.21 3	0.14 9.11 0.21 3	9.11 0.21 3	0.21	~	2.91 0.	.39 b.c	1.1. b.d	1.1. 0.0	101 60	1 1.98 (0.002	0.035	0.004 0).258 C	00060	.006 1.	.70 0.0	- 15	Ι	0.003	4	87	86	3 1	
UR17/2-21 Opx* 16 57.12 0.06 0.82 0.11 9.19 0.21 3	$\begin{bmatrix} Opx^* & 16 & 57.12 & 0.06 & 0.82 & 0.11 & 9.19 & 0.21 & 3 \\ \end{bmatrix}$	16 57.12 0.06 0.82 0.11 9.19 0.21 3	57.12 0.06 0.82 0.11 9.19 0.21 3	2 0.06 0.82 0.11 9.19 0.21 3	0.82 0.11 9.19 0.21 3	0.11 9.19 0.21 3	9.19 0.21 3	0.21 3	-	3.22 0	.27 0.	01 0.(0.0 0.0	10]	1 1.97	0.002	0.033	0.003 ().245 (020 0	.006 1.	.71 0.0	0.0	- 10	0.001	4	87	87	3 1	
UR17/2-21 Opx* 20 57.14 0.08 0.83 0.11 9.26 0.23	Opx^* 20 57.14 0.08 0.83 0.11 9.26 0.23	20 57.14 0.08 0.83 0.11 9.26 0.23	57.14 0.08 0.83 0.11 9.26 0.23	4 0.08 0.83 0.11 9.26 0.23	3 0.83 0.11 9.26 0.23	0.11 9.26 0.23	9.26 0.23	0.23	ŝ	3.02 0	.27 b.c	1.1. b.d	1.1 0.0	10]	1 1.97	0.002	0.034	0.003 ().258 C	010 0	.007 1.	.70 0.0	- 010	Ι	0.001	4	87	86	3	
UR17/2-21 Opx* 23 57.77 0.05 0.80 0.08 9.27 0.21	Opx^* 23 57.77 0.05 0.80 0.08 9.27 0.21	23 57.77 0.05 0.80 0.08 9.27 0.21	57.77 0.05 0.80 0.08 9.27 0.21	7 0.05 0.80 0.08 9.27 0.21	5 0.80 0.08 9.27 0.21	0.08 9.27 0.21	9.27 0.21	0.21	3.	3.37 0	.18 b.c	1.1. 0.(0.0	102	2 1.98	0.001	0.032	0.002 0	0.260 C	0060	.006 1.	70 0.0	- 100	0.00	1 0.002	4	87	86	3 0	
$UR17/2-21$ Opx^* 27 57.25 0.09 0.78 0.10 9.21 0.20	Opx^* 27 57.25 0.09 0.78 0.10 9.21 0.20	27 57.25 0.09 0.78 0.10 9.21 0.20	57.25 0.09 0.78 0.10 9.21 0.20	5 0.09 0.78 0.10 9.21 0.20	0.78 0.10 9.21 0.20	0.10 9.21 0.20	9.21 0.20	0.2(3.	2.98 0.	.24 0.	01 b.d	1.1. 0.0	101 60	1 1.98 (0.002	0.032	0.003 0	0.263 0	0.003 0	.006 1.	.70 0.0	0.0 0.0	- 10	0.003	4	86	86	3 0	
UR17/2-21 Opx* 28 56.63 0.07 0.75 0.11 9.10 0.2	<i>Opx</i> * 28 56.63 0.07 0.75 0.11 9.10 0.2	28 56.63 0.07 0.75 0.11 9.10 0.2	56.63 0.07 0.75 0.11 9.10 0.2	3 0.07 0.75 0.11 9.10 0.2	7 0.75 0.11 9.10 0.2	0.11 9.10 0.2	9.10 0.2	0.2	3.3.	2.99 0	.21 0.	01 b.d	1.1. 0.0	100	0 1.97	0.002	0.031	0.003 0	0.243 0	022 0	.007 1.	.71 0.0	0.0	- 10	0.002	4	88	87	2	
UR17/2-211 Opx 2* 55.96 b.d.l. 1.08 b.d.l. 9.89 b.d.l.	I <i>Opx</i> 2* 55.96 b.d.l. 1.08 b.d.l. 9.89 b.d.l.	2* 55.96 b.d.l. 1.08 b.d.l. 9.89 b.d.l.	55.96 b.d.l. 1.08 b.d.l. 9.89 b.d.l.	1.08 b.d.l. 9.89 b.d.l.	1.08 b.d.l. 9.89 b.d.l.	b.d.l. 9.89 b.d.l.	9.89 b.d.l	.d.l	ŝ	2.59 0.	.48 b.c	1.1. b.d	1.1. b.d	.1. 100	0 1.95		0.044).240 C	.049	- <u>-</u> -	.70 0.0	- 118	Ι	Ι	4	85	87	2	
UR17/2-211 Opx 8 56.32 b.d.l. 0.87 b.d.l. 9.88 0.26	I Opx 8 56.32 b.d.l. 0.87 b.d.l. 9.88 0.26 1	8 56.32 b.d.l. 0.87 b.d.l. 9.88 0.26	56.32 b.d.l. 0.87 b.d.l. 9.88 0.26	12 b.d.l. 0.87 b.d.l. 9.88 0.26	0.87 b.d.l. 9.88 0.26	b.d.l. 9.88 0.26	9.88 0.26	0.26	ŝ	2.37 0	.31 b.c	1.1. b.d	1.1. b.d	.1. 100	0 1.97		0.036	1	0.263 (0.026 0	.008 1.	.0 69.	- 112	Ι	I	4	85	86	3	
UR17/2-211 Opx 14 57.21 b.d.1. 0.91 b.d.1. 9.65 b.d.1. 32	II Opx 14 57.21 b.d.l. 0.91 b.d.l. 9.65 b.d.l. 32	14 57.21 b.d.l. 0.91 b.d.l. 9.65 b.d.l. 32	57.21 b.d.l. 0.91 b.d.l. 9.65 b.d.l. 32	1 b.d.l. 0.91 b.d.l. 9.65 b.d.l. 32	1. 0.91 b.d.l. 9.65 b.d.l. 32	b.d.l. 9.65 b.d.l. 32	9.65 b.d.l. 32	o.d.l. 32	(1	0.05 0	.18 b.c	1.1. b.d	1.1. b.d	.1. 100) 2.00		0.038).282	I	-	.67 0.0	- 00	I	I	4	86	84	9	0

	Wo	0	1	0	0	0	0	0	- 1	0 0) —	0	0		- 0	-		0 0		1				1	-	0	-	0	>	0	-
	n Fs	6 14	4 15	8 12	6 14	4 15	6 14	2 18	0 20	2 18 9 11	4 15	7 12	5 14		6 14 6	1 9	5 15	7 I3	8 22 8 22	9 20	8 22	8 21 0 20	8 21	8 21	4 16	3 16	2 17	3 16	2	5 15	4 16
	^g E	87 8	86 &	86 8	86 8	86 8.	87 8	82 8	81 8	8 7 8 7 8 8	80 80	86 8	87 8		80 8	86 9	86 8	2 X X X X X X X X X X X X X X X X X X X	6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	80 7	79 7	6/ 7 7 02	78 7	81 73	84 84	84 8	83	84 8	-	84 8	83 8
	Jym- ≠ Ma	4	4	4	4	4	4	4	4	4 4	. 4	4	4 •	4 4	+ 4	4	4	4 ~	14	4	4	4 ~	14	4	4	4	4	4	-	4	4
	ī	Ι	Ι	.002	I	004	I	Ι	I		I	I	I			I				1	I			1	1	Ι	I	I		1	I
	K		Ι	0	I	0	I	I	I		I	I	I			Ι	I	I		I	1	I		1	I	I	I	I			
	Na	Ι	Ι	Ι	Ι	1	I	Ι			I	I	Ι			I	I	I		I					Ι	Ι	Ι	I		Ι	
	Са	0.006	0.012	0.006	0.004	0.008	I	0.010	0.012	0.000	0.011	0.008	0.008	CUU.U	0.007	0.012	0.015	0.008	0.013	0.013	0.011	0.014	0.013	0.013	0.011	0.010	0.012	0,009		0.006	0.012
	Mg	1.70	1.68	1.71	1.69	1.67	1.72	1.60	1.58	1.60	1.68	1.71	1.70	1.69 1.69	1.70	1.74	1.67	1.71 1 55	1.54	1.55	1.53	1.54	1.53	1.55	1.65	1.64	1.63	164		1.66	1.64
	Mn	0.004	0.004	0.004	0.004	0.004	0.002	0.010	0.005	0.014	0.006	0.010	0.005	0.002	0.007	0.004	0.007	0.008	0.009	0.012	0.014	0.012	0.011	0.011	0.006	0.004	0.005	0.008	00000	0.006	0.005
	Fe ³⁺	I	I	0.044	I	I	I	0.007		0.007		0.052	I	- 0.028		0.127		0.018		I	I	- 000	0.006	I	0.009	I	Ι	I		0.014	0.016
	Fe ²⁺	0.264	0.278	0.235	0.279	0.277	0.256	0.344	0.362	0.345 0.209	0.271	0.236	0.257	0.270	0.268	0.164	0.279	0.248	0.404	0.397	0.398	0.408	0.420	0.370	0.308	0.316	0.324	0 377		0.293	0.308
	Cr	I	I	Ι	I	0.012	I	I	I		I	I	0.004	0.003		I	I			I	I	I		I	I	I	Ι	I		Ι	0.004
	M	0.045	0.035	0.032	0.040	0.040	0.028	0.058	0.046	0.054	0.038	0.031	0.033	0.034	0.040	0.033	0.038	0.034	0.048	0.048	0.062	0.047	0.052	0.063	0.045	0.048	0.053	0 047	2000	0.051	0.059
	Ті	I	I	Ι	I	I	I	Ι	Ι		I	I	I			I	I	I		0.006	I	I		I	I	I	Ι	I		I	Ι
	Si	1.99	2.00	1.96	1.98	1.99	2.00	1.97	1.99	1.97 1 96	2.00	1.96	2.00	96.1 1 06	1.98	1.92	1.99	1.97	1.99 1.99	1.97	1.98	1.98	1.97	2.00	1.97	1.98	1.98	1 98		1.97	1.96
	Сум- ма	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100		100	100
	NiO	b.d.l.	b.d.l.	0.08	b.d.l.	0.13	b.d.l.	b.d.l.	b.d.l.	b.d.l. h d l	b.d.l.	b.d.l.	b.d.l.	р.d.I. h d I	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	гр Ч		b.d.l.	b.d.l.
	K ₂ 0	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.I.	b.d.l.	b.d.l.	b.d.l.	р.d.I. h.d.I	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	ГРЧ		b.d.l.	b.d.l.
	Na ₂ O	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l. Ь.d.l	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.u.l. b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	ГРЧ		b.d.l.	b.d.l.
	CaO	0.16	0.33	0.16	0.12	0.22	b.d.l.	0.25	0.32	0.24	0.28	0.20	0.20	0.13	0.18	0.31	0.39	0.22	0.34	0.33	0.29	0.37	0.34	0.35	0.30	0.26	0.31	0 25	21.0	0.17	0.31
	MgO	32.61	32.14	32.98	32.48	31.94	33.04	30.46	30.01	30.39 33 53	32.22	32.76	32.64	32.38 37 34	32.64	33.56	32.09	32.93	28.94	29.25	28.83	28.87	28.67	29.18	31.47	31.36	30.97	31.20		31.81	31.19
	MnO	0.13	0.12	0.14	0.15	0.12	0.07	0.32	0.16	0.46	0.20	0.32	0.17	0.08	0.23	0.14	0.25	0.27	0:30	0.41	0.45	0.39	0.35	0.35	0.20	0.13	0.17	77.0		0.20	0.17
	FeO	9.05	9.52	9.57	9.56	9.47	8.80	11.90	12.21	11.90 9.75	9.28	9.87	8.81	C2.6 77 0	9.19	9.99	9.55	9.10	13.54	13.33	13.34	13.66 13.51	14.26	12.45	10.78	10.77	10.99	10.93		10.46	11.03
	Cr ₂ 03	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.44	b.d.l.	b.d.l.	b.d.l.	b.d.l. h.d.l	b.d.l.	b.d.l.	0.15	0.12	b.d.l.	b.d.l.	b.d.l.	h.d.l. له ط	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	Чl		b.d.l.	0.14
	AI_2O_3	1.10	0.86	0.79	0.98	0.96	0.69	1.38	1.11	1.29 0.57	0.93	0.76	0.79	1.07	0.97	0.80	0.92	0.82	1.13 1.13	1.15	1.48	1.11	1.23	1.50	1.09	1.17	1.28	1 14		1.24	1.43
	TiO ₂	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l. Ь.d.l	b.d.l.	b.d.l.	b.d.l.	b.d.l. h.d.l	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.22	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	ГРЧ		b.d.l.	b.d.l.
e	SiO ₂	56.95	57.04	56.26	56.72	56.71	57.39	55.69	56.19	55.72 56 37	57.09	56.09	57.24 57.24	cn./c	56.79	55.20	56.80	56.66 55.00	55.74	55.30	55.60	55.60 55.75	55.15	56.17	56.16	56.31	56.28	56.21		56.12	55.73
жени	№ точ- ки	15	16*	27	51*	55	56*	1	5*	* *	11*	12	13*	87 70*	16°	8*	17*	21*	- ന	4	10	12	21*	23*	4	11	13	14	-	*15	16
подо	Ми- нерал	Opx	Opx	Opx	Opx	Opx	Opx	Opx	Opx		xdo	Opx	<i>Opx</i>			O_{px}	0px	Copx		O_{px}	Opx	Chx		O_{px}	xd0	Opx	Opx	Om	rdo	XdO	Opx
а Д1. Пр	Образец	UR17/2- 211	UR17/2- 211	211 UR17/2- 211	UR17/2- 211	UR17/2- 211	UR17/2- 211	UR17/2-3b	UR17/2-3b	UR17/2-3b UR17/2-3b	UR17/2-3b	UR17/2-3b	UR17/2-3b	UK1//2-3b UR17/2-3b	UR17/2-30	UR17/2-3v	UR17/2-3v	UR17/2-3v	UR17/2-2a UR17/2-2a	UR17/2-2a	UR17/2-2a	UR17/2-2a	UR17/2-2a UR17/2-2a	UR17/2-2a	UR17/2- 21V	UR17/2- 21V	UR17/2-	21V LTR 1772-	2IV	UR17/2-	21V UR17/2- 21V
Таблиц	Порода	q2H-1hq	Phl-Hzb	dzH-lhA	q2H-1yd	Phl-Hzb	Phl-Hzb	Phl-Hzb	Dhl-Hzb	PhI-Hzb DhI-Hzb	Phl-Hzb	Phl-Hzb	Phl-Hzb	d2H-Ind d2H-Ind	PhI-Hzb	Phl-Hzb	Phl-Hzb	d2H-Ind d2H-Ind	Phi-Opt	Phl-Opt	Phl-Opt	PhI-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Ph1-Ont		Phl-Opt	Phl-Opt

593

ГЕОХИМИЯ

том 68 № 6 2023

Wo	0	0	1	0	1	0	1	0	0	1	0	0	1	0	0	0	1	1	1	0	0	0	0	1	0	0	1	0	1	1	-	1	1
n Fs	4 15	3 17	9 21	9 21	7 23	8 22	7 22	6 14	4 16	2 18	2 18	2 17	2 17	9 21	2 17	0 20	9 21	2 17	1 18	9 21	0 20	3 17	8 22	0 20	9 21	2 18	1 19	9 21	5 25	9 21	0 19	7 22	7 22
Mg E	84 8.	84	80 7	81 7	80 7	80 73	81 7	85 8	83 8.	82 8.	83	84	81 8.	81 7	81 8	80 80	79 79	80 83	81 8	78 79	80 80	81 8.	79 7	79 80	79 7	80 8	79 8	78 79	76 7:	77 7	79 8	78 7	76 7
ym- ma	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
 Z	1	I	Ι	1	Ι	Ι	I	I	Ι	1	Ι	I	I	I	I	I	Ι	Ι	Ι	I	Ι	I	Ι	Ι	Ι	Ι	I	I	I	I		Ι	
a K	I	I	I		I	I			I		I				I	I	I	I		I		I	I	I	I	I						I	
Ž	- 6	7	0	5	-	8	ا س	I	5	ا س	- 9	9	- 7	9	8	9			0	0	9	0	8			8	 	9	4	 	<u> </u>	-	-
Ca	0.00	0.00	0.01	0.00	0.01	0.00	0.01	Ι	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.01	0.010	0.00	0.010	0.00	0.01	0.00	0.00	0.01	0.00	0.01	0.01	0.01	0.01	0.01
Mg	1.65	1.64	1.56	1.56	1.53	1.55	1.55	1.69	1.65	1.61	1.63	1.61	1.60	1.57	1.61	1.58	1.54	1.59	1.60	1.54	1.57	1.61	1.54	1.55	1.54	1.59	1.57	1.54	1.48	1.52	1.55	1.51	1.50
Mn	0.008	0.004	0.006	0.008	0.008	0.005	0.007	0.005	Ι	0.007	0.006	0.006	0.008	0.008	0.008	0.006	0.010	0.009	0.007	0.012	0.015	0.011	0.005	0.007	0.014	0.011	0.005	0.010	0.010	0.011	0.016	0.012	0.009
Fe^{3+}	0.012	Ι	Ι	Ι	I	I	I	0.030	0.013	I	Ι	I	0.034		0.045	Ι	0.002	0.069	0.009	0.029	0.006	0.053	Ι	0.028	I	0.044	0.054	0.027	I	0.057	0.046	0.005	0.034
Fe ²⁺	0.300	0.321).386	0.378).393).385	0.371	0.270	0.317	0.343	0.329	0.316).338	0.371).336).386	0.407	0.337).364	0.407).393).323	0.422).384	0.410	0.348	0.365	0.405	0.455	0.398	0.373	0.434).433
Ċ									004 (0.004 (0.004 (005 (001 0	004 0	0.003						0.003 (
হ	052	061	052	051	065	049	044	048	047 (043	042	860	048	052	037	037	047 (030	020	042	030 (032	044	048 (045 (031 (038 (046	048	056	058	059	047 0
12	- 0.	- -	- 0.		- -	<u>;</u>	- -	- -	ö		- -	- 0.	<u>;</u>	- 0			- 0.	03 0.	0.0	- -	- -	0.0	000	0.0	- -	- -	- 0	0.0	05 0.	- -	0	- 0.	<u> </u>
	- 10	- 16	- 66	- 66	00	00	- 02	- 96	- 16	- 86	- 66	- 96	- 96	- 66	- 96	- 86	- 10	95 0.0	98 0.0	- 96	- 86	96 0.(98 0.0	96 0.(- 86	- 96	95 -	96 0.(90 66	94	95	- 16	- 96
- W- 13	00 1.	00 1.	00 1.	00 1.	00 2.	00 2.	00 2.	00 1.	00 1.	00 1.	00 1.	00 1.	00 1.	00 1.	00 1.	00 1.	00 1.	00 1.	00 1.	00 1.	00 1.	00 1.	00 1.	00 1.	00 1.	00 1.	00 1.	00 1.	00 1.	00 1.	00 1.	00 1.	00 1.
io S 4	d.l. 1	d.1.	d.l.	d.l.	d.1.	d.1. 1)	d.l.	d.l.	d.l.	d.l.	d.l.	d.l.	d.l. 1	d.l.	d.l. 1	d.1.	d.l.	d.l.	d.l.	d.1.	d.l.	d.1.	d.l. 10	d.l.	d.1.	d.1.	d.l.	d.l.	d.l.	d.1.	d.1.	d.l.	d.l.
	1.1. b.	1.1 b.	1.1. b.e	1.1. b.	1.1 b.	1.1 b.4	1.1 b.	1.1 b.	1.1. b.e	1.1. b.	1.1. b.e	1.1. b.	1.1 b.e	1.1. b.	1.1. b.e	1.1 b.	1.1 b.	1.1. b.	1.1. b.e	1.1. b.	1.1. b.	1.1. b.	1.1 b.	1.1 b.									
20 K	1.1. b.e	l.l. b.e	1.1. b.e	1.1. b.e	I.I. b.e	1.1. b.e	1.1. b.e	1.1. b.e	1.1. b.e	l.l. b.e	l.l. b.e	1.1. b.e	I.I. b.e	I.I. b.e	1.1. b.e	l.l. b.e	1.1. b.																
0 Na	5 b.c	5 b.c	6 b.c	2 b.d	0 b.d	2 b.c	3 b.c	L. b.c	4 b.c	4 b.d	7 b.d	6 b.c	1 b.c	6 b.c	1 b.c	6 b.c	5 b.c	5 b.c	7 b.c	5 b.c	5 b.d	5 b.c	1 b.c	5 b.d	8 b.c	0 b.c	4 b.d	5 b.d	7 b.c	6 b.c	9 b.c	9 b.c	5 b.c
Ca	3 0.2	0 0.0	5 0.2	3 0.1	2 0.3	8 0.2	3 0.3	4 b.d	0 0.1	4 0.3	7 0.ľ	1 0.1	5 0.3	8 0.1	4 0.2	8 0.1	1 0.3	5 0.3	5 0.2	2 0.2	1 0.1	9 0.2	7 0.2	6 0.3	4 0.1	4 0.2	7 0.3	7 0.1	2 0.3	9 0.3	4 0.2	1 0.2	9 0.4
Mg	31.5	31.3	29.4	29.5	28.7	29.1	29.2	32.3	. 31.4	30.6	30.9	30.7	30.3	29.6	30.4	29.8	29.0	30.0	30.3	28.8	29.5	30.5	28.9	29.2	29.0	30.1	29.4	28.9	27.6	28.4	29.1	28.3	27.9
MnC	0.26	0.13	0.20	0.27	0.26	0.29	0.23	0.18	h.d.l	0.22	0.20	0.19	0.26	0.25	0.28	0.21	0.33	0.30	0.24	0.38	0.50	0.38	0.15	0.24	0.47	0.37	0.30	0.32	0.33	0.36	0.53	0.40	0.31
FeO	10.65	10.92	12.98	12.73	13.19	12.95	12.46	10.24	11.20	11.62	11.18	10.73	12.58	12.49	12.86	13.01	13.73	13.65	12.61	14.61	13.40	12.69	14.13	13.84	13.75	13.18	14.07	14.47	15.13	15.18	14.02	14.65	15.53
Cr ₂ O ₃	b.d.l.	0.15	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.15	b.d.l.	b.d.l.	b.d.l.	0.13	b.d.l.	b.d.l.	0.16	0.03	0.13	0.10	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.11							
Al ₂ O ₃	1.25	1.48	1.23	1.23	1.55	1.18	1.06	1.17	1.14	1.04	1.01	2.36	1.15	1.24	0.88	0.89	1.11	0.71	0.47	0.99	0.71	0.76	1.04	1.15	1.06	0.73	0.91	1.10	1.12	1.33	1.37	1.39	1.10
TiO ₂	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.12	0.09	b.d.l.	b.d.l.	0.05	0.01	0.05	b.d.l.	b.d.l.	b.d.l.	0.08	0.20	b.d.l.	b.d.l.	b.d.l.	b.d.l.											
SiO ₂	56.05	56.12	55.88	56.12	55.97	56.18	56.68	56.08	55.97	56.14	56.47	55.84	55.36	56.19	55.33	55.85	55.32	54.81	55.95	54.95	55.61	55.27	55.49	54.94	55.46	55.25	54.80	54.91	55.23	54.28	54.65	54.97	54.51
№ Юч-	28	29	32	35*	36*	37	41	45*	51*	52	53*	56	1*	2	3	12	19	20	21	22	23	24	25	26	33	34	42	43*	44*	57	58*	59	60
Ми- не- ¹ рал	Opx	Opx	Opx	Opx	Opx	Opx	Ngx	Opx																									
Образец	UR17/2-2IV	UR17/2-3a																															
Порода	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt											

Таблица Д1. Продолжение

|--|

ние
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃
b.d.l. 1.26 b.d.l.
b.d.l. 1.52 b.d.l. 15
b.d.l. 1.66 b.d.l. 15.1
b.d.l. 1.20 b.d.l. 14.6
b.d.l. 1.52 b.d.l. 24.9
b.d.l. 1.05 b.d.l. 21.41
b.d.l. 1.44 b.d.l. 23.66
b.d.l. 0.96 b.d.l. 23.24
b.d.l. 1.31 b.d.l. 24.11
b.d.l. 1.26 b.d.l. 24.68
b.d.l. 1.50 b.d.l. 23.51
b.d.l. 1.38 b.d.l. 21.11
b.d.l. 1.56 b.d.l. 23.69
b.d.l. 1.52 b.d.l. 22.06
b.d.l. 1.83 b.d.l. 22.79
b.d.l. 1.66 b.d.l. 23.13
b.d.l. 1.63 b.d.l. 25.57 (
b.d.l. 1.78 b.d.l. 22.54 0
b.d.l. 1.26 b.d.l. 22.96 (
b.d.l. 1.94 b.d.l. 20.63 (
b.d.l. 1.38 b.d.l. 24.32
b.d.l. 1.22 b.d.l. 23.11
b.d.l. 0.87 b.d.l. 29.31
b.d.l. 1.34 b.d.l. 23.68
b.d.l. 1.38 b.d.l. 30.25
b.d.l. 0.99 b.d.l. 30.07
b.d.l. 1.41 b.d.l. 25.74
b.d.l. 1.44 b.d.l. 23.07
b.d.l. 1.40 b.d.l. 13.29
b.d.l. 1.47 b.d.l. 13.52
b.d.l. 1.56 b.d.l. 13.87
b.d.l. 1.27 b.d.l. 13.29

595

Nº 6

лица д 1. 1.	Hod -	ļ				ļ		ľ			ľ	ļ	ļ					ľ	Ì	ľ	ľ	ľ				
ода Образец	Ми- не- рал	N₂ Toy- Kn	SiO ₂	TiO ₂	Al ₂ O ₃	Cr ₂ O ₃	FeO	Ano N	MgO (CaO 1	Na ₂ O	K ₂ O	NiO	Сум- ма	Si	Τ	A	C	Fe ²⁺	Fe ³⁺	Mn	Mg	Ca	Na	×	ïZ
Lhz UR17/2	Cpx	2	54.46	b.d.l.	0.89	0.36	2.49 (0.05 1	7.41 2	94.34	b.d.l.	b.d.l.	b.d.l.	100	1.98		0.038 (010 (0.076	-	0.002 (0.944 0	.949		1	I
Lhz UR17/2	Cpx	ŝ	54.17	0.16	1.17	0.52	2.74 b	.d.l. 1	7.01	24.22	b.d.l.	b.d.l.	b.d.l.	100	1.98 (0.004 (050 (0.015 0	.084	I		0.925 0	.946	I	1	I
Lhz UR17/2	C_{px}	18*	54.89	b.d.l.	0.63	0.34	2.40 (0.05 1	7.68 2	24.00	b.d.l.	b.d.l.	b.d.l.	100	2.00		0.027 (010 0	0.073	1	0.002	0.958 0	.935	I	1	Ι
-Lhz UR17/2	C_{px}	25*	54.12	b.d.l.	0.73	0.33	3.51 (0.13 1	8.05	23.12	b.d.l.	b.d.l.	b.d.l.	100	1.97		0.031 (010 0	0.085 0	0.022 0	0.004 (0.979 0	106.0	I	1	Ι
-Lhz UR17/2	C_{px}	45	54.30	b.d.l.	0.85	0.30	2.38 b	.d.l. 1	7.51 2	24.66	b.d.l.	b.d.l.	b.d.l.	100	1.97		0.036 0	0000	0.065 (0.008		0.949 0	0960	I		Ι
-Lhz UR17/2	Cpx	46	54.38	0.17	0.77	0.07	2.80 (0.07	8.06 2	3.66	b.d.l.	b.d.l.	b.d.l.	100	1.97	0.005 (033 (002 0	0.079 0	0.006 0	0.002	0.978 0	.921	I		I
- <i>Lhz</i> UR17/2	Cpx	48	54.48	b.d.l.	0.68	0.19	2.59 b	.d.l. 1	7.42	94.64	b.d.l.	b.d.l.	b.d.l.	100	1.98		0.029 0	0006 (077 0	0.002		0.945 0	.960	I		Ι
-Lhz UR17/2	Cpx	58	54.16	b.d.l.	1.01	0.51	2.52 (0.01	7.47	24.11	0.20	b.d.l.	b.d.l.	100	1.97		043 (0.015 0	0.055 0	0.022 0	0.000	0.946 0	0.938 0	0.014	1	T
- <i>Lhz</i> UR17/2	Cpx	59	54.15	b.d.l.	0.96	0.37	2.87 (0.07	7.41	24.11	0.07	b.d.l.	b.d.l.	100	1.97		.041 (011 0	0.074 (0.013 0	0.002 (0.944 0	.940 0	.005	1	I
-Lhz UR17/2	C_{px}	09	54.19	0.12	1.00	0.29	2.95 (0.07	6.92	94.34	0.13	b.d.l.	b.d.l.	100	1.97 (0.003 0	.043 (0.008 (0.088 (0.002 0	0.002	0.919 0	050 0	600.	I	Ι
- <i>Lhz</i> UR17/2	Cpx	61*	54.88	b.d.l.	0.80	0.19	2.61 b	n.d.l. 1	7.11 2	24.41	b.d.l.	b.d.l.	b.d.l.	100	2.00		0.034 0	0006 (080.	Ι		0.929 0	.953	Ι		Ι
- <i>Lhz</i> UR17/2	Cpx^*	36	55.09	0.11	0.73	0.12	2.30 (0.07	7.83 2	24.92	0.08	b.d.l.	0.04	101	1.97	0.003 (0.031 0	0.003 0	0.053 (0.016 0	0.002	0.953 0	0.957 0	.006	0	.001
- <i>Lhz</i> UR17/2	Cpx^*	38	54.66	0.16	0.97	0.28	2.61 (0.10	7.34 2	24.74	0.13	0.00	0.05	101	1.97	0.004 (0.041 (0.008 0	0.065 (0.014 0	0.003	0.931 0	.955 0	600.	-	.001
- <i>Lhz</i> UR17/2	Cpx^*	40	54.86	0.15	1.04	0.20	2.90 (0.08	7.32 2	24.59	0.12	0.01	0.06	101	1.97	0.004 0	0.044	0006 (0.079 0	0.008 0	0.002	0.928 0	.947 0	008 0	001 0	.002
- <i>Lhz</i> UR17/2	Cpx^*	44	55.45	0.08	0.72	0.07	2.54 (0.08	7.81 2	25.02	0.09	0.00	0.04	102	1.98 (0.002 (030 0	002 0	0.061 (0.015 0	0.002	0.947 0	.956 0	.006	-	.001
- <i>Lhz</i> UR17/2	Cpx^*	50	55.30	0.13	0.79	0.13	2.49 (0.10	7.84 2	94.79	0.09	0.01	0.04	102	1.98 (0.004 (0.033 0	004 0	0.063 (0.012 0	0.003	0.950 0	.949 0	006 0	001 0	.001
-Lhz UR17/2	Cpx^*	51	55.52	0.15	0.91	0.08	2.57 (0.08	7.62	24.77	0.10	b.d.l.	0.03	102	1.98 (0.004 (0.038 (002 0	0.077		0.002	0.938 0	.948 0	.007	0	.001
-Lhz UR17/2	Cpx^*	54	54.61	0.14	1.07	0.22	2.79 (0.10	7.59 2	24.42	0.19	0.00	0.07	101	1.96 (0.004 0	0.045 0	0006 (0.052 0	0.032 0	0.003 (0.942 0	.940 (0.013	0	.002
-Lhz UR17/2	Cpx^*	56	54.85	0.14	0.87	0.15	2.62 (0.12	7.89 2	24.59	0.15	0.01	0.11	102	1.96 (0.004 (0.037 0	004 (0.041 0	0.038 0	0.004 (0.954 0	.943 0	010 0	001 0	.003

596

Ν

 $\mathbf{F}_{\mathbf{S}}$

臣

#Mg

Cym-Ma 4

4

4 8 4 7

 $\omega \omega + \omega +$

48 48

4 4 4 4 4 4

4 4 4

0.001

0.001

0.007

0.937 0.945

0.004 0.957

0.073 0.003

0.002

0.029 0.046

0.003

86.1 86.1

102

b.d.l.

b.d.l.

0.10 0.15

0.05

0.01

24.61 24.23

18.07 17.09

0.14 0.13

2.54 2.66

0.70

0.12 b.d.l.

55.83 54.28

61

UR17/2 UR17/ 2-2v

0.07 0.39

1.08

-*

Cpx* Cpx

Phl-Lhz Phl-Hzb

1

T

0.011

0.004 0.927

0.003

0.078

0.011

Т

4

4

6

93

4

1

T

0.007

0.928

0.954

0.007

Ι

0.074

0.009

0.036

0.004

1.98

100

b.d.l.

b.d.l.

0.10

23.84

17.61

0.21

2.42

0.30

0.83

0.13

54.55

*~

 C_{px}

UR17/ 2-2v

Phl-Hzb

4

46

~

4

22

4

L

004

0.926

0.933

0.002

Т

0.084

0.035 0.009

0.005

2.00

00

b.d.l.

b.d.l.

0.05

23.72

17.17

0.06

2.75

0.32

0.81

0.19

54.94

15*

 C_{DX}

UR17/ 2-2v

Phl-Hzb

4

4

4

93

4

Τ

L

0.930

0.974

0.001

Τ

0.074

0.011

0.030

0.002

.98

00

b.d.l.

b.d.l.

b.d.l.

23.90

17.99

0.02

2.43

0.37

0.70

0.07

54.52

16*

 C_{pX}

UR17/ 2-2v

Phl-Hzb

6

Э

8

93

4

1

L

L

0.956

0.946

0.007

0.008

0.066 (

0.007

0.036

0.008

1.97

100

b.d.l.

b.d.l.

b.d.l.

24.51

17.44

0.22

2.42

0.24

0.84

0.30

54.02

26*

 C_{DX}

UR17/ 2-2b 6

З

48

91

4

L

L

002

0.955

0.937

0.003

0.034

0.061

0.009

0.039

0.001

1.96

100

b.d.l.

b.d.l.

0.03

24.46

17.26

0.08

3.14

0.31

0.91

0.03

53.78

35*

 C_{DX}

URI7/ 2-2b

Phl-Hzb

50

0

50

93

4

L

L

0.017

0.960

0.955

L

0.072

0.005

L

0.036

L

96.

100

b.d.l.

b.d.l.

0.24

24.74

17.69

b.d.l.

2.54

b.d.l

0.84

b.d.l.

53.96

 \mathfrak{c}

 C_{DX}

UR17/ 2-2II

Phl-Hzb

6

4

4

89

4

I.

L

L

0.943

0.919

0.004

0.028

0.083

L

0.073

L

1.95

00

b.d.l.

b.d.l.

b.d.l.

24.15

16.91

0.13

3.63

b.d.l.

1.71

b.d.l.

53.46

30*

 C_{DX}

UR17/ 2-2IV

Phl-Opt

 $4 \omega 4$

4 4 4 4 4 4 4 4 4 4 4

 48
 49
 49

 49
 49
 49

 40
 46
 49
 48

 41
 48
 49
 48

 42
 48
 49
 48
 49

 46
 48
 48
 48
 48
 48

 47
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48

ГЕОХИМИЯ том 68 № 6 2023

Phl-Hzb

ОСОБЕННОСТИ СОСТАВА И ВОЗМОЖНЫЕ МЕХАНИЗМЫ ОБРАЗОВАНИЯ

Wo	49	52	47	47	48	46	46	49	46	49	48	45	46	46	48	48) 46) 46	47	42	47
En	t6 5	18 0	46 8	47 6	47	47 7	47 7	t6 5	18 6	47	15 7	47 8	t6 8	t5 9	34 18	35 17	33 20	35 20	33 20	34 23	37 16
Mg [#]	68	16	88	, 06	89	86	87	87	87	68	88	68	88	86 4	61	63	61	64	62	62	71
Сум- ма	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
ζ Ni																					
Na	- 014	.013	- 018	1	.025 -	- 016	.033	.017	.028 -	.033	- 020	- 016	- 034	- 024	-044	.037	- 036	.034 -	.025 -	.027 -	.028 -
Ca	958 0	0 766	912 0	940	919 0	892 0	873 0	939 0	872 0	937 0	927 0	885 0	882 0	882 0	881 0	885 0	867 0	870 0	006	798 0	892 0
Mg	882 0.	908 0.	887 0.	930 0.	906 0	901 0.	896 0.	884 0.	925 0.	.0 668	875 0.	928 0.	877 0.	870 0.	624 0	646 0.	626 0.	655 0.	.619 0.	652 0.	710 0.
An 1	004 0.	0.	003 0.	004 0.	004 0.	004 0.	007 0.	000 0.	005 0.	004 0.	<u> </u>	006 0.	002 0.	011 0.	018 0.	016 0.	015 0.	010 0.	013 0.	015 0.	003 0.
e ³⁺ N	0.0	093	- 0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.	-0.	0.	0.0	0.0	0.0	0.4	0	0	0.
2+ F	0.0	0.0	. 611	00	83 0.0	0.0	34 0.0	0.0	113 0.0	0.0	24	. 611	. [2]	. 39	324 0.	324 0.0	376 0.	370 0.0	375	. 968	. 563
Ŀ Fe	- 0.0	- 010	08 0.1	04 0.1	04 0.0	04 0.1	08 0.1	00 0.0	03 0.1	- 0.0	- 0.1	0.]	0.]	- 0.1	- 0.3	- 0.3	- 0.0	- 0	- 0	- 0.3	- 0.2
0 		0.0 0.0	0.0	37 0.0	968 0.0	84 0.0	0.0	0.0	0.0)43	- 87	. 141	- 100	92 -	02	- 860	04		- 05	- 23	- 660
Li V	- 0.0	- 0.0	005 0.0	003 0.0	001 0.0	003 0.0	006 0.0	002 0.0	003 0.0	003 0.0	004 0.0	003 0.0	0.0	003 0.0	006 0.1	0.0	004 0.1	002 0.0	005 0.1	009 0.1	007 0.0
Si	.97	.93	.98 0.	.086.	.0 96	.95 0.	.97 0.	.95 0.	.97 0.	.97 0.	.0 96.	00 0.	66.	.086.	.93 0.	.94 0.	.95 0.	.97 0.	.0 96	.95 0.	.97 0.
ум- ма	100 1	100	100	100	100	100	100	100	100 1	100	100	100	100	100 1	100	100	100	100	100	100	100
NiO	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.
K20	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.
Na ₂ O	0.20	0.19	0.25	b.d.l.	0.36	0.22	0.46	0.24	0.39	0.46	0.28	0.22	0.48	0.34	09.0	0.51	0.49	0.46	0.34	0.37	0.38
CaO	24.50	25.55	23.27	24.04	23.55	22.79	22.31	23.98	22.33	24.00	23.68	22.65	22.57	22.49	21.75	21.89	21.39	21.51	22.19	19.70	22.26
MgO	16.21	16.72	16.27	17.10	16.68	16.54	16.46	16.24	17.02	16.55	16.07	17.06	16.14	15.94	11.06	11.49	11.09	11.65	10.96	11.57	12.74
MnO	0.14	b.d.l.	0.10	0.12	0.13	0.13	0.24	0.01	0.16	0.14	b.d.l.	0.19	0.07	0.35	0.55	0.50	0.48	0.31	0.40	0.47	0.10
FeO 3	3.49	3.04	3.88	3.28	3.69	4.64	4.42	4.35	4.59	3.63	4.07	3.90	3.97	4.53	12.55	11.80	12.50	11.86	11.83	12.54	9.42
Cr ₂ O	b.d.l.	0.33	0.27	0.14	0.12	0.12	0.26	0.01	0.11	b.d.l.											
Al ₂ O	1.50	1.17	1.64	0.85	1.59	1.96	1.71	1.83	1.34	0.99	2.02	0.96	2.13	2.13	2.29	2.21	2.32	1.92	2.35	3.43	2.24
TiO ₂	b.d.l.	b.d.l.	0.19	0.09	0.02	0.12	0.20	0.07	0.11	0.09	0.14	0.11	b.d.l.	0.11	0.21	0.15	0.13	0.08	0.17	0.32	0.25
SiO2	53.96	52.99	54.12	54.39	53.86	53.49	53.96	53.27	53.95	54.15	53.75	54.91	54.64	54.11	50.99	51.45	51.60	52.21	51.76	51.59	52.61
. № точ- ки	31*	49*	16	17	18	38	39	40	41	45	11	16*	17*	20*	10*	19	25	29*	35	42*	43*
Ми- не- рал	/ Cpx	/ Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	C_{px}	Cpx	Cpx	Cpx	Cpx	C_{px}	Cpx	Cpx	C_{px}	Cpx	Cpx	Cpx
Образец	UR17/2-2IV	UR17/2-2IV	UR17/2-3a	UR17/2-2a	UR17/2-2a	UR17/2-2a	UR17/2-2a	UR17/2-4													
Порода	Phl-Opt 1	Phl-Opt 1	Phl-Opt 1	Phl-Opt 1	Phl-Opt 1	Phl-Opt 1	Phl-Opt	Phl-Opt 1	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Prg-Opt 1						

Таблица Д1. Продолжение

ГЕОХИМИЯ

том 68 № 6

597

Продолжение
Д1.
Таблица

Тацин	d11 .1₽																													
Порода	Образец	Мине- рал	. N <u></u> точки	SiO ₂	TiO ₂	Al ₂ O ₃	Cr ₂ O ₃	FeO N	4n0 N	AgO C	aO Ní	^a 20 K ₂	20 Ni	0	Сум ма	Si	Ξ	A	C	Fe^{2+}	Fe ³⁺	Мn	Mg	Ca	Na	×	ī	с - С	ум- 4а	Mg
2hl-Lhz	UR17/2	Phl	4	42.60	1.73	14.51	0.61	3.25 b	v.d.l. 2	6.00 b.	d.l. 0.	37 10.	93 b.d	.l. b.d.l	l. 100	2.90	0.089	1.16	0.033	0.169	0.015	Ι	2.64		0.049 0.	948	1		8	94
Phl-Lhz	UR17/2	Ihl	9	42.26	2.03	15.30	0.38	3.65 b	v.d.l. 2	4.69 b.	d.l. 0.	68 10.	79 0.0	0.16	100	2.89	0.104	1.23	0.021	0.209	Ι	Ι	2.51		0.090 0.	940 0.	004 0.	019	8	92
Phl-Lhz	UR17/2	Ihl	7	42.32	1.55	14.96	0.49	3.49 b	v.d.l. 2	5.75 b.	d.l. 0.	21 11.	24 b.d	.l. b.d.l	1. 100	2.88	0.079	1.20	0.026	0.192	0.006	Ι	2.61		0.028 0.	976			8	93
Phl-Lhz	UR17/2	Ihl	11	42.22	1.57	15.09	0.34	3.67 (0.11 2	5.65 b.	d.l. 0.	21 11.	03 b.d	.1. 0.11	100	2.87	0.080	1.21	0.018	0.170	0.039	0.006	2.60		0.028 0.	958	- 0.	013	8	94
Phl-Lhz	UR17/2	Ihl	15	42.01	1.71	15.04	0.38	3.44 b	.d.l. 2	5.70 b.	d.l. 0.	33 11.	28 b.d.	.1. 0.10	100	2.87	0.088	1.21	0.021	0.191	0.006	Ι	2.62		0.044 0.	983	- 0.	012	8	93
2hl-Lhz	UR17/2	Phl	16	42.83	1.88	14.53	0.58	3.05 b	v.d.l. 2	5.28 b.	d.l. 0.	38 11.	21 0.1	6 0.11	100	2.92	0.096	1.17	0.031	0.174	I	I	2.57		0.050 0.	975 0.	009 0.	013	8	94
Phl-Lhz	UR17/2	Phl	17	41.98	1.85	15.51	0.78	3.95 b	v.d.l. 2	4.78 b.	d.l. 0.	54 10.	36 0.1	4 0.10	100	2.86	0.095	1.25	0.042	0.214	0.011	Ι	2.52		0.071 0.	902 0.	008 0.	012	8	92
2hl-Lhz	UR17/2	Phl	23	41.30	1.21	15.96	0.49	3.90 b	h.d.l. 2	5.55 b.	d.l. 0.	38 11.	05 0.1	6 b.d.1	l. 100	2.81	0.062	1.28	0.026	0.157	0.065	Ι	2.59		0.050 0.	959 0.	600	1	8	94
2H1-IHZ	UR17/2	Phl	49	42.15	1.45	14.84	0.43	3.46 b	h.d.l. 2	5.51 b.	d.l. 0.	29 11.	79 b.d	.1. 0.05	100	2.88	0.075	1.20	0.023	0.198	I	Ι	2.60		0.038 1.	029	- 0.	010	8	93
Phl-Lhz	UR17/2	Phl	55	41.83	1.64	15.21	0.49	3.22 b	v.d.l. 2	5.84 b.	d.l. 0.	21 11.	34 0.1	3 0.08	3 100	2.85	0.084	1.22	0.026	0.148	0.035	I	2.63		0.028 0.	986 0.	007 0.	600	8	95
Phl-Lhz	UR17/2	Ihl	56	42.18	1.71	14.80	0.61	3.40 b	v.d.l. 2	5.62 b.	d.l. 0.	23 11.	09 0.2	2 0.14	100	2.88	0.088	1.19	0.033	0.168	0.026	Ι	2.61		0.030 0.	965 0.	012 0.	016	8	94
Phl-Lhz	UR17/2	Ihl	57	41.95	1.63	14.79	0.53	3.38 b	v.d.l. 2	5.53 b.	d.l. 0.	29 11.	43 0.3	5 0.12	100	2.87	0.084	1.19	0.029	0.194	I	Ι	2.61		0.039 0.	.0 666	019 0.	014	8	93
Phl-Lhz	UR17/2	Phl^*	39	42.60	1.79	15.25	0.42	3.35 0	0.04 2	5.93 0	.02 0.	46 10.	00 0.1	5 b.d.1	1. 100	2.87	0.091	1.21	0.022	0.088	0.101	0.002	2.61 (0.001 (0.060 0.	860 0.	008	1	8	93
2hl-Lhz	UR17/2	Phl^*	41	42.51	1.65	15.54	0.37	3.02 0	0.03 2	6.19 0	.01 0.	49 10.	02 0.1	8 b.d.l	100	2.86	0.084	1.23	0.020	0.063	0.107	0.002	2.63 (0.001 (0.064 0.	860 0.	010		8	94
Phl-Lhz	UR17/2	Phl^*	45	42.45	1.47	15.32	0.36	3.17 b	v.d.l. 2	6.15 0	.02 0.	28 10.	60 0.1	9 b.d.1	1. 100	2.87	0.075	1.22	0.019	0.102	0.077	Ι	2.63 (0.001 (0.037 0.	913 0.	010		8	94
Phl-Lhz	UR17/2	Phl^*	53	42.55	1.79	15.16	0.41	3.38 (0.02 2	5.62 0	.01 0.	31 10.	54 0.2	1.b.d 0.	1. 100	2.88	0.091	1.21	0.022	0.145	0.046	0.001	2.59 (0.001 (0.041 0.	.911 0.	011		8	93
Phl-Lhz	UR17/2	Phl^*	57	42.43	1.80	15.28	0.47	3.51 0	0.01 2	5.50 0	.01 0.	30 10.	53 0.1	5 b.d.1	1. 100	2.88	0.092	1.22	0.025	0.151	0.049	0.001	2.58 (0.001 (0.039 0.	.0 116	008	1	8	93
Phl-Hzb	UR 17/2-2b	Phl	5	41.47	1.66	15.71	0.44	4.84 b	.d.l. 2	5.08 0	.06 0.	31 10.	42 b.d.	.l. b.d.l	l. 100	2.82	0.085	1.26	0.024	0.145	0.130	Ι	2.54 (0.004 (0.041 0.	903	1		8	95
Phl-Hzb	UR 17/2-2b	Ihl	9	42.58	1.23	14.49	0.25	4.96 (0.14 2	4.80 0	0.12	25 11.	18 b.d.	.l. b.d.l	1. 100	2.91	0.063	1.17	0.014	0.284	I	0.008	2.53 (0.009	0.033 0.	976			8	90
Phl-Hzb	UR 17/2-2b	Phl	14	42.36	1.72	15.15	0.79	3.53 b	i.d.l. 2	5.50 b.	d.l. 0.	26 10.	21 0.4	1.b.d.8	l. 100	2.87	0.088	1.21	0.042	0.095	0.104	Ι	2.57		0.034 0.	881 0.	026		8	96
Phl-Hzb	UR 17/2-2b	Phl	17	42.28	1.75	14.67	0.68	3.86 0	0.09 2	5.56 b.	d.l. 0.	25 10.	86 b.d.	.l. b.d.l	100	2.88	060.0	1.18	0.037	0.166	0.054	0.005	2.59		0.033 0.	943	1		8	94
Phl-Hzb	UR 17/2-2b	Ihl	27	42.66	1.50	14.38	0.54	3.44 b	.d.l. 2	6.30 b.	d.l. 0.	25 10.	58 0.3	1.b.d.1	l. 100	2.88	0.076	1.15	0.029	0.084	0.111	I	2.65		0.033 0.	913 0.	019		8	97
Phl-Hzb	UR 17/2-2b	Phl	31	42.20	2.12	15.03	0.63	3.35 (0.07 2	5.40 b.	d.l. 0.	51 10.	49 0.1	9 b.d.l	100	2.87	0.109	1.21	0.034	0.150	0.041	0.004	2.58		0.067 0.	911 0.	010		8	95
Phl-Hzb	UR 17/2-2v	Phl	2	42.57	1.61	15.06	0.48	3.28 b	.d.l. 2	5.48 b.	.d.l. 0.	12 11.	40 b.d.	.l. b.d.l	100	2.90	0.082	1.21	0.026	0.187	I	I	2.58		0.016 0.	066	1	1	8	93
Phl-Hzb	UR 17/2-2v	Phl	13	42.68	1.79	15.23	0.47	2.99 b	o.d.l. 2	5.63 b.	.d.l. 0.	29 10.	.93 b.d	.l. b.d.l	l. 100	2.90	0.091	1.22	0.025	0.170	I	I	2.59		0.038 0.	946			8	94
Phl-Hzb	UR17/2-21	Phl	4	42.00	1.72	14.99	0.70	3.72 b	.d.l. 2	5.59 b.	.d.l. 0.	23 11.	05 b.d	.l. b.d.l	l. 100	2.86	0.088	1.20	0.038	0.164	0.047	I	2.60		0.030 0.	960	1		8	94
d2H-lhq	UR17/2-2I	Phl	5	41.83	1.80	14.97	0.49	3.64 b	o.d.l. 2	5.78 b.	.d.l. 0.	19 11.	31 b.d	.l. b.d.l	l. 100	2.85	0.092	1.20	0.026	0.148	0.060	Ι	2.62		0.025 0.	983	1		8	95
d2H-lhq	UR17/2-21	Ъhl	6*	42.82	1.54	14.44	0.59	3.25 b	o.d.l. 2	5.88 b.	.d.l. 0.	40 10.	92 b.d	.1. 0.16	100	2.91	0.079	1.16	0.032	0.185	Ι	I	2.62		0.052 0.	947	- 0.	015	8	93
d2H-lhq	UR17/2-21	Phl	19	41.57	1.74	15.84	0.64	3.82 b	o.d.l. 2	5.11 b.	.d.l. 0.	44 10.	82 b.d	.1. 0.02	<u>100</u>	2.83	0.089	1.27	0.035	0.192	0.026	I	2.55		0.058 0.	941	- <u>0</u>	002	8	93
PhI-Hzb	UR17/2-21	Phl	21	42.16	1.62	15.02	0.26	3.52 (0.14 2	5.78 b.	.d.l. 0.	17 11.	07 0.1	1 0.16	100	2.87	0.083	1.20	0.014	0.140	0.060	0.008	2.62		0.022 0.	961 0.	006 0.	015	8	95
PhI-Hzb	UR17/2-2I	Phl	22*	40.95	2.23	14.94	0.53	3.67 (0.15 2	5.74 b.	.d.l. 0.	31 11.	36 0.1	1 b.d.1	l. 100	2.80	0.115	1.20	0.029	0.079	0.131	0.009	2.63		0.042 0.	.0 166	900		8	97
Phl-Hzb	UR17/2-21	Phl	26	42.90	1.88	14.79	0.59	3.41 b	.d.l. 2	5.14 b.	d.l. 0.	33 10.	93 0.0	12 b.d.1	l. 100	2.92	0.096	1.19	0.032	0.194	I	Ι	2.55		0.044 0.	948 0.	001		8	93
Phl-Hzb	UR17/2-21	Phl	31	41.93	1.84	14.85	0.85	3.15 b	h.d.l.	6.01 b	d.l. 0.	26 10.	90 0.0	9 0.13	100	2.85	0.094	1.19	0.045	0.095	0.085	Ι	2.64		0.034 0.	945 0.	005 0.	012	8	67
Phl-Hzb	UR17/2-21	Phl	32*	42.19	1.75	14.75	0.64	3.30 b	v.d.l. 2	.6.00 b.	d.l. 0.	26 11.	.11 b.d.	.l. b.d.l	1. 100	2.87	060.0	1.18	0.034	0.142	0.045	Ι	2.64		0.034 0.	964	1		8	95

ОСОБЕННОСТИ СОСТАВА	И ВОЗМОЖНЫЕ МЕХАНИЗМЫ	ОБРАЗОВАНИЯ
---------------------	-----------------------	-------------

#Mg	95 98	95 94	94	93	93	94	93	94	93	93	93	92		92	93	92	93	94	93	96	94	89	88	89	89	90	99 55
Сум- ма	~ ~	~ ~	8	8	8	8	8	8	8	8	8	8		~	8	8	~	8	8	×	8	8	8	8	8	8	~ ~
Ū	1 1	1 1	I	Ι	I	Ι	I	I	I	I	I	I		I	I	I	I	0.012	I	0.013	I	0.014	Ι	I	Ι	I	1 1
ïŻ	1 1	_ 0.010	0.011	0.011	0.011	0.013	0.010	0.010	0.008	I	0.008	I		0.001	I	0.010	Ι		0.007	-	I		Ι	I	Ι	I	0.006
х	0.869 0.853	0.945 0.916	0.897	0.946	0.907	0.916	0.931	0.890	0.903	0.971	0.987	1.004		0.917	1.019	0.971	0.980	0.952	1.014	0.988	0.967	0.948	0.964	0.939	0.918	0.880	0.826
Na	0.060 0.026	0.027	0.031	0.044	0:030	0.037	0.034	0.041	0.042	0.043	0.050).036		0.045	0.018	0.026		.044	0.022	0.020	0.032	1	0.033	0.012	.008	1	0.062
Ca		- (0)	0006	0.002 0	0.001	0.002 0	0.001	0.001	0.002 (1					I					I			0.004 (.004	<u> </u>
Mg	2.70 2.63	2.61 2.61 (2.60	2.61 (2.62 (2.60 (2.62 (2.64 (2.61 (2.60	2.61	2.62		2.62	2.57	2.56	2.60	2.63	2.62	2.65	2.62	2.45	2.44	2.48	2.43 (2.43 (2.52 2.54
Mn	1 1	0.003 0.001	0.003	0.002	I	0.001	I	0.002	I	I	I	I		Ι	I	0.005	Ι	I	I	I	Ι	Ι	Ι	I	Ι	0.009	0.010
Fe ³⁺	- 0.108	_ 0.027	0.049	0.060	0.099	0.071	0.041	0.088	0.053	I	I	I		I	I	I	I	0.045	I	0.080	0.038	0.026	Ι	I	I	I	0.345 0.129
Fe ²⁺	0.148 0.059	0.142 0.152	0.132	0.128	0.086	0.110	0.146	0.092	0.139	0.196	0.211	0.216		0.224	0.199	0.211	0.186	0.166	0.190	0.110	0.157	0.298	0.327	0.292	0.298	0.280	0.016 0.145
Ċ	0.025).028).023).025	0.031	0.005	0.024	0.020	0.016	0.021	0.026	0.029).024		0.028).027).029).029).031).018).029).036	1	Ι	Ι	Ι	I	0.029
F	1.20 (0	1.21 0	1.20	1.21	1.22 (1.23 (1.19	1.20 (1.21 (1.20 (1.19 (1.18		1.18	1.18	1.16 (1.20 (1.17	1.20 0	1.20 (1.21 (1.26	1.24	1.23	1.28	1.29	1.18 C
Ħ	0.084 0.084	0.070 0.087	0.082	0.094	0.088	0.091	0.080	0.076	0.077	0.079	0.082	0.084	_	0.080	0.082	0.090	0.081	0.081	0.089	0.086	0.076	0.085	0.074	0.073	0.074	0.076	0.111 0.116
Si	2.84 2.90	2.91 2.90	2.89	2.86	2.87	2.86	2.89	2.88	2.88	2.90	2.87	2.87		2.86	2.94	2.93	2.90	2.88	2.88	2.84	2.86	2.89	2.90	2.92	2.91	2.91	2.78 2.84
Сум- ма	100 100	100	100	100	100	100	100	100	100	100	100	100		100	100	100	100	100	100	100	100	100	100	100	100	100	100
G	. b.d.l.	. b.d.l.) b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	. p.d.l.	b.d.l.	.b.d.l.		b.d.l.	.b.d.l.	b.d.l.	.b.d.l.	. 0.13	b.d.l.	0.11	.b.d.l.	. 0.12	.b.d.l.	.b.d.l.	. b.d.l.	. p.d.l.	b.d.l. b.d.l.
NiO	5 b.d.l 7 b.d.l.	8 b.d.l (0.19	0.20	0.20	4 0.20	1 0.23	7 0.18	5 0.18	7 0.15	7 b.d.l	2 0.15	l.b.d (1 0.02	5 b.d.1	1 0.18) b.d.l	5 b.d.l	3 0.13	7 b.d.1) p.d.l	5 b.d.l	3 b.d.l	1.b.d.(8 b.d.1	b.d.l	4 0.11 0.17
K2C	10.15 9.97	30.98 10.60	10.41	10.9(10.54	10.61	10.77	10.3(10.47	11.15	11.32	11.5(10.6	11.65	11.12	11.3(10.96	11.63	11.37	11.15	10.8;	11.0	10.8(10.58	10.15	9.5 [,] 10.3(
Na ₂ C	0.46	0.21 0.29	0.24	0.33	0.23	0.28	0.26	0.31	0.32	0.32	0.38	0.27		0.34	0.14	0.20	b.d.l.	0.33	0.17	0.15	0.24	b.d.l.	0.25	0.09	0.06	b.d.l.	0.47 0.50
CaO	b.d.l. b.d.l.	b.d.l. 0.04	0.08	0.02	0.01	0.02	0.01	0.01	0.03	b.d.l.	b.d.l.	b.d.l.		b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.05	0.05	b.d.l. b.d.l.
MgO	27.02 26.35	25.98 25.81	25.85	25.77	26.09	25.79	25.96	26.24	25.89	25.62	25.65	25.70		25.96	25.09	25.15	25.68	25.88	25.75	26.12	25.89	24.01	23.90	24.38	23.95	24.09	24.93 24.94
MnO	b.d.l. b.d.l.	0.05 0.02	0.05	0.03	b.d.l.	0.01	b.d.l.	0.03	b.d.l.	b.d.l.	b.d.l.	b.d.l.		b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.16	0.17 b.d.l.
3 FeO	2.64 2.98	2.52 3.16	3.19	3.30	3.27	3.19	3.30	3.19	3.39	3.43	3.69	3.77		3.96	3.48	3.68	3.27	3.71	3.32	3.35	3.44	5.66	5.71	5.12	5.24	4.94	6.36 4.80
Cr ₂ 0	0.47 0.67	0.52 0.43	0.46	0.58	0.09	0.45	0.38	0.30	0.40	0.48	0.54	0.45		0.52	0.50	0.53	0.54	0.57	0.33	0.53	0.66	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.54 0.36
Al ₂ O ₃	15.20 14.94	15.21 15.00	15.12	15.04	15.29	15.38	14.90	15.10	15.17	14.93	14.77	14.67		14.76	14.62	14.42	14.98	14.56	14.86	14.97	15.10	15.57	15.31	15.30	15.94	16.12	14.79 14.96
TiO ₂	1.66 1.66	1.37 1.70	1.62	1.84	1.74	1.79	1.57	1.50	1.52	1.55	1.59	1.64		1.58	1.59	1.74	1.58	1.59	1.72	1.68	1.48	1.64	1.44	1.43	1.44	1.49	2.17 2.27
SiO_2	42.39 43.23	43.16 42.77	42.79	41.98	42.54	42.26	42.67	42.79	42.67	42.50	41.92	42.00		42.25	42.93	42.86	42.65	42.27	42.09	41.71	42.04	42.15	42.36	42.88	42.75	42.98	40.92
N@ Toy- KM	51* 54	55 5	9	10	17	18	22	24	30	5	6	10		18*	29*	31	34	43*	46	5	52	2*	6*	7*	19*	24*	4 v
Ми- не- рал	lud Iud	Phl*	Phl*	*lhq	Phl*	Phl*	Phl*	*lhq	Phl*	lЧd	lЧd	Ъhl		Ыı	ΙЧ	lıld	lhq	lhq	lЧd	lhq	lhl	lhЧ	lЧd	lЧd	lнI	ЪЫ	Phl Phl
Образец	UR17/2-21 UR17/2-21	UR17/2-21 UR17/2-21	UR17/2-21	UR17/2-2I	UR17/2-2I	UR17/2-2I	UR17/2-21	UR17/2-21	UR17/2-2I	UR17/ 2-211	UR17/	2-211 UR17/2-	211	UR17/2- 211	UR17/2-	211 UR17/2-	211 UR17/2- 311	211 UR17/2- 211	211 UR17/2-	2Ш UR17/2- ЛП	л. UR17/2- ЛП	си UR 17/2-2а	UR 17/2-2a	UR 17/2-2a	UR 17/2-2a	UR 17/2-2a	UR 17/2-3a UR 17/2-3a
Порода	Phl-Hzb 1 Phl- Hyzb	Phl-Hzb	Phl-Hzb	Phl-Hzb	Phl-Hzb	PhI-Hzb	PhI-Hzb	PhI-Hzb	PhI-Hzb	Phi-Hzb	q2H-lhd	Phl-Hzb	сч ,	1 qZH-INA	1 q2H-Ind	q2H-lhq	Phi-Hzb	Phl-Hzb	dzH-lhq	Phl-Hzb	Phi-Hzb	Phl-Opt	Phi-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt U
ГЕОХИ	мия	том	68]	N⁰	6	2	023	3																		

ГЕОХИМИЯ том 68

Таблица Д1. Продолжение

Таблица	Д1. Про	жиор	сние	0																											
Порода	Образец	Ми- не- рал	N⁰ TOЧ- KI	SiO ₂	TiO ₂ ,	Al ₂ O ₃	Cr ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K_2O	NiO	Ū	Сум- ма	Si	Ħ	ন	Cr	ie ²⁺ F	e ³⁺	Mn	Mg C	_a 	Va	×	7	0' ^ 5	/M- 4a	Чg
Phl-Opt	UR 17/2-3a	lhl	, 9	41.18 2	2.41	14.76	0.44	5.64	0.01	24.94	b.d.l.	0.46	9.83	0.33	b.d.l.	100	2.80 0	.123	.18 0.	024 0	0.44 0.	.277 0.	001 2	.53 -	- 0.(061 0.8	353 0.(- 118	1	8	×
Phl-Opt	UR 17/2-3a	lhl	29 4	40.73 2	2.37	14.96	0.58	5.56	0.01	24.10	b.d.l.	0.28	11.42	b.d.l.	b.d.l.	100	2.82 0.	.123	.22 0.	032 0	254 0.	.068 0.	001 2	- 49	- 0.0	038 1.(- 80(· ·	1	8	Ξ
Phl-Opt	UR 17/2-3a	Phl	37 4	42.18	1.18	14.56	0.26	5.25	b.d.l.	25.66	0.12	0.37	10.42	b.d.l.	b.d.l.	100	2.86 0.	.060	1.17 0.	.014 0.	.175 0.	.123	-	0.0).0 000	049 0.9	- - 503	-	1	8	4
Ph1-Opt	UR 17/2-3a	Phl	46	41.31	1.86	15.08	0.35	6.05	b.d.l.	24.08	b.d.l.	0.32	10.95	b.d.l.	b.d.l.	100	2.84 0.	i 960.	.22 0	019 0	.280 0.	.068	-	- 47	- 0.0	043 0.5	- 196	-	1	8	Ō
Ph1-Opt	UR 17/2-3a	Ihl	49*	41.14	2.13	16.53	0.45	6.20	b.d.l.	22.49	b.d.l.	0.21	10.77	b.d.l.	0.07	100	2.84 0	IIII	.34 0	.025 0.	358		1	.31 -	- 0.0	028 0.9	- 948	- 0.0	908	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Phl-Opt	UR 17/2-3a	Phl	50 4	41.81	1.76	14.63	0.17	6.19	0.06	24.18	b.d.l.	0.00	11.07	b.d.l.	0.15	100	2.88 0.	160.	.19 0.	0 600	273 0.	.083 0.	004 2	- 48	, 1	- 0.5	- 126	0.0	018	8	Ō
Phl-Opt	UR 17/2-3a	Phl	61 4	41.77	1.86	15.50	0.06	5.46	0.17	23.69	b.d.l.	0.14	11.35	b.d.l.	b.d.l.	100	2.88 0.	i 960.	.26 0.	003 0	314	- 0.	010 2	- 43	- 0.0	019 0.9	- 796	·	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6
Ph1-Opt	UR 17/2-3a	Phl	62	41.45	1.76	15.32	0.04	5.72	b.d.l.	24.04	b.d.l.	0.13	11.45	b.d.l.	0.10	100	2.86 0.	[160.	.25 0.	0.002	321 0.	600.	-	- 47	- 0.0	017 1.0	- 80(0.0	012	8	6
Phl-Opt	UR 17/2-3a	lhl	63 4	12.07	1.44	15.36	0.14	5.66	b.d.l.	23.76	b.d.l.	0.15	11.34	b.d.l.	0.07	100	2.89 0.	.074	.24 0	0 800	325	1	-	- 43	- 0.0	020 0.9	- 466	- 0.0	308	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	×
Phl-Opt	UR 17/2-3a	Phl	65 4	t0.29	1.54	17.69	0.29	6.74	0.01	22.13	b.d.l.	0.09	11.10	b.d.l.	0.12	100	2.78 0.	.080	.44 0	.016 0.	390	- 0.	001 2	- 28	- 0.0	012 0.9	- 626	0.0	014	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2
Phl-Opt	UR 17/2-3a	Phl	66* 4	t2.02 ().86	15.40	0.13	5.68	b.d.l.	24.50	b.d.l.	0.05	11.26	b.d.l.	0.11	100	2.88 0.	.044 j	.24 0.	0.007	323 0	.003	-	- 50	- 0.0	007 0.5	- 384	0.0	013	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6
Phl-Opt	UR 17/2-3a	Phl	67*	41.22	1.84	14.91	b.d.l.	6.52	0.01	24.74	b.d.l.	0.02	10.67	b.d.l.	0.08	100	2.81 0.	i 260.	.20	-	133 0	.239 0.	001 2	.52 -	- 0.0	003 0.5	- 926	- 0.0	600	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2
Phl-Opt	UR 17/2-3a	lhl	68 4	41.98	1.20	15.65	b.d.l.	5.20	0.02	24.40	b.d.l.	0.17	11.31	b.d.l.	0.08	100	2.87 0.	.062	.26	-	298	- 0.	001 2	- 49	- 0.0	023 0.5	- 886	- 0.0	600	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6
Ph1-Opt	UR 17/2-3a	Phl	, IT	41.69	1.38	15.59	b.d.l.	5.48	0.03	24.86	b.d.l.	0.10	10.75	b.d.l.	0.12	100	2.84 0.	.071	.25	- 0	190 0.	.122 0.	002 2	- 52	- 0.0	013 0.5	934 -	0.0	014	8	c
Phl-Opt	UR 17/2-3a	Phl	78 4	t2.38	1.79	15.23	b.d.l.	5.50	b.d.l.	23.82	b.d.l.	0.00	11.17	b.d.l.	0.10	100	2.91 0.	.092	.23	- 0	316		-	- 44	I	- 0.5	- 978	- 0.0	012	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6
Phl-Opt	UR 17/2-3a	Phl	79 4	12.04	1.94	14.99	b.d.l.	5.95	b.d.l.	23.42	b.d.l.	0.36	11.23	b.d.l.	0.06	100	2.90 0.	101.	.22	-0	.343	1	-1	- 41	- 0.(048 0.9	- 886	- 0.0	007	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	×
Phl-Opt	UR 17/2-3a	Phl	82	41.43	1.61	15.75	b.d.l.	5.90	b.d.l.	23.60	b.d.l.	0.16	11.41	b.d.l.	0.15	100	2.86 0.	.084	.28	- 0	.340	1	-	.43	- 0.0	021 1.0	- 100	- 0.0	018	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	×
Включе- ние в Zrc	1559	lud	4	42.31	1.58	15.55	b.d.l.	6.35	0.22	23.17	b.d.l.	0.54	10.27	b.d.l.	b.d.l.	100	2.90 0	.082	.26	0	.364	0	.013 2	- 37	- 0.(072 0.3	- 868			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5
Включе- ние в Zrc	1559	lhl	10 4	42.11	1.31	15.62	b.d.l.	5.18	b.d.l.	24.95	b.d.l.	0.39	10.44	b.d.l.	b.d.l.	100	2.86 0	067	.25	0	.223 0	.071	- 7	- 23	- 0.0	051 0.9	905		1	<u>~</u>	2
Включе- ние в Zrc	1559	Ihl	11	41.93	1.59	16.38	b.d.l.	6.11	b.d.l.	22.80	b.d.l.	0.37	10.82	b.d.l.	b.d.l.	100	2.88 0	.082	.32	0	.351	I	- 7	- 33	- 0.0	049 0.	947 -		1	∞	5
Включе- ние в Zrc	1559	lud	16	41.85	1.33	15.96	b.d.l.	5.02	0.03	24.79	b.d.l.	0.51	10.40	b.d.l.	0.11	100	2.85 0.	.068	28	0	.234 0	.052 0	002 2	- 52	0.0	067 0.5	903	0.0	013	~ ~ ~	Ξ
Включе- ние в Zrc	1559	lud	4	42.32	1.58	15.55	b.d.l.	6.36	0.22	23.17	b.d.l.	0.54	10.27	b.d.l.	b.d.l.	100	2.90 0	.081		0	.364	<u>0</u> 	.013 2	- 37	- 0.(072 0.8	- 898		1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5
Включе- ние в Zrc	1559	lud	10	42.11	1.31	15.62	b.d.l.	5.18	b.d.l.	24.96	b.d.l.	0.39	10.44	b.d.l.	b.d.l.	100	2.86 0	.067		0	.223 0	.072	- 7	- 53	0.0	051 0.9	905			~ ~ ~	2
Включе- ние в Zrc	1559	lud	11	41.93	1.59	16.38	b.d.l.	6.11	b.d.l.	22.80	b.d.l.	0.37	10.82	b.d.l.	b.d.l.	100	2.88 0	.082	32	0	.351	I	- 7	- 33	0.0	049 0.9	947		1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5
Включе- ние в Zrc	1559	IHA	16	41.84	1.33	15.96	b.d.l.	5.02	0.03	24.79	b.d.l.	0.51	10.39	b.d.l.	b.d.l.	100	2.85 0.	.068	.28	0	.234 0	.052 0.	002 2	- 52	- 0.0	068 0.5	903 -	0.0	013	8	0

600

Продолжение
Д1.
Таблица

An	36	35	37	36	36	43	39	37	44	63	42	76	45	46	62	52	50
Сумма	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
К	0.01	0.02	0.01	0.02	0.02	0.02	0.01	0.01	0.01	0.00	0.01	I	0.00	0.01	0.01	I	0.01
Na	0.63	0.65	0.61	0.63	0.61	0.56	0.59	0.61	0.55	0.35	0.57	0.24	0.54	0.53	0.38	0.46	0.50
Ca	0.35	0.36	0.36	0.36	0.36	0.43	0.39	0.37	0.44	0.61	0.43	0.74	0.45	0.45	0.62	0.50	0.50
AI	1.39	1.37	1.39	1.41	1.39	1.46	1.43	1.39	1.47	1.68	1.47	1.76	1.50	1.47	1.67	1.55	1.53
Si	2.62	2.61	2.62	2.59	2.63	2.54	2.58	2.62	2.53	2.35	2.53	2.26	2.51	2.54	2.32	2.48	2.47
Сумма	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
K ₂ O	0.12	0.29	0.21	0.31	0.34	0.28	0.17	0.17	0.19	0.04	0.19	b.d.l.	0.08	0.13	0.16	b.d.l.	0.15
Na ₂ O	7.27	7.53	7.07	7.27	7.02	6.46	6.80	7.10	6.39	4.02	6.58	2.68	6.22	6.04	4.30	5.32	5.70
CaO	7.36	7.48	7.52	7.51	7.50	8.91	8.10	7.68	9.17	12.60	8.93	15.03	9.36	9.44	12.85	10.43	10.34
Al ₂ O ₃	26.40	26.06	26.44	26.80	26.37	27.62	27.20	26.36	27.83	31.53	27.82	32.73	28.32	27.80	31.34	29.26	28.87
SiO ₂	58.85	58.64	58.76	58.11	58.78	56.72	57.73	58.68	56.42	51.82	56.48	49.56	56.01	56.58	51.35	54.99	54.94
№ точки	12	15*	26	33	36	46	47*	49*	77	78	80	81	93*	96	104	37	43
Минерал	Ы	Ы	Ы	PI	Ы	Ы	Ы	PI	Ы	PI	Ы	PI	Ы	Ы	PI	PI	Ы
Образец	UR 17/2-4	1559	1559														
Порода	Prg-Opt	Включение в Zrn	Включение в Zrn														
ΓΕΟΧΙ	1МИЯ	том	68	Nº 6	2023												

ОСОБЕННОСТИ СОСТАВА И ВОЗМОЖНЫЕ МЕХАНИЗМЫ ОБРАЗОВАНИЯ

Таблица Д1. Окончание

Порода	Образец	Мине- рал	№ точки	SiO ₂	TiO ₂	Al ₂ O ₃	Cr ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ 0	<u>ن</u> ت	умма	Si	Li A		Fe ²	+ Fe ³	-Wi +	Mg	Ca	Na	×	<u>ර</u> ට	mma #	Mg
Ph1-Opt	UR17/2-2IV	Amph	5*	48.79	0.26	9.06	0.41	5.91	b.d.l.	19.71	13.22	2.29	0.36 b.	.d.l.	100 6	.75 0.	03 1.4	18 0.0	4 0.3	8 0.3	13	4.06	1.96	0.61	0.06	-	5.7	86
Ph1-Opt	UR17/2-2IV	Amph	34*	49.97	0.26	8.86	b.d.l.	6.07	0.11	19.79	12.88	1.87	0.19 b.	.d.l.	100 6	.87 0.	.03 1.4	4	0.4	0.2	0.0	1 4.06	1.90	0.50	0.03	-	5.5	85
Ph1-Opt	UR17/2-2IV	Amph	38	49.51	0.31	10.39	0.23	5.04	b.d.l.	19.55	12.86	1.48	0.62 b.	.d.l.	100 6	.79 0.	.03 1.6	8 0.0	3 0.3	7 0.20	-	4.00	1.89	0.39	0.11	-	5.5	87
Ph1-Opt	UR17/2-2IV	Amph	57*	51.67	0.23	7.58	0.25	4.16	b.d.l.	20.34	13.66	1.66	0.45 b.	.d.l.	100 7	.08 0.	02 1.2	22 0.0	3 0.4	0.00		4.16	2.01	0.44	0.08	-	5.5	06
Ph1-Opt	UR17/2-3a	Amph	27*	48.10	0.68	10.21	0.52	6.37	0.13	18.98	12.57	1.55	0.90 b.	.d.l.	100 6	.66 0.	07 1.6	57 0.0	6 0.3	7 0.3	0.0	2 3.92	1.87	0.42	0.16	-	5.6	84
Ph1-Opt	UR17/2-3a	Amph	28	57.05	0.09	2.18	0.29	3.87	0.06	22.58	13.35	0.54	b.d.l. b.	.d.l.	100 7	.70 0.	.01 0.3	35 0.0	3 0.3	0.0	0.0 6	1 4.54	1.93	0.14	00.0	-	5.1	16
Ph1-Opt	UR17/2-3a	Amph	47	50.04	0.54	96.6	0.38	5.42	0.04	18.04	13.13	1.40	1.06 b.	.d.l.	100 6	.93 0.	06 1.6	53 0.0	4 0.6		0.0	3.72	1.95	0.38	0.19	-	5.5	86
Ph1-Opt	UR17/2-3a	Amph	48	48.51	0.37	11.00	0.23	5.88	0.17	18.40	13.05	1.50	0.88 b.	.d.l.	100 6	.71 0.	04 1.7	0.0	3 0.4	3 0.20	0.0	2 3.80	1.93	0.40	0.16	-	5.6	85
Ph1-Opt	UR 17/2-2a	Amph	8	48.73	0.31	10.78	b.d.l.	6.19	0.08	18.74	12.82	1.42	0.94 b.	.d.l.	100 6	.73 0.	03 1.7	- 94	0.4	3 0.2	4 0.0	1 3.86	1.90	0.38	0.17	-	5.5	84
Ph1-Opt	UR 17/2-2a	Amph	6	48.93	0.50	9.83	b.d.l.	6.17	0.06	18.95	13.02	1.66	0.87 b.	.d.l.	100 6	.78 0.	05 1.6	- 00	0.4	7 0.2	4 0.0	1 3.91	1.93	0.45	0.15	-	5.6	85
Ph1-Opt	UR 17/2-2b	Amph	З*	49.01	0.50	9.85	0.44	5.49	0.15	19.66	12.77	1.58	0.55 b.	.d.l.	100 6	.74 0.	05 1.6	0.0	5 0.2	3.0.3	5 0.0	2 4.03	1.88	0.42	0.10	-	5.5	86
PhI-Opt	UR 17/2-2b	Amph	29	46.92	0.75	11.18	1.01	5.13	b.d.l.	19.29	12.82	1.82	1.10 b.	.d.l.	100 6	.50 0.	08 1.8	33 0.1	1 0.2	0.38		3.99	1.90	0.49	0.19	-	5.7	87
Phl-Opt	UR 17/2-2b	Amph	32	48.53	0.69	11.90	0.75	3.87	b.d.l.	18.60	12.99	1.83	0.83 b.	.d.l.	100 6	.70 0.	07 1.9	94 0.0	8 0.4		I	3.83	1.92	0.49	0.15	-	5.6	06
Phl-Opt	UR17/2-3a	Amph	30	48.24	0.6	10.75	0.51	5.94	b.d.l.	18.47	12.79	1.88	0.65 0	0.17	100 6	.70 0.	06 1.3	76 0.0	6 0.5	3 0.16		3.83	1.90	0.51	0.12 0.	04 1	5.6	35
Phl-Opt	UR17/2-3a	Amph	31^{*}	48.95	0.48	9.69	0.33	5.54	0.09	19.27	13.05	1.72	0.88 b.	.d.l.	100 6	.77 0.	05 1.5	58 0.0	4 0.4	0.22	0.0	1 3.97	1.93	0.46	0.16	-	5.6	36
Prg-Opt	UR 17/2-4	Amph	57*	44.02	1.37	12.14	0.65	13.36	0.36	12.58	12.25	1.48	1.59 0	.19	100 6	.40 0	.15 2.0	8 0.0	7 1.23	3 0.3	4 0.0	4 2.73	1.91	0.42	0.29 0.	05 1	5.7	53
Prg-Opt	UR 17/2-4	Amph	58	43.93	1.40	12.93	0.84	12.58	0.20	12.44	12.42	1.29	1.75 0	.22	100 6	.37 0	.15 2.3	21 0.1	0 1.20	0.2	0.0	2 2.69	1.93	0.36	0.32 0.	05 1	5.7	54
Prg-Opt	UR 17/2-4	Amph	59*	44.15	1.23	12.90	0.96	12.36	0.21	12.61	12.14	1.57	1.67 0	.21	100 6	.41 0	.13 2.3	21 0.1	1 1.3	8 0.12	0.0	3 2.73	1.89	0.44	0.31 0.	05 1	5.8	55
Prg-Opt	UR 17/2-4	Amph	09	42.41	1.27	13.22	69.0	14.05	0.21	12.59	12.03	1.62	1.70 0	.21	100 6	6.17 0.	.14 2.3	27 0.0	8 1.1	0.5	4 0.0	3 2.73	1.88	0.46	0.32 0.	05 1	5.8	51
Prg-Opt	UR 17/2-4	Amph	61*	44.68	0.99	12.92	0.53	13.14	0.02	12.61	11.57	1.62	1.76 0).18	100 6	.48 0	.11 2.3	21 0.0	6 1.5		0.0) 2.73	1.80	0.46	0.33 0.	04	5.8	53
Prg-Opt	UR 17/2-4	Amph	62*	44.92	1.18	12.66	0.77	12.32	0.13	12.98	11.87	1.44	1.54 0	.19	100 6	.49 0	.13 2.1	l6 0.0	9 1.40	0.0	0.0	2 2.80	1.84	0.40	0.28 0.	05 1	5.7	55
Prg-Opt	UR 17/2-4	Amph	63	43.87	1.05	12.72	0.76	12.71	0.23	12.45	12.88	1.53	1.68 0	.11	100 6	.36 0	.11 2.	17 0.0	9 1.2′	0.2	0.0	3 2.69	2.00	0.43	0.31 0.	03 1	5.7	2
Prg-Opt	UR 17/2-4	Amph	64	43.86	1.05	13.21	0.66	12.22	b.d.l.	13.00	12.48	1.54	1.81 0	0.17	100 6	.34 0	.11 2.3	25 0.0	8 1.20	0.22		2.80	1.93	0.43	0.33 0.	04 1	5.8	55
Prg-Opt	UR 17/2-4	Amph	92*	44.30	66.0	12.80	0.81	12.49	0.01	13.35	12.11	1.47	1.46 0	1.20	100 6	.38 0	.11 2.	17 0.0	9 1.2	0.2	0.0) 2.87	1.87	0.41	0.27 0.	05 1	5.7	96
Prg-Opt	UR 17/2-4	Amph	105	43.25	1.09	13.15	1.00	12.49	0.15	12.86	12.50	1.71	1.80 b.	.d.l.	100 6	.27 0	.12 2.3	25 0.1	1 1.2	0.20	0.0	2 2.78	1.94	0.48	0.33	-	5.8	55
Prg-Opt	UR 17/2-4	Amph	106^{*}	43.80	1.31	13.61	0.94	11.79	0.15	13.39	11.88	1.84	1.16 0	0.13	100 6	.30 0	.14 2.3	31 0.1	1 1.16	0.2	0.0	2 2.87	1.83	0.51	0.21	03 1	5.7	57
Включение в Zrn	1559	Amph	58	48.83	0.55	11.54	b.d.l.	6.17	0.07	17.46	12.61	1.71	1.07 b.	.d.l.	100 6	.78 0.	06 1.8	- 68	0.7		0.0	1 3.62	1.88	0.46	0.19	-	5.6	83
Включение в Zrn	1559	Amph	09	56.76	0.00	0.61	b.d.l.	12.98	0.65	21.14	6.68	1.12	0.06 b.	.d.l.	100 7	.87	0	- 01	1.5	1	0.0	8 4.37	0.99	0.30	0.01	-	5.2	74
Примечания. сенит; минера 2200 (ТЕОГ.) ()	<i>Рhl-Lh</i> z – ф ыл* – измер иггл РАН)	логопи ение вы № точі	товый шолне. ги* – о	лерц(но на тмеч(олит, Элек эны м	<i>Phl-H</i> ; тронно тинера	<i>zb</i> — ф 0-30Н пы и	рлогоі довол	ТИТОЕ А МИК ЗОВАІ	њій га сроан: чные	рцбу ализа ття <i>F</i>	ргит; торе 77-ме	<i>Phl-O</i> JXA-8 тони	<i>pt</i> – d 230, c b d l	рлогоі эсталь – них	ПИТО НЫС	BblĂ (- c I	орто иласт МИДТ	ирок енен твите	сени ием э	г; <i>Р</i> ₇ нерг ти м	д- <i>Орt</i> одисі	– па перси	praci 10HH – H	итовь ого д	ий ор [.] етект	топир ора JF	D- K

ГЕОХИМИЯ

том 68

Nº 6

2023

ЛОБАЧ-ЖУЧЕНКО и др.

Минерал			Ol				Op	эх	
№ зерна	1	2	5	23	25	7	8	10	11
Al	92.8	63.7	56.7	58.5	76.1	3134	3818	3746	3715
Ti*	25.4	25.9	30.7	25.7	33.7	193	103	132	131
V	6.42	13.0	14.4	18.9	14.9	32.9	32.5	29.2	32.3
Cr	336	349	405	454	394	758	527	495	656
Ni	4730	5575	4858	5149	5612	980	n.d.	1018	841
Rb	1.79	2.30	2.08	2.31	2.72	0.98	1.35	1.03	1.35
Sr	0.87	1.02	1.09	1.45	1.51	0.24	0.38	0.30	0.38
Y	0.05	0.12	0.13	0.49	0.08	2.64	3.67	4.31	3.14
Zr	0.37	0.46	0.32	0.73	0.32	0.40	0.69	0.98	0.49
Nb	0.02	0.02	0.01	0.03	0.03	0.03	0.13	0.02	0.07
Ba	0.07	0.16	0.18	0.38	0.27	0.12	1.16	0.15	0.15
Hf	0.05	b.d.l.	b.d.l.	0.03	0.06	0.18	0.12	0.15	0.13
La	0.02	0.03	0.01	0.31	0.02	0.02	0.04	0.02	0.02
Ce	0.03	0.10	0.01	0.46	0.04	0.03	0.08	0.09	0.08
Pr	b.d.l.	0.01	0.01	0.03	b.d.l.	0.01	0.01	0.01	0.00
Nd	b.d.l.	b.d.l.	b.d.l.	0.16	b.d.l.	0.03	0.04	0.12	0.05
Sm	b.d.l.	0.04	b.d.l.	0.04	b.d.l.	0.08	0.05	0.09	0.03
Eu	0.02	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.00
Gd	b.d.l.	0.01	b.d.l.	0.10	0.03	0.09	0.13	0.16	0.07
Dy	b.d.l.	0.02	0.02	0.06	0.02	0.29	0.50	0.44	0.31
Er	b.d.l.	0.03	0.02	0.03	0.03	0.44	0.63	0.69	0.65
Yb	0.03	0.05	0.06	0.15	0.04	0.75	0.97	1.03	1.01
Lu	0.01	0.01	0.01	0.02	0.01	0.11	0.13	0.13	0.15
Минерал	Орх		C_{l}	рх	L		Pl	hl	<u> </u>
№ зерна	26	17	19	30	31	11	17	16	18
Al	4659	4043	2925	5929	6870	n.d.	n.d.	n.d.	n.d.
Ti*	191	809	667	333	459	9418	11014	8950	11 117
V	34.3	101	81.2	92.4	92.1	276	308	218	271
Cr	578	1535	911	590	580	2675	2408	1748	1030
Ni	997	438	353	436	468	n.d.	n.d.	n.d.	n.d.
Rb	1.31	10.3	8.37	4.12	2.11	599	582	435	389
Sr	0.35	15.6	11.6	16.1	17.0	8.90	18.2	5.67	3.46
Y	4.51	44.5	46.0	103	111	0.05	0.08	0.06	0.07
Zr	0.48	17.4	6.75	10.2	18.7	0.84	1.28	1.09	0.81
Nb	0.03	0.14	0.12	0.09	0.09	20.0	19.1	31.1	29.6
Ba	0.25	0.37	1.23	0.48	0.65	5972	5272	2910	2892
Hf	0.15	2.97	2.93	5.93	6.84	2.16	1.92	1.12	1.31
La	0.02	14.1	9.99	7.92	31.0	2.84	2.25	1.13	1.04
Ce	0.08	48.9	40.6	44.9	73.4	0.01	0.03	0.01	0.02
Pr	0.01	7.31	6.84	8.45	13.3	0.01	0.01	b.d.l.	b.d.l.
Nd	0.09	40.0	37.8	59.2	74.4	0.06	b.d.l.	0.04	0.06
Sm	0.03	11.6	11.9	22.0	23.4	0.14	0.21	0.12	0.10
Eu	0.00	1.26	1.29	1.94	1.99	n.d.	n.d.	n.d.	n.d.
Gd	0.20	11.3	12.0	21.0	26.3	b.d.l.	b.d.l.	b.d.l.	b.d.l.
Dy	0.45	10.6	10.4	23.0	24.8	0.58	0.61	0.36	0.35
Er	1	1			10 (0.15	0.05	0.00	0.10
	0.87	5.19	4.81	11.8	12.6	0.15	0.25	0.09	0.12
Yb	0.87 1.28	5.19 3.70	4.81 3.28	11.8 8.41	12.6 9.00	0.15 0.09	0.25 0.06	0.09 0.04	0.12 0.03

Таблица Д2. Химический состав минералов флогопитовых перидотитов изученной линзы, ppm

Примечания. b.d.l. – ниже порога чувствительности метода, n.d. – не определялось, * – среднее значение, между двумя разновременными измерениями.

таолица до.	ениевкевкращении
Al-Crt	Al-хромит
Al-Mgt	Al-магнетит
Amph	амфибол
Ap	апатит
Cpx	клинопироксен
Cr-Mgt	Cr-магнетит
Carb	карбонат
Сср	халькопирит
Dol	доломит
Fe-Crt	хромит
Fa	фаялит
Fo	форстерит
fO ₂	фугитивность кислорода
HREE	тяжелые редкоземельные элементы
LREE	легкие редкоземельные элементы
MREE	средние редкоземельные элементы
Mgt	магнетит
Ol	оливин
Opx	ортопироксен
OSMA	оливин-шпинелевый мантийный тренд
Pc	пикотит
Phl	флогопит
Pl	плагиоклаз
Pn	пентландит
Pns	плеонаст
Prg	паргасит
Prx	пироксен
REE	редкоземельные элементы
Spl	шпинель
Srp	серпентин
Zrc	циркон
Р	давление
PM	примитивная мантия
Т	температура

Таблица ДЗ. Список сокращений

СПИСОК ЛИТЕРАТУРЫ

Балтыбаев Ш.К., Лобач-Жученко С.Б., Балаганский В.В., Юрченко А.В., Егорова Ю.С., Богомолов Е.С. (2014) Возраст и метаморфизм кристаллосланцев побужского гранулитового комплекса Украинского щита — древнейших вулканитов фундамента Восточно-Европейской платформы. *Региональная геология и металлогения*. **58**, 33-44.

Балтыбаев Ш.К., Лобач-Жученко С.Б., Егорова Ю.С., Галанкина О.Л., Юрченко А.А. (2018) Преобразование перидотитов в коровых условиях: термодинамическое моделирование минералообразовани. Эволюция вещественного и изотопного состава докембрийской литосферы. (Под ред. В.А. Глебовицкого, Ш.К. Балтыбаева). СПб.: Издательско-полиграфическая ассоциация Высших учебных заведений, 170-189.

Бухарев В.П. (1991) Квазикратонный гипербазитовый магматизм позднего архея Украинского щита (Среднее Побужье). *Геологический Журн.* **6**, 92-100.

Бибикова Е.В., Клайсен С., Федотова А.А., Степанюк Л.М., Шумлянский Л.В., Кирнозова Т.И., Фузган М.М., Ильинский Л.С. (2013). Изотопно-геохронологическое (U-Th-Pb, Lu-Hf) изучение цирконов из архейских магматических и осадочных пород Подольского домена Украинского щита. *Геохимия*. (2), 99-121. Bibikova E.V., Fedotova A.A., Kirnozova T.I., Fugzan M.M., Claesson S., Il'insky L.S., Stepanyuk L.M., Shumlyansky L.V. (2013) Isotope- geochronological (U-Th-Pb, Lu-Hf) study of the zircons from the Archean magmatic and metasedimentary rocks of the Podolia domain, Ukrainian Shield. *Geochem. Int.* **51**(2), 87-108.

Каневский А.Я. (1992) Акцессорные хромшпинелиды – индикаторы рудной специализации мафитовых и ультрамафитовых интрузий на никель и хром: поисковый аспект. *Геологический Журн.* **6**, 118-125.

Криволуцкая Н.А. (2011) Формирование платино-медно-никелевых месторождений в процессе развития траппового магматизма в Норильском районе. *Геолоеия рудных месторождений*. **53**(4), 346-378.

Лобач-Жученко С.Б., Арестова Н.А., Вревский А.Б., Егорова Ю.С., Балтыбаев Ш.К., Балаганский В.В., Богомолов Е.С., Степанюк Л.М., Юрченко А.В. (2014) Происхождение кристаллосланцев Побужского гранулитового комплекса Украинского щита. *Региональная геология и металлогения*. **59**, 1-12.

Лобач-Жученко С.Б., Аносова М.О., Юрченко А.В., Галанкина О.Л. (2021б) Распределение умеренно- и высокосидерофильных элементов в сульфидах для реконструкции эволюции архейского гарцбургита побужского комплекса Украинского щита. *Геология рудных месторождений*. 63(3), 265-282.

Лобач-Жученко С.Б., Балтыбаев Ш.К. Егорова Ю.С., Сергеев С.А., Каулина Т.В., Салтыкова Т.Е. (2022) Этапы базит-ультрабазитового магматизма Сарматии от палеоархея до палеопротерозоя. *Геология и геофизика.* **63**(3), 267-290.

Лобач-Жученко С.Б., Балтыбаев Ш.К., Глебовицкий В.А., Сергеев С.А., Лохов К.И., Егорова Ю.С., Балаганский В.В., Скублов С.Г., Галанкина О.Л., Степанюк Л.М. (2017) U-Pb-SHRIMPII возраст и происхождение циркона из лерцолита Побужского палеоархейского комплекса (Украинский щит). ДАН. 477(5), 567-571.

Лобач-Жученко С.Б., Егорова Ю.С., Балтыбаев Ш.К., Балаганский В.В., Степанюк Л.М., Юрченко А.В., Галанкина О.Л., Богомолов Е.С., Сукач В.В. (2018а) Перидотиты в палеоархейских ортогнейсах Побужской гранулито-гнейсовой области Украинского щита: геологическое положение, особенности состава, генезис. Эволюция вещественного и изотопного состава докембрийской литосферы. (Под ред. В.А. Глебовицкого, Ш.К. Балтыбаева). СПб.: Издательско-полиграфическая ассоциация Высших учебных заведений, 164-192. Лобач-Жученко С.Б., Скублов С.Г., Егорова Ю.С., Прищепенко Д.В., Галанкина О.Л. (2018б) Особенности состава и строения циркона из включения гарцбургита Побужского комплекса, Украинский щит. Зап. РМО. 147(6), 22-40.

Лобач-Жученко С.Б., Каулина Т.В., Егорова Ю.С. (2021а) Следы импактных событий в архее Побужского гранулито-гнейсового комплекса Украинского щита. *Труды Ферсмановской научной сессии ГИ КНЦ РАН*. **18**, 275-281. Пушкарев Е.В., Вотяков С.Л., Чашухин И.С., Кислов Е.В. (2004) Оливин-шпинелевая окситермобарометрия ультрамафитов Йоко-Довыренского расслоенного массива. ДАН. **395**(1), 108-112.

Рябчиков И.Д. (2003) Высокие содержания никеля в мантийных магмах как свидетельство миграции вещества из земного ядра. *ДАН*. **389**(5), 677-680.

Рябчиков И.Д., Когарко Л.Н., Соловова И.П. (2009) Физико-химические условия магмаобразования в основании сибирского плюма по данным исследования расплавных микровключений в меймечитах и щелочных пикритах Маймеча-Котуйской провинции. *Петрология.* **17**(3), 311-323.

Сазонова Л.В., Носова А.А., Каргин А.В. и др. (2015) Оливин кимберлитов трубок Пионерская и им. В. Гриба (Архангельская алмазоносная провинция): типы, состав, происхождение. *Петрология*. **23**(3), 251-284.

Светов С.А., Степанова А.В., Чаженгина С.Ю., Светова Е.Н., Рыбникова З. П., Михайлова А.И., Парамонов А.С., Утицына В.Л., Эхова М.В., Колодей В.С. (2015) Прецизионный (ICP-MS, LA-ICP-MS) анализ состава горных пород и минералов: методика и оценка точности результатов на примере раннедокембрийских мафитовых комплексов. *Труды Карельского научного центра РАН.* **7**, 54-73.

Соболев В.С. (1974) Глубинные включения в кимберлитах и проблема состава верхней мантии. Новосибирск: Наука, 264 с.

Сорокин Е.М., Яковлев О.И., Слюта Е.Н., М.В. Герасимов Е.Н., Зайцев М.А., Щербаков В.Д., Рязанцев К.М., Крашенинников С.П. (2020) Экспериментальное моделирование микрометеоритного удара на Луне. *Геохимия.* **65**(2), 107-122.

Sorokin E.G., Yakovlev O.I., Slyuta E.N., Gerasimov M.V., Zaitsev M.A., Shcherbakov V.D., Ryazantsev K.M., Krasheninnikov S.P. (2020) Experimental Modeling of a Micrometeorite Impact on the Moon. *Geochem. Int.* **58**(2), 113-127.

Штейнберг Д.С., Лагутина М.В. (1984) Углерод в ультрабазитах и базитах. М.: Наука, 110 с.

Щербак Н.П., Артеменко Г.В., Лесная И.М., Пономаренко А.Н., Шумлянский Л.В. (2008) Геохронология раннего докембрия Украинского щита. Протерозой. Киев: Наукова думка, 240 с.

Яковлев О.И., Бадюков Д.Д., Файнберг В.С., Баулин Н.Н., Пилюгин Н.Н., Тихомиров С.Г. (1991) Ударное взаимодействие железного метеорита с силикатной мишенью. *Геохимия*. (6), 796-805.

Яковлев О.И., Герасимов М.В., Диков Ю.П. (2011) Оценка температурных условий образования HASP- и GASP-стекол лунного реголита. *Геохимия*. (3), 227-238.

Yakovlev O.I., Gerasimov M.V., Dikov Y.P. (2011) Estimation of temperature conditions for the formation of HASP AND GASP glasses from the lunar regolith. *Geochem. Int.* **49**(3), 213-223.

Яковлев О.И., Люль А.Ю. (1992) Геохимия микроэлементов в ударном процессе. *Геохимия*. (3), 323-337.

Anhaeusser C.R. (2001) The anatomy of an extrusive-intrusive Archaean mafic-ultramafic sequence: the Nelshoogte schist belt and Stolzburg layered ultramafic complex, Barberton greenstone belt, South Africa. *S. Afr. J. Geol.* **104**(2), 167-204. Arai S. (1994). Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. 1994. *Chemical Geology*. **113(3–4)**, 191-204.

Asimow P.D., Ghiorso M.S. (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. *Amer. Mineral.* **83**(9–10), 1127–1131.

Ballhaus C., Berry R.F., Green D.H. (1991) High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. *Contrib. Mineral. Petrol.***107**, 27-40.

Batanova V.G., Suhr G., Sobolev A.V. (1998) Origin of geochemical heterogeneity in the mantle peridotites from the Bay of Islands ophiolite, Newfoundland, Canada: Ion probe study of clinopyroxenes. *Geochim. Cosmochim. Acta.* **62**(5), 853-866.

Beard A.D., Downes H., Mason P.R.D., Vetrin V.R. (2007) Depletion and enrichment processes in the lithosphere beneath Kola Peninsula (Russia): evidence from spinel lherzolite and werlite xenoliths. *Lithos.* **91**(1–4), 1-24.

Berman R.G. (1991) Thermobarometry using multiequilibrium calculations: a new technique with petrologic applications. *Canad. Mineral.* **32**, 833-855.

Boyd F.R., Nixon P.H. (1975) Origins of the ultramafic nodules from some kimberlites of northern Lesotho and the Monastery Mine, South Africa. *Physics and Chemistry of the Earth.* **9**, 431-454

Boyd F.R., Nixon P.H. (1978) Ultramafic nodules from the Kimberly pipes, South Africa. *Geochim. Cosmochim. Acta.* **42**, 1367-1382.

Boyd F.R. (1989) Compositional differences between oceanic and cratonic lithosphere. *Earth Planet Sci Lett.* **96**, 15-26.

Bussweiler Y., Brey G.P., Pearson D.G et al. (2017) The aluminum-in-olivine thermometer for mantle peridotites – Experimental versus empirical calibration and potential applications. *Lithos.* **272–273**, 301-314.

Desharnais G., Peck D.C., Theyer P. et al. (2000) Geology and mineral occurrences of the Fox River sill in the Great Falls area, Fox River Belt (part of NTS 53M/16). *Report of Activities 2000, Manitoba Industry, Trade and Mines, Manitoba Geological Survey*, 42-48.

Dressler B.O., Reimold W.U. (2001) Terrestrial impact melt rocks and glasses. *Earth-Sci. Rev.* **56**, 205-284.

Downes H., MacDonald R., Upton B.G.J. et al. (2004) Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton. *J. Petrol.* **45**(8), 1631-1662.

Fabbrizio A., Schmidt Max W., Petrelli M. (2021) Effect of fO_2 on Eu partitioning between clinopyroxene, orthopyroxene and basaltic melt: Development of a Eu³⁺/Eu²⁺ oxybarometer. *Chemical Geology.* **559**, 119967.

Foley S.F., Prelevic D., Rehfeldt T., Jacob D.E. (2013) Minor and trace elements in olivines as probes into early igneous and mantle melting processes. *Earth Planet. Sci. Lett.* **363**, 181-191.

Frei R., Polat A., Meibom A. (2004) The Hadean upper mantle conundrum: evidence for source depletion and enrichment from Sm-Nd, Re-Os, and Pb isotopic compositions in 3.71 Ga boninite-like metabasalts from the Isua Supracrustal Belt, Greenland. *Geochim. Cosmochim. Acta.* **68**(7), 645-1660.

Friend C.R.L., Bennett V.C., Nutman A.P. (2002) Abyssal peridotites >3.800 Ma from southern West Greenland:field relationships, petrography, geochronology, whole-rock and mineral chemistry of dunite and harzburgite inclusions in the Itsaq Gneiss Complex. *Contrib Mineral Petrol.* **143**, 71-92.

Ghiorso M.S., Hirschmann M.M., Reiners P.W., Kress V.C. (2002) The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. *Geochem. Geophys. Geosyst.* **3**(5), 1030.

Griffin W.L., Belousova E.A., O'Neill C et al. (2014) The world turns over: Hadean–Archean crust–mantle evolution. *Lithos.* **189**, 2-15.

Harte B., Winterburn P.A., Gurney J.J. (1987) Metasomatic and enrichment phenomena in garnet peridotite facies mantle xenoliths from the Matsoku kimberlite pipe, Lesotho. In: M. Menzies (Editor), *Mantle metsasomatism. Academic Press Inc.*, London, 145-220.

Herzberg C., Vidito C., Starkey N.A. (2016) Nickel-cobalt contents of olivine record origins of mantle peridotite and related rocks. *Amer. Mineral.* **101**(9), 1952-1966.

Holland T., Blundy J. (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. *Contrib. Mineral. Petrol.* **116**, 433-447.

Humayun M., Qin L.P., Norman M.D. (2004) Geochemical Evidence for ExcessIron in the Mantle Beneath Hawaii. *Science*. **306**, 91-94.

Jochum K.P., Dingwell D.B., Rocholl A et al. (2000) The preparation and preliminary characterisation of eight geological MPI-DING reference glasses for in-situ microanalysis. *Geostandards and geoanalytical research.* **24**(1), 87-133.

Jochum K.P., Stoll B., Herwig K., Willbold M. (2007) Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm laser and matrixmatched calibration. *J. Anal. At. Spectrom.* **22**, 112-121.

Kamber B.S., Collerson K.D., Moorbath S., Whitehouse M.J. (2003) Inheritance of early Archaean Pb-isotope variability from long-lived Hadean protocrust. *Contrib. Mineral. Petrol.* **145**(1), 25-46.

Kamenetsky V.S., Crawford A.S., Meffre S. (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. *J. Petrol.* **42**(4), 655-671.

Kettrup B., Deutsch A., Masaitis V.L. (2003) Homogeneous impact melts produced by a heterogeneous target? Sr-Nd isotopic evidence from the Popigai crater, Russia. *Geochim. Cosmochim. Acta.* **67**(4), 733-750.

Kitakaze A., Sugaki A., Itih H., Komatsu R. (2011) A revision of phase relations in the system Fe–Ni–S from 650 (degrees) to 450 (degrees). *The Canad. Mineralogist.* **49**(6), 1687-1710.

Kohler T.P., Brey G. (1990) Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. *Geochim. Cosmochim. Acta.* **54**(9), 2375-2388.

Kopylova M. G., Russell J.K. (2000) Chemical stratification of cratonic lithosphere: constraints from the Northern Slave craton, Canada. *Earth Planet. Sci. Lett.* **181**, 71-87.

Kopylova M.G., Russell J.K., Cookenboo H. (1999) Petrology of peridotite and pyroxenite xenoliths from the Jericho kimberlite: implications for the thermal state of the mantle beneath the Slave craton, northern Canada. *J. Petrol.* **40**(1), 79-104.

Kushiro I., Mysen. B. (2002). A possible effect of melt structure on the Mg-Fe²⁺ partitioning between olivine and melt. *Geochimica et Cosmochimica Acta*. **66**, 2267-2272. https://doi.org/10.1016/S0016-7037(01)00835-3

Li C., Ripley E.M. (2010) The relative effects of composition and temperature on olivine-liquid Ni partitioning: Statistical deconvolution and implications for petrologic modeling. *Chemical Geology*. **275**(1–2), 99-104.

Lobach-Zhuchenko S.B., Egorova Ju.S., Scublov S.G., Sukach V.V. (2021) Iron- and nickel enriched olivine from phlogopite harzburgite of the Bug granulite complex (Ukrainian Shield) *Mineral. J. (Ukraine).* 43, No. 1. 16-24.

Lobach-Zhuchenko S.B., Kaulina T.V., Baltybaev S.K., Balagansky V.V et al. (2017) The long (3.7–2.1 Ga) and multistage evolution of the Bug Granulite–Gneiss Complex, Ukrainian Shield, based on the SIMS U-Pb ages and geochemistry of zircons from a single sample. In *Archaean Cratons – New Insights on Old Rocks* (Eds. Halla J., Whitehouse M.J., Ahmad T., Bagai Z.) *Geological Society, London, Special Publications.* **449**(1), 175-206.

Loucks R.R. (1996) A precise olivine-augite Mg-Fe-exchange geothermometer. *Contrib. Mineral. Petrol.* **125**(2–3), 140-150.

Mekhonoshin A.S., Kolotilina T.B., Doroshkov A.A., Pikiner E.E. (2020) Compositional Variations of Cr-Spinel in High-Mg Intrusions of the Primorsky Ridge (Western Baikal Region, Russia). *Minerals.* **10**(7), 608.

Mercier J. (1980) Single-pyroxene thermobarometry. *Tec-tonophysics*.**70**, 1-37.

Molina J.F., Moreno J.A., Castro A., Rodriguez C., Fershtater G.B. (2015) Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. *Lithos.* **232**, 286-305.

Niu Y., Wilson M., Humphrteys E.R., O'Hara M.J. (2011) The Origin of Intra-plate Ocean Island Basalts (OIB): the Lid Effect and its Geodynamic Implications. *J. Petrol.* **52**(7–8), 1443-1468.

O'Neill H.St.C., Wall V.J. (1987) The Olivine-Orthopyroxene-Spinel Oxygen Geobarometer, the Nickel Precipitation Curve, and the Oxygen Fugacity of the Earth's Upper Mantle. *J. Petrol.* **28**, 1169-1191.

Palme H., O'Neill H.S. (2003) Cosmochemical estimates of mantle composition. In *Treatise of geochemistry 2. Mantle and Core* (Eds. Holland H.D., Turekian K.K.) Elsevier Science. 1-38.

Pearson D., Wittig N. (2008) Formation of Archaean continental lithosphere and its diamonds: the root of the problem. *J. Geol. Soc.* **165**, 895-914.

Pearson D.G., Canil D., Shiery S.B. (2003) Mantle samples included in volcanic rocks: xenoliths and diamonds. In *Treatise of geochemistry 2. Mantle and Core* (Eds. Holland H.D., Turekian K.K.) Elsevier Science. 172-278.

Polat A., Appel P.W.U., Fryer B. et al. (2009) Trace element systematics of the Neoarchean Fiskenæsset anorthosite complex and associated meta-volcanic rocks, sw Greenland: evidence for a magmatic arc origin. *Precambrian Res.* **175**, 87-11.

Portnyagin M., Almeev R., Matveev S., Holtz F. (2008) Experimental evidence for rapid water exchange between melt

inclusions in olivine and host magma. *Earth Planet. Sci. Lett* **272**(3–4), 541-552.

Prelevic D., Foley S.F. (2007) Accretion of arc-oceanic lithospheric mantle in the Mediterranean: evidence from extremely high-Mg olivines and Cr-rich spinel inclusions in lamproites. *Earth Planet. Sci. Lett.* **256**(1–2), 120-135.

Prelevic D., Jacob D.E., Foley S.F. (2013) Recycling plus: A new recipe for the formation of Alpine–Himalayan orogenic mantle lithosphere. *Earth Planet. Sci. Lett.* 362, 187-197.

Putirka K. (2008) Thermometers and Barometers for Volcanic Systems. In: Putirka, K., Tepley, F. (Eds.), Minerals, Inclusions and Volcanic Processes, Reviews in Mineralogy and Geochemistry, Mineralogical Soc. Am. **69**, 61-120.

Rietmeijer F.J.M. (1983) Chemical distinction between igneous and metamorphic orthopyroxenes especially those coexisting with Ca-rich clinopyroxenes: a re-evaluation. *Mineral. Magazine.* **47**, 143-151.

Rocholl A.B.E., Simon K., Jochum K.P et al. (1997) Chemical characterisation of NIST silicate glass certified reference material SRM 610 by ICP-MS, TIMS, LIMS, SSMS, INAA, AAS and PIXE. *Geostandards and geoanalytical research.* **21**(1), 101-114.

Roeder P.L., Emslie R.F. (1970) Olivine-liquid equilibrium. Contr. Mineral. Petrol. 29, 275-289.

Rudnick R.L., McDonough W.F., Orpin A. (1999) Northern Tanzanian peridotite xenoliths: a comparison with Kaapvaal peridotites and inferences on metasomatic interactions. *Proceedings of the Fifth International Kimberlite Conference*, 336.

Sengupta P., Dasgupta S., Bhattacharya P.K., Mukherjee M. (1990) An orthopyroxene-biotite geothermometer and its application in crustal granulites and mantle-derived rocks. *J. Metamorphic Geology.* **8**(2), 191-197.

Simon NSC, Carlson RW, Davies GR, Nowell GM and Pearson DG (2003) Os-Sr-Nd-Hf isotope evidence for the ancient depletion and subsequent multi-stage enrichment history Kaapvaal cratonic lithosphere. 8th International Kimberlite Conference Long Abstract 0117. Shumlyanskyy L., Wilde S. A., Nemchin A.A., Claesson S., Billstrom K., Bagirnski B.(2021) Eoarchean rock association in the Dniester-Bouh Domain of the Ukrainian Shield: A suite of LILE-depleted enderbites and mafic granulites. *Precambrian Res.* **352**, 106001.

Sobolev A.V., Hofmann A.W., Kuzmin D.V., Yaxley G.M., Arndt N.T et al. (2007) The Amount of Recycled Crust in Sources of Mantle-Derived Melts. *Science*. **316**, 412-417.

Stanley R. Hart, Davis Karleen E. (1978) Nickel partitioning between olivine and silicate melt, *Earth and Planetary Science Letters*. **40**(2), 203-219.

Sugawara T. (2000) Empirical relationships between temperature, pressure, and MgO content in olivine and pyroxene saturated liquid. *J. Geophys. Res.* **105**(B4), 8457-8472.

Sun S.-S., McDonough W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. *Geological Society, London, Special Publications.* **42**, 313-345.

Takahashi E. (1978) Partitioning of Ni^{2+} , Co^{2+} , Fe^{2+} , Mn^{2+} and Mg^{2+} between olivine and silicate melts: compositional dependence of partition coefficient. *Geochim. Cosmochim. Acta.* **42**(12), 1829-1844.

Taylor W.R., Kamperman M., Hamilton R. (1998) New thermobarometer and oxygen fugacity sensor calibrations for ilmenite- and chromian spinel-bearing peridotitic assemblages. *Proc. VII Int. Kimb. Conf., Red. Roof. Design, Cape Town, South Africa.* 891-892.

Vervoort J.D., Patchett P.J. (1996) Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derived granites. *Geochim. Cosmochim. Acta* **60**(19), 3713-3733.

Wan Z.H., Coogan L.A., Canil D. (2008) Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer. *Amer. Mineral.* **93**(7), 1142-1147.

Witt-Eickschen G., O'Neill H.S.C. (2005) The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. *Chemical Geology.* **221**(1–2), 65-101.

ПЕРЕНОС МЕТАЛЛОВ В ГИДРОТЕРМАЛЬНЫХ УСЛОВИЯХ В ВИДЕ КОЛЛОИДНЫХ ЧАСТИЦ И ПЕРЕСЫЩЕННЫХ ИСТИННЫХ РАСТВОРОВ

© 2023 г. В. А. Алексеев*

Институт геохимии и аналитической химии им. В.И. Вернадского РАН, ул. Косыгина, 19, Москва, 119991 Россия *e-mail: alekseyev-v@geokhi.ru

Поступила в редакцию 27.10.2022 г. После доработки 16.11.2022 г. Принята к публикации 02.12.2022 г.

Коллоиды металлов в гидротермальных растворах изучены значительно хуже, чем в поверхностных и подземных водах. Тем не менее из опубликованных работ следует, что коллоидные частицы, содержащие металлы, присутствуют в гидротермальных минералах, в геогазе и в подземных водах над рудными телами, во флюидных включениях минералов, в геотермальных растворах. Образование этих частиц обычно связывают с нуклеацией в пересыщенном растворе, который образуется в реакциях превращения минералов или при вскипании флюидов. Опубликованные экспериментальные данные подтверждают возможность образования коллоидных частиц и сохранения их стабильности в гидротермальных условиях. Для всесторонней оценки мобильности коллоидных частиц в этих условиях не хватает экспериментов по фильтрации пересыщенных и коллоидных растворов в пористых средах при повышенных температурах. Участие коллоидов в гидротермальном рудном процессе наиболее наглядно проявилось при формировании богатых эпитермальных Аи месторождений. На примере кварцевого геотермометра показана возможность переноса металлов в истинном пересыщенном растворе, что может быть даже более эффективным, чем коллоидный перенос. Таким образом, перенос металлов в гидротермальном процессе возможен в значительно более высоких концентрациях, чем следует из традиционного подхода, основанного на равновесной термодинамике.

Ключевые слова: коллоидный перенос, металлы, гидротермальные растворы DOI: 10.31857/S0016752523050023, EDN: EGRHGQ

ВВЕДЕНИЕ

Коллоидами называются гетерогенные дисперсные системы, в которых дискретные частицы, капли или пузырьки дисперсной фазы равномерно распределены в дисперсионной среде, которая имеет другое агрегатное состояние и/или другой состав. В данной работе этот термин используется в более узком смысле как коллоидный раствор, в котором дисперсная фаза и дисперсионная среда представлены соответственно твердыми частицами и водой или водным раствором. Размер коллоидных частиц достаточно мал (от 1 нм до 1-10 мкм), поэтому они находятся в воде во взвешенном состоянии за счет броуновского движения (Baalousha et al., 2011; Gavrilescu, 2014; Wang et al., 2020). Самые мелкие коллоидные частицы (1-100 нм) называются наночастицами, которые изза своих малых размеров имеют свойства, отличные от свойств более крупных частиц (Алексеев, 2019). Например, если частицы представлены металлами, уменьшение их размера меняет поведение электронов, что приводит к усилению квантового размерного эффекта (Roldughin, 2000).

ми обычно фильтруются через фильтры с размером пор 0.2-0.5 мкм. Ранее полагали, что в отфильтрованной таким образом воде все элементы находятся в истинно растворенном виде. Позднее выяснилось, что для микрокомпонентов это не так, т.к. они часто входят в состав коллоидных частиц, которые проходят через поры фильтра. Прогресс в изучении коллоидов произошел с развитием и совершенствованием методов их разделения и анализа: ультрафильтрации, проточного фракционирования в поперечном силовом поле, электронной и атомно-силовой микроскопии, масс-спектрометрии с индуктивно связанной плазмой (ИСП-МС), методами светорассеяния, рентгеновской спектроскопии и др. (Иванеев и др., 2021; Baalousha et al., 2011; Wang et al., 2020). Опубликовано большое количество природных, экспериментальных и теоретических исследований состава и структуры коллоидов, распределения их по размеру, распространенности, условий стабильности и агрегации, особенностей коллоидов в морях, реках, озерах, болотах, в подземных водах с разными вмещающими породами и др. Эти

Природные воды перед химическими анализа-

исследования неоднократно обобщались в многочисленных обзорах (Baalousha et al., 2011; Doucet et al., 2007; Flury, Aramrak, 2017; Gavrilescu, 2014; Sen, Khilar, 2006; Wang et al., 2020; Zhang et al., 2012 и др.). Суть этих обобщений вкратце сводится к следующему.

Природные коллоидные частицы могут быть неорганическими (оксиды и гидроксиды Fe. Mn. Si, Al-филлосиликаты, карбонаты, сульфиды) или органическими (гуминовые и фульвокислоты, протеины, полисахариды, сахара, нуклеиновые и аминокислоты, вирусы, бактерии, споры). Характерен также смешанный состав, когда минеральные частицы покрываются органическим веществом. В последнее время в природных условиях все больше фиксируются антропогенные коллоидные частицы (Baalousha et al., 2011), которые представлены пластиком, лекарствами, гормонами, пестицидами, радиоактивными элементами, искусственными наночастицами (Au, Ag, Fe, оксиды Fe, Zn, Ti, Ce, квантовые точки и др.). Суммируются результаты природных исследований по содержаниям металлов в коллоидной форме в поверхностных и морских водах (Doucet et al., 2007), выделяются элементы (Al, Fe, Cr, U, Mo, Pb, Ti, Th), которые переносятся в основном в коллоидной форме (Gavrilescu, 2014), разрабатываются теоретические основы и математические модели взаимодействия коллоидов с тяжелыми металлами (Bin et al., 2011; Sposito, 2017). Большая удельная поверхность коллоидных частиц обеспечивает высокую сорбционную емкость труднорастворимых металлов, концентрация которых в растворе становится выше их термодинамической растворимости и металлы переносятся на расстояния, значительно превышающие предсказанный неколлоидный перенос. Экспериментально получены константы адсорбции или комплексообразования металлов на коллоидных частицах разного состава (Дину, Шкинев, 2020; Моисеенко и др., 2013; Doucet et al., 2007 и др.). Для дальнего переноса металлов в коллоидной форме благоприятна большая скорость адсорбции и малая скорость десорбции (Baalousha et al., 2011).

В работе (Sen, Khilar, 2006) обобщены результаты лабораторных и природных исследований, в которых оценивалась скорость и условия коллоидного переноса в насыщенной водой пористой среде, представлены значения критической концентрации соли и критической концентрации коллоидных частиц, необходимые для мобилизации коллоидов в пористой среде, обсуждаются механизмы блокировки коллоидов в порах при разных отношениях размеров коллоидов и пор. В работе (Zhang et al., 2012) обобщены лабораторные и природные исследования, касающиеся источников, механизмов захвата и переноса коллоидов в трещиноватых породах.

ГЕОХИМИЯ том 68 № 6 2023

В работе (Wang et al., 2020) суммированы результаты экспериментов, природных наблюдений и математического моделирования по коллоидному переносу через гетерогенную (с микро- и макропорами) почву в ненасыщенных условиях нестационарного течения, которое характеризуется чередованием смачивания и высыхания. В этих условиях появляются капиллярные силы на границах вода-воздух и вода-воздух-твердое тело. Увеличение ионной силы раствора и гидрофобности коллоидных частиц усиливает прикрепление последних к этим границам. Циклы смачивания/высыхания меняют конфигурацию этих границ и толщину водных пленок, т.е. постоянно меняют соотношение различных сил. что приводит к большей мобилизации коллоидных частиц, чем при постоянном течении. Физическая неоднородность почвы усиливает влияние этих циклов. В работе (Flury, Aramrak, 2017) обсуждается теория взаимодействий на границе раздела коллоид-воздух-вода, основанная на термодинамике и действующих силах (ван-дер-ваальсовы, электростатические, гидрофобные, капиллярные). Теория подтверждена экспериментальными данными, которые показали, что в зависимости от гидродинамики смачивания или высыхания воды в пористой среде, а также от гидрофобности коллоидных частиц и стенок пор, коллоидные частицы могут прикрепляться к границе воздух-вода и к стенкам пор, или отсоединяться от них.

В отличие от поверхностных и подземных вод, для гидротермальных растворов данных по коллоидному переносу металлов мало, а обзорных работ, по-видимому, вообще нет за исключением старой работы (Chukhrov, 1966). Данная обзорная работа выполнена с целью частично восполнить этот пробел. Основное внимание уделено различным аспектам природных и экспериментальных исследований. Из-за дефицита данных использовались работы, в которых изучались не только коллоиды, но и частицы более крупного размера. Если для поверхностных вод металлы считаются потенциально вредными, то для гидротермальных растворов они считаются полезными элементами, способными концентрироваться в рудные тела.

ПРИРОДНЫЕ ИССЛЕДОВАНИЯ

Ранее присутствие коллоидов в гидротермальных рудных флюидах допускалось в основном на основании существования минералов с гладкой выпуклой поверхностью, которая напоминает искривление поверхности капли жидкости под действием поверхностного натяжения (Chukhrov, 1966). Предполагалось, что такая колломорфная или глобулярная текстура минералов возникала в результате старения гелей, которые, в свою очередь, образовались в результате коагуляции коллоидных частиц. Помимо этого критерия использовались и другие: неоднородность минералов (примеси), трещины усыхания, диффузионная полосчатость (Park, MacDiarmid, 1964). В обзорной работе (Chukhrov, 1966) приведены многочисленные примеры колломорфных и глобулярных агрегатов природных коллоидных и метаколлоидных минералов. Позднее список этих примеров неоднократно пополнялся. Обнаружены колломорфные полосы дендритоподобных глобулярных агрегатов электрума (Marinova et al., 2014), полифазный уран-титановый метагель (Алешин и др., 2016), метаколлоидные гель-пиритовые и гель-настурановые прожилки (Дымков и др., 2014). Следует отметить, что слово "гель" в этих работах ошибочно применяется к твердому веществу, что искажает его смысл.

Гель как полужидкая субстанция тоже встречается в природе. Например, в кальдере вулкана Головина (о. Кунашир) породы превращены в опаловые корки, из-под которых вытекала горячая сметаноподобная масса геля кремнезема (Набоко, 1959; Набоко, Сильниченко, 1957). При охлаждении этот гель превратился в сухой мелоподобный порошок (рентгеноаморфный силикагель) с высоким содержанием воды (52%). Колломорфная текстура при этом не образовывалась. В гидротермальных условиях порошок силикагеля превращается в халцедоновые сферолиты (Oehler, 1976), но это превращение протекает по механизму растворение-кристаллизация, т.е. через стадию полного растворения (исчезновения) исходного вещества (Williams, Crerar, 1985) и, соответственно, его текстуры. Таким образом, до сих пор нет убедительных доказательств образования колломорфных минералов путем уплотнения геля.

Однако имеются многочисленные свидетельства гидротермального образования минеральных коллоидных частиц. Например, с помощью электронной микроскопии (ТЭМ, СЭМ) высокого разрешения установлено, что очень богатые (бонанзовые) Аи руды состоят из кристаллических частиц самородного золота или электрума размером 5-10 нм, которые часто образуют фрактальные агрегаты в кальците, кварце, сериците или адуляре (McLeish et al., 2021; Saunders, Burke, 2017; Saunders et al., 2020). Те же методы в сочетании с дифракцией электронов, аналитической электронной микроскопией и электронно-микрозондовым анализом позволили обнаружить мелкие (5–100 нм) включения Au, Ag, электрума, галенита, киновари, тетраэдрита, арсенопирита и других минералов в гидротермальном пирите (Deditius et al., 2011; Franchini et al., 2015; González-Jiménez et al., 2022; Tang et al., 2019), HgS в пирротине (Liu et al., 2020а).

Рудные тела гидротермальных месторождений содержат также мелкие частицы (от первых десятков до первых сотен нм), слабо сцепленные с окружающей средой. Под действием эманации геогаза (N₂, O₂, CO₂, CO, CH₄, NH₃) они перемешаются вверх, проникают в подземные воды или выходят прямо на поверхность (Liu et al., 2019а). Для изучения с помошью ТЭМ. ЭДА (энергодисперсионный анализ) и дифракции электронов, наночастицы адсорбируются на металлические сеточки из геогаза или из скважинной воды. Эти исследования показали большое разнообразие их формы, размера и строения (аморфные, моно- и поликристаллические), но минеральный или элементный состав наночастии всегла совпадал с составом рудных тел и месторождений, скрытых на глубине (Cao et al., 2009; Liu et al., 2019а, 2020b; Luo et al., 2015). Вдали от рудных тел наночастицы состояли из других, более распространенных элементов: Ca, Si, Fe, Al, Ti, Ba (Liu et al., 2019а). Этот факт может быть использован для поисков скрытых рудных тел.

Флюидные включения в кварце из золотосодержащих пород анализировались с помощью масс-спектрометрии с лазерной абляцией (Banks et al., 2019; Prokofiev et al., 2020). Сигнал золота в этих исследованиях не был плавным асимметричным, а состоял из серии всплесков, что означает присутствие Au не в растворенном виде, а в виде твердых частиц. Эти частицы, диагностированные также энерго-дисперсионным анализом, имели размер до 1 мкм и содержание Au до 1000 мг/кг. Свидетельством наличия коллоидных частиц может быть также рассеивание флюидными включениями луча лазера подобно тому, как это происходит в капилляре, заполненном золем кремнезема (Prokofiev et al., 2017).

В активных зонах спреддинга и субдукции гидротермальные растворы изливаются на дно океана, вскипают, смешиваются с морской водой и быстро охлаждаются. При этом удаляются летучие (H_2 , H_2S , CO_2), меняется pH, а на кипящей границе флюид/морская вода возникает пересыщение относительно ряда минералов и происходит их нуклеация (Gartman et al., 2019). В результате образуются взвеси твердых частиц черного или белого цвета (черные или белые "курильщики"). Исследования с использованием СЭМ, ТЭМ, рентгенографии, ЭДА, ИСП-МС и других методов показали, что размер твердых частиц "курильщиков" колеблется от нм до мкм, а в их составе преобладают сульфиды металлов: пирит, марказит, пирротин, борнит, халькопирит, сфалерит и др. (Cotte et al., 2015; Durán-Toro et al., 2019; Findlay et al., 2015; Gartman et al., 2014, 2019). С удалением от мест образования, крупные сульфидные частицы осаждаются, а мелкие окисляются до оксигидроксидов, адсорбируют органический углерод и распространяются на десятки км (Hoffman et al., 2018; Stewart et al., 2021).

Анализы растворов (ИСП-МС) геотермальных систем Новой Зеландии с глубины 1-1.5 км (ниже уровня кипения) показали пересыщение относительно халькопирита и сфалерита на 1-3 порядка (Simmons et al., 2016). Причиной пересыщения авторы считают присутствие коллоидных частиц этих минералов, которые дали дополнительный вклад в анализы растворов. Пересыщение относительно Au на порядок наблюдалось в геотермальном месторождении Исландии на глубине 1.6 км, что также объяснялось присутствием коллоидных частиц (Hannington et al., 2016). Позднее это предположение было подтверждено тем же методом ИСП-МС, но в режиме временного разрешения, когда регистрировались всплески интенсивности от отдельных коллоидных частиц Аи (Hannington, Garbe-Schönberg, 2019). Концентрация этих частиц увеличилась с 3 до 14 мкг/кг за 7 лет в связи с падением давления при эксплуатации скважин, что усилило кипение раствора. С помощью СЭМ/ЭДА обнаружены коллоидные частицы Аи размером от <50 нм до 2 мкм и с концентрацией до 26.7 нмоль/кг в кипящих гидротермальных растворах, изливающихся через "черные курильщики" на дно Тихого океана (Gartman et al., 2018).

Природные гидротермальные растворы, изливающиеся на поверхность, содержат кремнезем в основном в мономерной форме. Однако содержание этой формы несколько меньше, чем общее содержание SiO₂, особенно при более высоких концентрациях (рис. 1). Разность этих концентраций указывает на присутствие коллоидов SiO₂ с содержанием до 30 мг/л (Fournier, Rowe, 1966). Вероятно, что эти коллоиды образовались на пути подъема гидротермальных растворов и двигались вместе с ними. После выхода гидротермальных растворов на поверхность они охлаждаются, что усиливает образование коллоидного кремнезема, который придает раствору синий цвет, сменяющийся молочно-белым (Ohsawa et al., 2002).

Возможность перемещения коллоидов гидротермальными растворами подтверждается также наличием коллоидов в подземных водах, которые фильтруются через аналогичное трещинно-пористое пространство горных пород. Исследования подземных вод (рассеяние света, ультрафильтрация, СЭМ, фотоакустическая спектроскопия и др.) с разной глубины из разных геологических формаций показали постоянное присутствие в них коллоидных частиц (кремнезем, оксигидроксид Fe, кальцит, глины с органикой) с концентрацией от 10⁵ до 10⁸ шт/мл (для частиц размером >100 нм) (Degueldre et al., 2000). Концентрация коллоидов увеличивалась с уменьшением содержания в растворе Na, K, Ca, Mg, а также с увеличением pH и содержания органики. Другой пример: вода, сочащаяся из аргиллитовых стенок в шахтах Япо-

ГЕОХИМИЯ том 68 № 6 2023

Рис. 1. Содержание общего и мономерного кремнезема в горячих источниках Йеллоустонского национального парка (США) (Fournier, Rowe, 1966).

нии, постоянно содержит отрицательно заряженные (стабильные) коллоидные частицы со средним размером 120 нм и с концентрацией до 4 мг/л (Sasamoto, Onda, 2019). Следует отметить, что измеренные концентрации коллоидов относятся к неизменным гидрогеохимическим условиям. Изменение давления, температуры, состава и скорости течения раствора может вызвать значительное увеличение концентрации коллоидов.

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

Твердые частицы коллоидного размера могут образоваться в результате измельчения более крупных частиц или зародышеобразования. Применительно к гидротермальному процессу, первый путь мог реализоваться, например, в долго живущих разломах, где происходили интенсивные перемещения блоков земной коры и образовалась глинка трения. Однако более распространенным и, соответственно, изученным является второй путь. Нуклеация происходит, когда раствор достигает определенной степени пересыщения относительно новой твердой фазы и по окончании индукционного периода, которое требуется для образования зародышей этой фазы. Пересыщение образуется при изменении температуры, pH, состава и массы раствора, что особенно характерно при гетерогенизации (вскипании) флюидов (Cline et al., 1992). Пересыщение раствора может возникнуть и при неизменных параметрах в реакциях превращения минералов, когда растворение первичных минералов протекает быстрее осаждения вторичных (Алексеев, 2019). По месту образования (в объеме раствора или на поверхности другой твердой фазы) различают гомогенную или гетерогенную нуклеацию, что приводит к различиям в подвижности зародышей (свободное перемещение с раствором или их неподвижность).

Рис. 2. Длительность индукционного периода нуклеации (а) и радиус критического зародыша (б) поливанадата аммония в зависимости от отношения фактической и равновесной концентрации (C/C_{eq}) при 75 и 95°C (Zhan et al., 2019).

В гидротермальных системах, расположенных в земной коре, подвижность неприкрепленных коллоидных частиц зависит от соотношения их размеров и размеров пор или трещин, по которым фильтруется гидротермальный раствор. Более подвижными с этой точки зрения являются коллоидные частицы малого размера (Sen, Khilar, 2006). Подвижность коллоидов зависит также от соотношения ван-дер-ваальсовых сил притяжения и электростатических сил отталкивания между частицами, что частично решается в теории ДЛФО (Дерягина, Ландау, Фервея и Овербека). Расчеты по этой теории показали, что повышение давления и температуры соответственно стабилизирует и дестабилизирует коллоиды (Barton, 2019). Однако этот вывод может быть существенно скорректирован при учете сил, которые отсутствуют в теории ДЛФО: гидратация, гидрофобные, стерические и мостиковые силы (Baalousha et al., 2011). Наличие многих факторов затрудняет надежную теоретическую оценку стабильности и подвижности коллоидов, поэтому экспериментальные исследования в этой области приобретают решающее значение. Ниже приведены результаты некоторых опубликованных экспериментов, в которых изучались образование и устойчивость пересыщенных и коллоидных растворов при повышенных температурах.

Нуклеация поливанадата аммония при 75– 95°С инициировалась пересыщением, которое создавалось быстрым подкислением водного раствора метаванадата аммония (Zhan et al., 2019). Длительность индукционного периода перед началом нуклеации, определенная по резкому уменьшению электропроводности раствора, увеличивалась с уменьшением пересыщения раствора и температуры, а также с увеличением рН. Применение этих данных в классической теории нуклеации позволило определить области преобладания гомогенной и гетерогенной нуклеации и вычислить радиус критического зародыша (рис. 2), а также межфазное натяжение между поливанадатом аммония и пересыщенным раствором и энергию активации нуклеации. Примеси сульфата Na или фосфорной кислоты в растворе увеличивали индукционный период в десятки раз. Примеси могут действовать и в обратном направлении. Например, присутствие растворенного SiO₂ ниже насыщения аморфным кремнеземом уменьшало время индукции зарождения CaCO₃ и поверхностную свободную энергию, что объяснялось увеличением доли гетерогенного зарождения (Lakshtanov, Stipp, 2010).

Коллоидные растворы Au, полученные в реакции HAuCl₄ с H_2O_2 и K_2CO_3 , не давали осадок и не меняли свой красный цвет (были стабильными) до 350°С (Frondel, 1938). В сероводородном растворе коллоидные частицы Au с размером 10–20 нм и с концентрацией до 95 мг/кг были стабильны до 300°С (Liu et al., 2019b). Хотя длительность этих опытов была ограниченной (2.5 и 22 ч), в обоих случаях отмечалось стабилизирующее влияние коллоидов SiO₂ на коллоиды Au.

Риолит, расплавленный в стекло после ядерных взрывов в Неваде, растворялся до 3 лет в водном растворе NaCl + NaHCO₃ (pH 8) при 140 и 200°С (Zavarin et al., 2019). В результате реакции образовывались коллоиды смектита с размером частиц 0.02–15 мкм, с концентрацией 0.06–0.26 г/л и с радиоактивностью 500–1400 Бк/л (в основном от ¹³⁷Cs), что превышало ПДК в 66–186 раз.

Рассмотрим подробнее кинетические и транспортные особенности коллоидов на примере наиболее изученных коллоидов кремнезема (SiO₂), которые образуются в результате полимеризации

мономерного (истинно растворенного) SiO_2 в пересыщенных растворах. Длительность индукционного периода созревания критических зародышей перед началом полимеризации увеличивается с уменьшением степени пересыщения и ионной силы раствора. с увеличением температуры и с удалением pH от нейтрального значения (Dixit et al., 2016; Icopini et al., 2005). В экспериментах индукционный период обычно не превышает 2 ч (Dixit et al., 2016), но в природных водах геотермальных источников он может быть значительно больше (White et al., 1956). Устойчивость пересыщенных растворов в индукционном периоде используется для предсказания температуры глубинного геотермального резервуара по составу раствора, который изливается из него на поверхность. При этом используется температурная зависимость растворимости кварца (Arnórsson, 1975; Fournier, Potter, 1982), иногда с учетом потери пара при испарении волы (Verma, 2000). Недавние исследования подтвердили, что кварцевый геотермометр в ряде случаев действительно показывает температуру, близкую к измеренной другими геотермометрами или к температуре, измеренной непосредственно в геотермальном резервуаре (Abdelali et al., 2020; Huang et al., 2018; Kai et al., 2020; Rezaei et al., 2019). В других случаях отмечались сильные отклонения, вызванные смешением глубинных и поверхностных вод или восстановлением равновесия при медленном подъеме глубинных вод (Fowler et al., 2018; Glover, Mroczek, 1998). Кинетическое моделирование, выполненное с учетом скорости осаждения кварца, показало, что близкие к правильным показаниям кварцевого геотермометра возможны лишь при малом отношении площади поверхности кварца к массе воды и/или при большой скорости подъема (охлаждения) воды (правая сплошная кривая на рис. 3).

В этом моделировании, однако, не учитывалась возможность образования коллоидных частиц, когда раствор становится пересыщенным относительно аморфного кремнезема (AS на рис. 3). Этот процесс полимеризации кремнезема в близнейтральном растворе протекает быстро и завершается образованием осадка аморфного SiO₂, но резко замедляется при отклонении pH в кислую или щелочную область (рис. 4). При pH 3, например, концентрация коллоидов была практически одинаковой в растворах с низкой и высокой ионной силой и не менялась до 4-х месяцев. Описан случай, когда золь SiO₂ (30%) с частицами размером 15 нм сохранялся стабильным при 20–30°C и pH 9–10 в течение 20 лет (Iler, 1979).

Полимеризация SiO_2 в природном гидротермальном растворе при $90^{\circ}C$ и pH 6—8 приводила к уменьшению концентрация истинно растворенного кремнезема (*m*) до равновесной концентра-

ГЕОХИМИЯ том 68 № 6 2023

Рис. 3. Изменение концентрации SiO₂ в воде при подъеме к поверхности (Rimstidt, Barnes, 1980). S/M – отнощение площади поверхности кварца к массе воды (m^2/kr), v – скорость подъема воды (м/с). Штрихпунктиром показана растворимость кварца (Qtz) и аморфного кремнезема (AS).

Рис. 4. Концентрации устойчивых форм SiO_2 в искусственном растворе в зависимости от pH (Icopini et al., 2005). Ионная сила 0.01 М.

ции (m_{eq}) уже через 9 ч (рис. 5). В отличии от чистой системы вода-кремнезем (рис. 4), здесь при рH > 8–9 величина *m* была значительно меньше m_{eq} , что объяснялось осаждением силикатов Са, а при рH 4 и 90°С величина *m* была выше исходной концентрации (рис. 5). Последнее обстоятельство объяснялось деполимеризацией SiO₂, что означало присутствие коллоидного кремнезема в растворе еще до его извлечения из скважины, т.е. он поднимался вместе с раствором из глубинного геотермального резервуара.

Рис. 5. Концентрация мономерного кремнезема (m) в природном растворе после 9 ч выдержки при разных температурах и pH (Dixit, 2014).

Рост наночастиц кремнезема при 90°С в природном геотермальном растворе, пересыщенном относительно аморфного SiO₂, изучался с помощью динамического рассеяния света (Татига et al., 2019). Уменьшение концентрации мономерного (истинно растворенного) кремнезема (рис. 6а) сопровождалось быстрым увеличением среднего диаметра частиц поликренмиевой кислоты с 1 до 6 нм в первые 5 мин с последующей стабилизацией на уровне 7 нм (рис. 6б). Разбавление раствора водой вызвало уменьшение его пересыщения, массы и размера наночастиц. Природный раствор, разбавленный до 64%, оставался еще пересыщенным в ~2 раза относительно аморфного кремнезема, который, однако, практически не образовывался.

Коллоидный раствор, стабильный и, следовательно, мобильный в объеме раствора, может потерять мобильность в пористой среде в первую очередь из-за блокировки пор коллоидными частицами и уменьшения проницаемости среды. Например, пропускание водной суспензии каолинита через пористый песчаник при 125°С приводило к увеличению концентрации коллоидных частиц на выходе, а также к уменьшению проницаемости песчаника и скорости фильтрации суспензии (Kanimozhi et al., 2021). Увеличение температуры до 175°С усилило эти эффекты, вызванные высокой концентрацией (20-30 мг/л) коллоидных частиц каолинита. Коллоидные частицы, изначально расположенные в порах, тоже влияют на проницаемость песчаника. Например, последовательное пропускание растворов NaCl с уменьшающейся концентрацией через песчаник (содержание каолинита 7%) при 25°С приводило к сильному уменьшению проницаемости (рис. 7) и сопровождалось увеличением концентрации коллоидных частиц (каолинит, кварц, микроклин) на выходе. С увеличением температуры до 50 концентрация коллоидных частиц была меньше, а проницаемость больше за счет большего количества открытых пор. Проницаемость не менялась при фильтрации растворов CaCl₂ с теми же концентрациями при 25°C, а при 50°C она даже увеличилась на 20% (рис. 7). Результаты опытов объясняются конкуренцией двух механизмов: 1) увеличение проницаемости в результате растворения минералов (усиливается с повышением температуры) и 2) уменьшение проницаемости в результате мобилизации коллоидных частиц и закупорки ими пор.

С увеличением длительности фильтрации воды, содержащей частицы кварца (18 или 41 мкм),

Рис. 6. Концентрация мономерного кремнезема (а) и диаметр частиц SiO_2 (б) в природном геотермальном растворе (100%, pH₂₅ 6.6, ионная сила 0.03) и в том же растворе, но разбавленном водой (64% исходного раствора), в зависимости от времени при 90°С (Tamura et al., 2019).

через кварцевый песок (размер зерен 0.36 или 1.25 мм) содержание частиц на выходе сначала увеличивалось, а затем уменьшалось в результате блокировки ими пор песка (Cui et al., 2019). Максимумы этих кривых увеличивались с увеличением отношения размеров зерен песка и частиц (d_s/d_c) , скорости фильтрации раствора (v) (рис. 8). Влияние температуры на максимумы было заметным только при низких значениях $d_s/d_c = 9$, причем с увеличением v отрицательная зависимость сменилась положительной.

Фильтрация суспензии микрочастиц кварца в растворе нитрата Pb через кварцевый песок приводила к уменьшению концентрации растворенного Pb на выходе из реактора вдвое за счет адсорбции Рb на стенках пор и на коллоидных частицах (рис. 9a). В случае с Cd была похожая картина, но увеличение начальной концентрации C_0 увеличило долю Cd на коллоидных частицах (рис. 9б). В обоих случаях эта доля несколько уменьшалась с увеличением температуры и слабо зависела от скорости фильтрации. Следует отметить, что размер частиц 2.8 мкм на рис. 9 был минимальным в работе (Bai et al., 2021). С его увеличением доля Pb и Cd на коллоидных частицах уменьшалась. Это значит, что с уменьшением размера частиц менее 2.8 мкм эта доля, по-видимому, должна возрастать. Положительное влияние температуры (25–75°С) на хемосорбцию стронция гематитом и бернесситом отмечалось в работах (Karasyova et al., 1999; Карасева и др., 2019).

В присутствии затравок осаждение минерала из пересыщенного раствора ускоряется (Carroll et al., 1998), а роль затравок могут играть и стенки пор. по которым движутся гидротермальные растворы. В этом случае возможна смена механизмов нуклеации с гомогенного на гетерогенный, т.е. зародыши могут образовываться не в объеме раствора, а прикрепляться к поверхности пор, лишаясь способности перемещаться вместе с раствором. Это предположение, казалось бы, подтверждается работами, где природные гидротермальные растворы (70-130°С), пересыщенные относительно аморфного кремнезема, пропускались через длинные реакторы, заполненные песком или циркониевыми шариками диаметром 2 мм (Carroll et al., 1998; Kawahara et al., 2012; Mroczek et al., 2000). В этих экспериментах аморфный кремнезем осаждался, но коллоиды SiO₂ не наблюдались из-за того, что, как считают авторы, время пребывания раствора в реакторе (3-5 мин) меньше индукционного периода, необходимого для начала гомогенной полимеризации кремнезема (0.5-2 ч) (Carroll et al., 1998). Здесь следует уточнить, что длительность индукционного периода зависит от рН, а при фактических значениях рН в этих экспериментах (~8) индукционный период вообще отсутствует (Dixit et al., 2016). Это значит, что стадия полиме-

ГЕОХИМИЯ том 68 № 6 2023

Рис. 7. Отношения конечной и исходной проницаемости песчаника при фильтрации растворов NaCl и CaCl₂ при 25 и 50°C (Wang et al., 2021). Стрелка показывает направление изменения состава фильтрующегося раствора.

Рис. 8. Отношение максимальной концентрации кварцевого коллоида на выходе из кварцевой пористой среды (C_{max}) к исходной его концентрации ($C_0 = 0.2 \text{ г/л}$) в зависимости от температуры, отношения размеров частиц песка и коллоида (d_s/d_c) и скорости фильтрации раствора (v) (Cui et al., 2019).

ризации быстро сменилась агрегацией и осаждением сферических коллоидных частиц аморфного кремнезема на стенки пор (рис. 5). Именно сферическая форма этих частиц считается доказательством их гомогенной (в объеме раствора) нуклеации (Okamoto et al., 2010). Чтобы проследить стадию образования коллоидных частиц в этих условиях, нужно было замедлить полимеризацию кремнезема подкислением раствора. Действительно, уменьшение pH с 8.1 до 4.9 привело к прекращению осаждения SiO₂ при 90 и 120°С (Kawahara et al., 2012), т.е. пересыщенный раствор просачивался через пористое пространство реак-

Рис. 9. Распределение Pb (а) и Cd (б) между разными формами после фильтрования водной суспензии, содержащей растворенный Pb или Cd и частицы кварца размером 2.8 мкм (2 г/л), через кварцевый песок с размером зерен 2.2 мм при разных температурах (Bai et al., 2021).

тора при постоянной концентрации как общего, так и мономерного кремнезема, причем последняя концентрация была несколько ниже первой (в пределах погрешности анализов).

При закачивании в водоносный горизонт раствора, использованного в геотермальной электростанции, обычно возникает проблема закупорки пор пласта отложениями кремнезема. Одним из примеров успешного решения этой проблемы является натурный эксперимент на геотермальном месторождении Вайракей (Mroczek et al., 2017). Использованный раствор (pH 8.6, 700 мг/кг SiO₂) при температуре 98°С поступал в пруд с температурой 30°С, где быстро охлаждался и подвергался старению в течение нескольких дней. За это время образовывались коллоидные частицы кремнезема со средним размером 32 нм и с концентрацией 540 мг/кг. Раствор из пруда закачивался (270 т/ч) через две скважины в водоносный горизонт с температурой 70°С. Согласно расчетам с учетом температурной зависимости растворимости аморфного кремнезема (рис. 3), увеличение температуры раствора в нагнетательных скважинах могло вызвать растворение части коллоидных частиц и уменьшить их концентрацию, но ненамного (до 420 мг/кг). На протяжении всего эксперимента (10 мес) приемистость скважин не менялась и закупорка пор отложениями кремнезема не фиксировалась. Причина этого заключалась в низкой исходной концентрации мономерного кремнезема (160 мг/кг), который в основном и отлагается на стенках скважин и пор. Таким образом, гидротермальные растворы даже с высокой концентрацией коллоидных частиц способны длительное время фильтроваться через вмещающие породы без блокировки пор.

ОБСУЖДЕНИЕ

Типичными реакциями с участием воды в земной коре являются те, в которых одни минералы превращаются в другие. Долгое время считалось, что скорость общей реакции минерального превращения определяется медленным растворением первичного минерала, а вторичные минералы осаждаются быстро после достижения равновесия их с раствором и не влияют на скорость общей реакции. Этот принцип частичных равновесий (Helgeson et al., 1984), исключающий возможность образования пересыщенных растворов, получил широкое распространение в термодинамических расчетах геохимических систем, стимулировал экспериментальное изучение кинетики растворения минералов, но сдерживал изучение кинетики осаждения минералов и, в частности, стадии нуклеации. Поэтому такой подход оказался сдерживающим фактором и в исследовании гидротермальных коллоидных растворов.

Тем не менее, природные исследования, приведенные в данной работе, убедительно показали, что коллоидные частицы в гидротермальном процессе действительно образуются. О способности перемещения коллоидных частиц в трещиннопористом пространстве вмещающих пород свидетельствует их присутствие в растворах, которые поднимаются из глубинных геотермальных резервуаров, в эманациях геогаза и в подземных волах над скрытыми рудными телами. В подземных водах Японии, например, постоянно присутствуют коллоидные частицы малого размера (120 нм) с низкой концентрацией частиц (до 4 мг/л) (Sasamoto, Onda, 2019). Такая же низкая концентрация, но Cu и Zn в геотермальных резервуарах Новой Зеландии при 250-300°С соответствует высоким пересыщениям (до 3-х порядков) относительно

халькопирита и сфалерита (Simmons et al., 2016). Если пересыщения обусловлены присутствием коллоидных частиц, как предполагают авторы, то эти частицы вполне могли свободно перемещаться в аналогичном трещинно-пористом пространстве без блокировки пор, имея такой же малый размер.

Экспериментальные исследования свидетельствуют о возможности образования стабильных коллоидных гидротермальных растворов в большом объеме (рис. 4–6). Изучение поведения коллоидных растворов в пористой среде при повышенных температурах, к сожалению, ограничено высокими концентрациями и большими размерами коллоидных частиц (рис. 7–9), что приводит к блокировке пор, уменьшению проницаемости пористой среды и прекращению коллоидного переноса. Однако для эффективного коллоидного переноса металлов достаточно низких концентраций коллоидных частиц при условии их малого размера (см. предыдущий абзац). Именно такие условия необходимы в будущих экспериментах, оценивающих возможность коллоидного переноса рудных элементов гидротермальными растворами в пористой среде. Важной целью этих экспериментов может быть также оценка соотношения гомогенной и гетерогенной нуклеации в поровом растворе и его влияние на подвижность коллоидных частиц. Другие факторы коллоидного переноса (электростатическое взаимодействие, адсорбция, химические реакции, pH, температура, ионная сила, степень насыщения, размер, форма и шероховатость коллоидных частиц и пор) для гидротермальных растворов сохраняются и тоже нуждаются в исследовании.

Согласно традиционным взглядам на образование гидротермальных рудных месторождений (Seward et al., 2014), рудоносные флюиды являются истинными растворами, которые переносят металлы к местам отложения в виле водных комплексов с различными лигандами. Гипотеза коллоидного переноса металлов гидротермальными растворами стала развиваться применительно в первую очередь к богатым Аи месторождениям, т. к. в рамках старой концепции трудно было объяснить образование жил с очень высоким содержанием золота (целые %) при очень низких его концентрациях в рудных растворах ($\sim 10^{-6}\%$), содержащих сульфидные или хлоридные комплексы Au (McLeish et al., 2021). Современные геотермальные системы накапливают Au, Ag, Cu, Pb, Zn в зоне кипения, т.е. так же, как это происходило при образовании эпитермальных месторождений (Clark, Williams-Jones, 1990; Hamilton et al., 2019). Наличие коллоидов металлов в современных геотермальных системах дает основание предполагать участие коллоидов и в древних гидротермальных рудных процессах. Коллоидным частицам Au и SiO_2 отводится важная роль в образовании эпитер-

ГЕОХИМИЯ том 68 № 6 2023

мальных месторождений Au не только в качестве промежуточной стадии осаждения, но также в перемещении Au и в концентрировании богатых рудных тел (Saunders, Burke, 2017). В частности, крупные поры и трещины способны быть путями транспорта коллоидных растворов, а мелкие поры и трещины могут выступать в роли фильтров, которые пропускают истинные растворы, но задерживают и накапливают коллоидные частицы Au.

Пересыщенные геотермальные растворы, поднимающиеся из глубинного резервуара к поверхности, могут оставаться истинными, т.е. без коллоидных частиц, которые еще не успели образоваться. Об этом свидетельствуют как результаты экспериментов (64% исходного раствора на рис. 6), так и природные данные, показывающие надежность кварцевого геотермометра во многих случаях (см. текст при обсуждении рис. 3). Подобная ситуация существует и для других геотермометров. Например, действие Na-К геотермометра основано на допушении, что константа равновесия реакции превращения альбита в калиевый полевой шпат (отношение Na/K в растворе) не меняется при подъеме (и охлаждении) раствора из геотермального резервуара к поверхности (Алексеев, 1997). В аналогичных условиях возможно образование пересыщенных растворов и для других реакций, в том числе для реакций осаждения рудных минералов. Это означает, что перенос металлов в виде пересыщенных истинных растворов может оказаться даже более эффективным, чем коллоидный перенос, т. к. он не ограничен размером частиц, поверхностным зарядом и многими другими сдерживающими параметрами, что обеспечивает более высокую "проникающую способность" раствора вплоть до мелких пор и трещин.

ЗАКЛЮЧЕНИЕ

Обзор природных исследований показал, что коллоидные частицы широко представлены в виде включений в минералах, образовавшихся гидротермальным путем, в эманациях геогаза и в подземных водах над рудными телами, во флюидных включениях минералов, в геотермальных растворах.

Обзор экспериментальных данных подтвердил возможность гидротермального образования коллоидных частиц минералов путем гомогенного зародышеобразования в пересыщенных растворах. При определенных условиях эти частицы способны сохранять стабильность, т.е. не осаждаться, а находиться в объеме раствора. Для оценки миграционной способности коллоидных частиц не хватает экспериментов по фильтрации пересыщенных растворов в пористых средах разного состава и структуры в условиях гомогенной нуклеации коллоидных частиц и невысоких их концентраций, которые, однако, могут соответствовать высоким пересыщениям относительно рудных минералов.

Современные и древние гидротермальные системы накапливают металлы в основном в результате кипения флюида, что благоприятно и для образования коллоидных частиц. Это послужило стимулом для разработки рядом исследователей гипотезы об участии коллоидных частиц в образовании богатых эпитермальных месторождений Au.

На примере механизма действия кварцевого геотермометра показано, что гидротермальные растворы, быстро фильтруясь через пористую среду, способны сохранять пересыщение неизменным без образования коллоидных частиц. Такой перенос металлов может быть даже более эффективным, чем коллоидный перенос. В обоих случаях (в коллоидной форме или в истинном пересыщенном растворе) перенос металлов возможен в значительно более высоких концентрациях, чем следует из традиционного подхода, основанного на равновесной термодинамике. Продолжение экспериментальных, теоретических и полевых исследований в этой области позволит более точно оценить роль коллоидов и пересыщенных растворов в переносе металлов и в образовании рудных месторожлений.

СПИСОК ЛИТЕРАТУРЫ

Алексеев В.А. (1997) Кинетические особенности действия Na/К геотермометра. *Геохимия*. (11), 1128-1138.

Алексеев В.А. (2019) Наночастицы и нанофлюиды при взаимодействиях вода-порода. *Геохимия*. **64**(4), 343-355.

Alekseyev V.A. (2019) Nanoparticles and Nanofluids in Water–Rock Interactions. *Geochem Int.* **57**(4), 357-368.

Алешин А.П., Козырьков В.Д., Смирнов К.М., Комаров Вл.Б., Ивенченко М.М., Комаров Вик.Б., Грибоедова И.Г. (2016) Уран-титан-метагелевая минерализация золотоурановых месторождений Эльконского рудного района (Алдан) и особенности ее технологического передела. *Изв. вузов. Геология и разведка.* (4), 50-57.

Дину М.И., Шкинев В.М. (2020) Комплексообразование ионов металлов с органическими веществами гумусовой природы: методы исследования и структурные особенности лигандов, распределение элементов по формам. *Геохимия*. **65**(2), 165-177.

Dinu M.I., Shkinev V.M. (2020) Complexation of Metal Ions with Organic Substances of Humus Nature: Methods of Study and Structural Features of Ligands, and Distribution of Elements between Species *Geochem Int.* **58**(2), 200-211.

Дымков Ю.М., Салтыков А.С., Колпаков Г.А., Кринов Д.И., Алёшин А.П., Хорозова О.Д., Прокопчик В.И. (2014) Метаколлоидные пирит-настурановые прожилки богатых гидротермальных руд Далматовского уранового месторождения (Зауралье, Россия). Новые данные о минералого-геохимических особенностях, возрасте их формирования и источниках урана. *Геохимия*. (5), 414-431.

Dymkov Yu.M., Saltykov A.S., Kolpakov G.A., Krinov D.I., Aleshin A.P., Khorozova O.D., Prokopchik V.I. (2014) Metacolloid Pyrite–Pitchblende Veinlets of High-Grade Hydrothermal Ores at the Dalmatovskoe Uranium Deposit, Transural Region, Russia: New Data on the Mineralogy, Geochemistry, Age, and Uranium Sources *Geochem Int.* **52**(5), 372-387.

Иванеев А.И., Ермолин М.С., Федотов П.С. (2021) Разделение, характеризация и анализ нано- и микрочастиц окружающей среды: современные методы и подходы. *Журн. аналитической химии.* **76**(4), 291-312.

Карасева О.Н., Иванова Л.И., Лакштанов Л.З. (2019) Адсорбция стронция на оксиде марганца (δ-MnO₂) при повышенных температурах: эксперимент и моделирование. *Геохимия*. **64**(10), 1091-1104.

Karaseva O.N., Ivanova L.I., Lakshtanov L.Z. (2019) Strontium Adsorption on Manganese Oxide $(\delta$ -MnO₂) at Elevated Temperatures: Experiment and Modeling. *Geochem Int.* **57**(10), 1107-1119.

Моисеенко Т.И., Дину М.И., Гашкина Н.А., Кремлева Т.А. (2013) Формы нахождения металлов в природных водах в зависимости от их химического состава. *Водные ресурсы.* **40**(4), 375-385.

Набоко С.И. (1959) Вулканические эксгаляции и продукты их реакций. М.: АН СССР. 301 с.

Набоко С.И., Сильниченко В.Г. (1957) Образование силикагеля на сольфатарах вулкана Головнина на острове Кунашир. *Геохимия.* (3), 253-256.

Abdelali A., Nezli I.E., Kechiched R., Attalah S., Benhamida S.A., Pang Z. (2020) Geothermometry and geochemistry of groundwater in the Continental Intercalaire aquifer, southeastern Algeria: Insights from cations, silica and SO_4 – H_2O isotope geothermometers. *Appl. Geochem.* **113**, art. No. 104492.

Adrian Y.F., Schneidewind U., Bradford S.A., Šimůnek J., Klumpp E., Azzam R. (2019) Transport and retention of engineered silver nanoparticles in carbonate-rich sediments in the presence and absence of soil organic matter. *Environ. Pollut.* **255**, art. No. 113 124.

Arnórsson S. (1975) Application of the silica geothermometer in low temperature hydrothermal areas in Iceland. *Am. J. Sci.* **275**(7), 763-784.

Baalousha M., Lead J.R., Ju-Nam Y. (2011) Natural colloids and manufactured nanoparticles in aquatic and terrestrial systems. *Treatise on Water Sci.* **3**, 89-129.

Bai B., Nie Q., Zhang Y., Wang X., Hu W. (2021) Cotransport of heavy metals and SiO₂ particles at different temperatures by seepage. *J. Hydrol.* **597**, art. No 125771.

Banks D.A., Bozkaya G., Bozkaya O. (2019) Direct observation and measurement of Au and Ag in epithermal mineralizing fluids. *Ore Geol. Rev.* **111**, art. No 102955.

Barton I. (2019) The effects of temperature and pressure on the stability of mineral colloids. *Amer. J. Sci.* **319**(9), 737-753. Bin G., Cao X., Dong Y., Luo Y., Ma L.Q. (2011) Colloid

deposition and release in soils and their association with heavy metals. *Crit. Rev. Environ. Sci. Technol.* **41**(4), 336-372.

Cao J., Hu R., Liang Z., Peng Z. (2009) TEM observation of geogas-carried particles from the Changkeng concealed gold deposit, Guangdong Province, South China. *J. Geochem. Explor.* **101**(3), 247-253.

Carroll S., Mroczek E., Alai M., Ebert M. (1998) Amorphous silica precipitation (60 to 120°C): Comparison of laboratory and field rates. *Geochim. Cosmochim. Acta*, **62**(8), 1379-1396.

Chukhrov, F.V. (1966) Present views on colloids in ore formation. *Int. Geol. Rev.* **8**(3), 336-345.

Clark J.R., Williams-Jones A.E. (1990) Analogues of epithermal gold-silver deposition in geothermal well scales. *Nature*. **346**(6285), 644-645.

Cline J.S., Bodnar R.J., Rimstidt J.D. (1992) Numerical simulation of fl uid fl ow and silica transport and deposition in boiling hydrothermal solutions; application to epithermal gold deposits. *J. Geophys. Res.* **97**(B6), 9085-9103.

Cotte L., Waeles M., Pernet–Coudrier B., Sarradin P.-M., Cathalot Cé., Riso R.D. (2015) A comparison of in situ vs. ex situ filtration methods on the assessment of dissolved and particulate metals at hydrothermal vents. *Deep-Sea Res. Part I Oceanogr. Res. Pap.* **105**, 186-194.

Cui X., Fan Y., Wang H., Huang S. (2019) Effects of temperature on the transport of suspended particles through sand layer during groundwater recharge. *Water Air Soil Pollut.* **230**(10), art. No. 251.

Deditius A.P., Utsunomiya S., Reich M., Kesler S.E., Ewing R.C., Hough R., Walshe J. (2011) Trace metal nanoparticles in pyrite. *Ore Geol. Rev.* **42**(1), 32-46.

Degueldre C., Triay I., Kim J.-I., Vilks P., Laaksoharju M., Miekeley N. (2000) Groundwater colloid properties: A global approach. *Appl. Geochem.* **15**(7), 1043-1051.

Dixit C. (2014) Etude physico-chimique des fluides produits par la centrale géothermique de Bouillante (Guadeloupe) et des dépôts susceptibles de se former au cours de leur refroidissement. Ph.D. Thesis. Antilles-Guyane University, France (254 p).

Dixit C., Bernard M.-L., Sanjuan B., André L., Gaspard S. (2016) Experimental study on the kinetics of silica polymerization during cooling of the Bouillante geothermal fluid (Guadeloupe, French West Indies). *Chem. Geol.* **442**, 97-112.

Doucet F.J., Lead J.R., Santschi P.H. (2007) Colloid-trace element interactions in aquatic systems. In: *Environmental Colloids and Particles: Behaviour, Separation and Characterisation* (eds. K.J. Wilkinson and J.R. Lead). IUPAC. P. 95-157.

Durán-Toro V.M., Price R.E., Maas M., Brombach C.-C., Pichler T., Rezwan K., Bühring S.I. (2019) Amorphous arsenic sulfide nanoparticles in a shallow water hydrothermal system. *Mar. Chem.* **211**, 25-36.

Findlay A.J., Gartman A., Shaw T.J., Luther G.W., III (2015) Trace metal concentration and partitioning in the first 1.5m of hydrothermal vent plumes along the Mid-Atlantic Ridge: TAG, Snakepit, and Rainbow. *Chem. Geol.* **412**, 117-131.

Flury M., Aramrak, S. (2017) Role of air-water interfaces in colloid transport in porous media: A review. *Water Resour. Res.* **53**(7), 5247-5275.

Fournier R.O., Potter R.W. (1982) A revised and expanded silica (quartz) geothermometer. *Geotherm. Resour. Council. Bull.* **11**, 3-12.

Fournier R.O., Rowe J.J. (1966) Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells. *Am. J. Sci.* **264**(9), 685-697.

Fowler A.P.G., Ferguson C., Cantwell C.A., Zierenberg R.A., McClain J., Spycher N., Dobson P. (2018) A conceptual geochemical model of the geothermal system at Surprise Valley, CA. J. Volcanol. Geotherm. Res. 353, 132-148.

Franchini M., McFarlane C., Maydagán L., Reich M., Lentz D.R., Meinert L., Bouhier V. (2015) Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition. *Ore Geol. Rev.* **66**, 366-387.

Frondel C. (1938) Stability of colloidal gold under hydrothermal conditions. *Econ. Geol.* **33**(1), 1-20.

Gartman A., Findlay A.J., Luther G.W. (2014) Nanoparticulate pyrite and other nanoparticles are a widespread component of hydrothermal vent black smoker emissions. *Chem. Geol.* **366**, 32-41.

Gartman A., Hannington M., Jamieson J.W., Peterkin B., Garbe-Schönberg D., Findlay A.J., Fuchs S., Kwasnitschka T. (2018) Boiling-induced formation of colloidal gold in black smoker hydrothermal fluids. *Geology.* **46**(1), 39-42.

Gartman A., Findlay A.J., Hannington M., Garbe-Schönberg D., Jamieson J.W., Kwasnitschka T. (2019) The role of nanoparticles in mediating element deposition and transport at hydrothermal vents. *Geochim. Cosmochim. Acta.* **261**, 113-131.

Gavrilescu M. (2014) Colloid-mediated transport and the fate of contaminants in soils. In: *The Role of Colloidal Systems in Environmental Protection* (ed. M. Fanun). Elsevier. 397-451.

González-Jiménez J.M., Yesares L., Piña R., Sáez R., de Almodóvar G.R., Nieto F., Tenorio S. (2022) Polymetallic nanoparticles in pyrite from massive and stockwork ores of VMS deposits of the Iberian Pyrite Belt. *Ore Geol. Rev.* **145**, art. No. 104875.

Glover R.B., Mroczek E.K. (1998) Changes in silica chemistry and hydrology across the Rotorua Geothermal Field, New Zealand. *Geothermics.* **27**(2), 183-196.

Hamilton A.R., Campbell K.A., Rowland J.V., Barker S., Guido D. (2019) Characteristics and variations of sinters in the Coromandel Volcanic Zone: application to epithermal exploration. *New Zealand J. Geol. Geophys.* **62**(4), 531-549.

Hannington M., Garbe-Schönberg D. (2019) Detection of gold nanoparticles in hydrothermal fluids. *Econ. Geol.* **114**(2), 397-400.

Hannington M., Hardardóttir V., Garbe-Schönberg D., Brown K.L. (2016) Gold enrichment in active geothermal systems by accumulating colloidal suspensions. *Nat. Geosci.* **9**(4), 299-302.

Helgeson H.C., Murphy W.M., Aagaard P. (1984) Thermodynamic and kinetic constaints on reaction rates among minerals and aqueous solutions. II: Rate constants, effective surface area, and the hydrolysis of feldspar. *Geochim. Cosmochim. Acta.* **48**(12), 2405-2432.

Hoffman C.L., Nicholas S.L., Ohnemus D.C., Fitzsimmons J.N., Sherrell R.M., German C.R., Heller M.I., Lee J.-M., Lam P.J., Toner B.M. (2018) Near-field iron and carbon chemistry of non-buoyant hydrothermal plume particles, Southern East Pacific Rise 15° S. *Mar. Chem.* **201**, 183-197.

Huang Y.-H., Liu H.-L., Song S.-R., Chen H.-F. (2018) An ideal geothermometer in slate formation: A case from the Chingshui geothermal field, Taiwan. *Geothermics.* **74**, 319-326. Icopini G.A., Brantley S.L., Heaney P.J. (2005) Kinetics of silica oligomerization and nanocolloid formation as a func-

tion of pH and ionic strength at 25°C. *Geochim. Cosmochim. Acta*. **69**(2), 293-303.

Iler R.K. (1979) The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica. N.Y.: Wiley.

Kai B., Xiaojun N., Weimin W., Xiaojun W., Yu P., Panchal B. (2020) Application of geothermal thermometric scale in the study of deep reservoir temperature. *Energy Explor. Exploit.* **38**(6), 2618-2630.

Kanimozhi B., Rajkumar P., Kumar R.S., Mahalingam S., Thamizhmani V., Selvakumar A., Ravikumar S., Kesavakumar R., Pranesh V. (2021) Kaolinite fines colloidal-suspension transport in high temperature porous subsurface aqueous environment: Implications to the geothermal sandstone and hot sedimentary aquifer reservoirs permeability. *Geothermics.* **89**, art. No. 101975.

Karasyova O.N., Ivanova L.I., Lakshtanov L.Z., Lövgren L. (1999) Strontium sorption on hematite at elevated temperatures. *J. Colloid Interface Sci.* **220**(2), 419-428.

Kawahara Y., Fukuda D., Togoh F., Osada K., Maetou K., Kato O., Yokoyama T., Itoi R., Myogan I. (2012) Laboratory experiments on prevention and dissolution of silica deposits in a porous column (1): Solid deposition due to silica particle aggregation and inhibition by acid dosing. *Trans. Geotherm. Resour. Counc.* **36**(2), 867-870.

Lakshtanov L.Z., Stipp S.L.S. (2010) Interaction between dissolved silica and calcium carbonate: 1. Spontaneous precipitation of calcium carbonate in the presence of dissolved silica. *Geochim. Cosmochim. Acta.* **74**(9), 2655-2664.

Liu X., Cao J., Li Y., Hu G., Wang G. (2019a) A study of metal-bearing nanoparticles from the Kangjiawan Pb-Zn deposit and their prospecting significance. *Ore Geol. Rev.* **105**, 375-386.

Liu W., Chen M., Yang Y., Mei Y., Etschmann B., Brugger J., Johannessen B. (2019b) Colloidal gold in sulphur and citrate-bearing hydrothermal fluids: An experimental study. *Ore Geol. Rev.* **114**, art. No. 103142.

Liu X., Liu R., Chen G., Luo X., Lu M. (2020a) Natural HgS nanoparticles in sulfide minerals from the Hetai gold-field. *Environ. Chem. Lett.* **18**(3), 941-947.

Liu X., Cao J., Dang W., Lin Z., Qiu J. (2020b) Nanoparticles in groundwater of the Qujia deposit, eastern China: Prospecting significance for deep-seated ore resources. *Ore Geol. Rev.* **120**, art. No. 103417.

Luo S., Cao J., Yan H., Yi J. (2015) TEM observations of particles based on sampling in gas and soil at the Dong-shengmiao polymetallic pyrite deposit, Inner Mongolia, Northern China. *J. Geochem. Explor.* **158**, 95-111.

Marinova I., Ganev V., Titorenkova R. (2014) Colloidal origin of colloform-banded textures in the Paleogene low-sulfidation Khan Krum gold deposit, SE Bulgaria. *Miner. Deposita.* **49**(1), 49-74.

McLeish D.F., Williams-Jones A.E., Vasyukova O.V., Clark J.R., Board W.S. (2021) Colloidal transport and flocculation are the cause of the hyperenrichment of gold in nature. *Proc. Natl. Acad. Sci. USA.* **118**(20), art. No. e2100689118.

Mroczek E., Graham D., Siega C., Bacon L. (2017) Silica scaling in cooled silica saturated geothermal water: Comparison between Wairakei and Ohaaki geothermal fields, New Zealand. *Geothermics.* **69**, 145-152.

Mroczek E.K., White S.P., Graham D.J. (2000) Deposition of amorphous silica in porous packed beds – predicting the lifetime of reinjection aquifers. *Geothermics.* **29**(6), 737-757. Oehler J.H. (1976) Hydrothermal crystallization of silica gel. *Bull. Geol. Soc. Am.* **87**(8), 1143-1152.

Ohsawa S., Kawamura T., Takamatsu N., Yusa Y. (2002) Rayleigh scattering by aqueous colloidal silica as a cause for the blue color of hydrothermal water. *J. Volcanol. Geotherm. Res.* **113**(1-2), 49-60.

Okamoto A., Saishu H., Hirano N., and Tsuchiya N. (2010) Mineralogical and textural variation of silica minerals in hydrothermal flow-through experiments: Implications for quartz vein formation. *Geochim. Cosmochim. Acta.* **74**(13), 3692-3706.

Park C.F., MacDiarmid R.A. (1964) *Ore Deposits*. Freeman, London.

Prokofiev V.Y., Kamenetsky V.S., Selektor S.L., Rodemann T., Kovalenker V.A., Vatsadze S.Z. (2017) First direct evidence for natural occurrence of colloidal silica in chalcedony-hosted vacuoles and implications for ore-forming processes. *Geology.* **45**(1), 71-74.

Prokofiev V.Y., Banks D.A., Lobanov K.V., Selektor S.L., Milichko V.A., Akinfiev N.N., Borovikov A.A., Lüders V., Chicherov M.V. (2020) Exceptional concentrations of gold nanoparticles in 1.7 Ga fluid inclusions from the Kola superdeep borehole, Northwest Russia. *Sci. Rep.* **10**(1), art. No. 1108.

Rezaei A., Rezaeian M., Porkhial S. (2019) The hydrogeochemistry and geothermometry of the thermal waters in the Mouil Graben, Sabalan volcano, NW Iran. *Geothermics*. **78**, 9-27.

Rimstidt J.D., Barnes H.L. (1980) The kinetics of silica-water reactions. *Geochim. Cosmochim. Acta.* **44**(11), 1683-1699.

Roldughin V.I. (2000) Quantum-size colloid metal systems. *Rus. Chem. Rev.* **69**(10), 821-843.

Sasamoto H., Onda S. (2019) Preliminary results for natural groundwater colloids in sedimentary rocks of the horonobe underground research laboratory, Hokkaido, Japan. *Geol. Soc. Spec. Publ.* **482**(1), 191-203.

Saunders J.A., Burke M. (2017) Formation and aggregation of gold (Electrum) nanoparticles in epithermal ores. *Minerals*. 7(9), art. No. 163.

Saunders J.A., Burke M., Brueseke M.E. (2020) Scanningelectron-microscope imaging of gold (electrum) nanoparticles in middle Miocene bonanza epithermal ores from northern Nevada, USA. *Miner. Deposita*. **55**(3), 389-398.

Sen T.K., Khilar K.C. (2006) Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. *Adv. Colloid Interface Sci.* **119**(2–3), 71-96.

Seward T.M., Williams-Jones A.E., Migdisov A.A. (2014) The chemistry of metal transport and deposition by oreforming hydrothermal fluids. In: *Treatise on Geochemistry* (Eds. Holland H.D., Turekian K.K.). Elsevier. P. 29-57.

Simmons S.F., Brown K.L., Tutolo B.M. (2016) Hydrothermal transport of Ag, Au, Cu, Pb, Te, Zn, and other metals and metalloids in New Zealand geothermal systems: Spatial Patterns, Fluid-mineral equilibria, and implications for epithermal mineralization. *Econ. Geol.* **111**(3), 589-618. Sposito G. (2017) Surface complexation of metals by natural colloids. In: *Ion Exchange and Solvent Extraction: A Series of Advances* (eds. J.A. Marinsky, Y. Marcus). V. 11. Tay-

lor & Francis. P. 211-236.

Stewart B.D., Sorensen J.V., Wendt K., Sylvan J.B., German C.R., Anantharaman K., Dick G.J., Breier J.A., Toner B.M. (2021) A multi-modal approach to measuring particulate iron speciation in buoyant hydrothermal plumes. *Chem. Geol.* **560**, art. No. 120018.

Tamura R., Inoue H., Hanajima E., Ikeda R., Osaka Y., Yanaze T., Kusakabe M., Yonezu K., Yokoyama T., Tsukamoto K., Marumo K., Ueda A. (2019) In situ observations of silica nanoparticle growth in geothermal brine at the Sumikawa geothermal station, Japan, by dynamic light scattering. *Geothermics.* **77**, 304-312.

Tang Q., Di P., Yu M., Bao J., Zhao Y., Liu D., Wang Y. (2019) Mineralogy and geochemistry of pyrite and arsenopyrite from the Zaozigou gold deposit in West Qinling orogenic belt, central China: Implications for ore genesis. *Resour. Geol.* **69**(3), 314-332.

Verma M.P. (2000) Chemical thermodynamics of silica: A critique on its geothermometer. *Geothermics.* **29**(3), 323-346.

Wang C., Wang R., Huo Z., Xie E., Dahlke H.E. (2020) Colloid transport through soil and other porous media under transient flow conditions-A review. Wiley Interdiscip. Rev: Water. 7(4), art. No. e1439.

Wang Y., Yu M., Bo Z., Bedrikovetsky P., Le-Hussain F. (2021) Effect of temperature on mineral reactions and fines migration during low-salinity water injection into Berea sandstone. *J. Pet. Sci. Eng.* **202**, art. No. 108482.

White D.E., Brannock W.W., Murata K.J. (1956) Silica in hotspring waters. *Geochim. Cosmochim. Acta.* **10**(1–2), 27-59.

Williams L.A., Crerar D.A. (1985) Silica diagenesis, II. General mechanisms. *J. Sediment. Petrol.* **55**(3), 312-321.

Zavarin M., Zhao P., Joseph C., Begg J.D., Boggs M.A., Dai Z., Kersting A.B. (2019) Hydrothermal alteration of nuclear melt glass, colloid formation, and plutonium mobilization at the Nevada National Security Site, USA. *Environ. Sci. Technol.* **53**(13), 7363-7370.

Zhan L., Zhang Y., Zheng S., Zhang Y., Fan B., Li P., Zhang Y. (2019) Crystallization kinetics of ammonium polyvanadate. *J. Cryst. Growth.* **526**, art. No. 125218.

Zhang W., Tang X., Weisbrod N., Guan Z. (2012) A review of colloid transport in fractured rocks. *J. Mount. Sci.* **9**(6), 770-787.

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА КОКИМБИТА И АЛЮМИНОКОКИМБИТА

© 2023 г. Ю. Д. Гриценко^{*a*, *b*, *, Л. П. Огородова^{*a*, **}, М. Ф. Вигасина^{*a*}, Д. А. Косова^{*c*}, С. К. Дедушенко^{*d*}, Л. В. Мельчакова^{*a*}, Д. А. Ксенофонтов^{*a*}}

^а Московский Государственный Университет им. М.В. Ломоносова, Геологический факультет, Ленинские Горы, 1, Москва, 119991 Россия

^bМинералогический музей им. А.Е. Ферсмана РАН, Ленинский пр., 18, Москва, 119692 Россия

^сМосковский Государственный Университет им. М.В. Ломоносова, Химический факультет,

Ленинские Горы, 1, Москва, 119991 Россия

^dНИТУ МИСИС, Ленинский пр., 4, Москва, 119049 Россия *e-mail: ygritsenko@rambler.ru **e-mail: logor48@mail.ru Поступила в редакцию 21.09.2022 г. После доработки 07.11.2022 г. Принята к публикации 09.11.2022 г.

Исследован кокимбит AlFe₃³⁺[SO₄]₆(H₂O)₁₂·6H₂O (рудник Хавьер, Перу) методами термического и электронно-микрозондового анализа, порошковой рентгенографии, КР и мёссбауэровской спектроскопии. Методом калориметрии растворения в расплаве бората свинца 2PbO·B₂O₃ на микрокалориметре Кальве "Setaram" (Франция) определена энтальпия образования кокимбита из элементов $\Delta_{f}H^{0}(298.15 \text{ K}) = -11118 \pm 40 \text{ кДж/моль}$. Оценено значение его абсолютной энтропии $S^{0}(298.15 \text{ K}) = 1248.3 \pm 3.0 \text{ Дж/(моль K})$, рассчитаны энтропия образования $\Delta_{f}S^{0}(298.15 \text{ K}) =$ $= -5714.0 \pm 3.0 \text{ Дж/(моль K})$ и энергия Гиббса образования из элементов $\Delta_{f}G^{0}(298.15 \text{ K}) = -9411 \pm 40 \text{ кДж/моль}$. Оценены значения энтальпии и энергии Гиббса образования из элементов алюминококимбита Al₂Fe₂³⁺[SO₄]₆(H₂O)₁₂·6H₂O: $- 11540 \pm 29$ и 9830 ± 29 кДж/моль соответственно.

Ключевые слова: кокимбит, порошковая рентгенография, КР спектроскопия, мёссбауэровская спектроскопия, термический анализ, микрокалориметрия Кальве, энтальпия, энтропия, энергия Гиббса

DOI: 10.31857/S0016752523050059, EDN: ELQGOT

введение

Кокимбит, паракокимбит и алюминококимбит — вторичные минералы, встречающиеся в засушливых регионах в зоне окисления сульфидных месторождений, содержащих пирит, марказит или пирротин (Перу, Чили, штаты Калифорния и Юта в США, а также в Аргентине, Австралии, Боливии, Китае, Монголии, Греции, Иране, Марокко, Португалии, Южной Африке, Испании), реже в районах, связанных с фумарольной активностью вулканов (например, вулкан Шевелуч, Камчатка, Россия; остров Вулкано, Италия). Также кокимбит был обнаружен чувствительными спектральными дистанционными методами исследования среди водных сульфатов железа на поверхности Марса (Poitras et al., 2018; Turenne et al., 2022).

Кокимбит $AlFe_3^{3+}[SO_4]_6(H_2O)_{12}$ ·6H₂O (IMA list of minerals) и паракокимбит $Fe_4^{3+}[SO_4]_6(H_2O)_{12}$ ·6H₂O (IMA list of minerals) кристаллизуются в тригональной сингонии, пространственные группы $P\overline{3}1c$ и $R\overline{3}$ соответственно, причем в (Robinson, Fang, 1971) эти минералы рассматриваются как политипы. Для структур кокимбита и паракокимбита характерно наличие изолированных октаэдров [Fe(H₂O)₆]³⁺ и/или [Al(H₂O)₆]³⁺ и кластеров $[Fe_3(SO_4)_6(H_2O)_6]^{3-}$, в которых атом железа в одной позиции координирован шестью атомами кислорода, принадлежащими исключительно сульфат-ионам, а каждый из двух атомов железа в других позициях координирован тремя кислородными атомами сульфат-ионов и тремя атомами кислорода молекул H₂O. В структурах этих минералов также существует сложная система водородных связей между молекулами воды, входящими в состав кластеров, изолированных октаэдров и молекул, занимающих междоузельные позиции (Yang, Giester, 2018). Структура алюминококимбита $Al_2Fe_2^{3+}[SO_4]_6(H_2O)_{12}\cdot 6H_2O$ (IMA list of minerals), кристаллизующегося в тригональной сингонии с пространственной группой $P\overline{3}lc$, отличается от вышеописанной структуры кокимбита и содержит изолированные октаэдры $Al(H_2O)_6^{3+}$ и бесконечные колонки [Fe(SO₄)₃]_∞, идущие вдоль [001] и состоящие из октаэдрически координированных атомов железа и сульфат-ионов, подобно структуре ферринатрита $Na_3(H_2O)_3[Fe(SO_4)_3]$. Междоузельные молекулы H_2O удерживаются водородными связями, как и в структуре кокимбита (Demartin et al., 2010а, б).

Известные к настоящему времени исследования кокимбита, паракокимбита и алюминококимбита относятся, главным образом, к изучению их структуры и определению параметров элементарной ячейки (Fang, Robinson, 1970; Robinson, Fang, 1971; Majzlan et al., 2010; Yang, Giester, 2018; Mauro et al., 2020). ИК и КР спектроскопическим исследованиям посвящены работы (Majzlan et al., 2011; Frost et al., 2014; Mauro et al., 2020). Термическая стабильность исследована в (Ackermann et al., 2009; Frost et al., 2014).

Практический и научный интерес к исследованию водных сульфатов железа и в частности кокимбита обусловлен их ролью в процессе выветривания горных пород, содержащих значительное количество сульфилных минералов (чаше всего пирита, марказита или пирротина), при котором взаимодействие сульфидов с водой и воздухом приводит к образованию водорастворимых сульфатов и серной кислоты, разрушающей окружающие горные породы, в результате чего металлы (в том числе и токсичные) выносятся кислыми дренажными растворами (кислотный дренаж пород, рудников, отвалов и шахт), загрязняя водные и почвенные горизонты, что представляет собой экологическую опасность при хозяйственном использовании этих территорий.

Решению проблем, связанных с загрязнением окружающей среды, может способствовать теоретическое моделирование физико-химических процессов в системе вода—порода, базирующееся на термодинамических данных минералов, объем которых в настоящее время недостаточен. Так, например, сейчас известна одна экспериментальная работа (Majzlan et al., 2006), в которой на основании данных метода кислотной калориметрии была определена энтальпия образования из элементов, оценена стандартная энтропия и рассчитана энергия Гиббса кокимбита состава (Fe³⁺_{1.47}Al_{0.53})[SO₄]₃(H₂O)_{9.65}; а в работе (Hemingway

ГЕОХИМИЯ том 68 № 6 2023

et al.. 2002) представлены лишь оценочные значения основных термодинамических параметров паракокимбита состава $Fe_2^{3+}[SO_4]_3 \cdot 9H_2O$, рассматриваемого в этой работе как кокимбит. Авторами исследования, выполненного методом кислотной калориметрии (Ackermann et al., 2009), определена энтальпия образования синтезированного аналога паракокимбита.

Целью настоящего исследования является экспериментальное получение для кокимбита его энтальпии образования из элементов методом расплавной калориметрии растворения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Описание образца и методы исследования

Был исследован образец кокимбита из коллекции Минералогического музея им. А.Е. Ферсмана РАН (рудник Хавьер, Перу). Образец представляет собой щетку прозрачных кристаллов густо-сиреневого цвета размером до 3 мм на мелкозернистой карбонатной породе.

Рентгенографическое изучение было проведено на порошковом дифрактометре "STOE-STADI MP" (Германия) с изогнутым Ge (III) монохроматором, обеспечивающим строго монохроматическое СоК α_1 -излучение ($\lambda = 0.178897$ Å). Сбор данных осуществлялся в режиме поэтапного перекрывания областей сканирования с помощью позиционно-чувствительного линейного детектора с углом захвата 5° по углу 2 Θ с шириной канала 0.02°.

Полученный спектр (рис. 1) согласно базам данных ICDD (The International Centre for Diffraction Data, 2013; карточка № 01-071-2380) соответствует спектру кокимбита (Перу).

Термическое поведение минерала от комнатной температуры до T = 673 К было изучено на установке "NETZSCH TG 209 F1" (Германия) в потоке азота (40 мл мин⁻¹) со скоростью нагревания 10 К мин⁻¹. Прибор был откалиброван по температуре плавления эталонных веществ, предоставленных фирмой—изготовителем (Ag, Al, Bi, In, Sn 99.999% чистоты). Измерения проводили в стандартных алюминиевых контейнерах с проколотой крышкой; масса образца составляла 14.70 мг.

На термогравиметрической кривой (рис. 2) зафиксирован процесс потери массы, связанный с дегидратацией минерала, происходящей в два этапа: на первом этапе в интервале от 348 до 424 К с максимумом при ~448 К потеря массы составляет 9.4%, что соответствует выделению около 6 молекул H₂O; второй этап с максимумом при ~453 К заканчивается при T = 648 К, при этом происходит удаление оставшиеся 19.6% массы, что соответствует 12 молекулам воды.

Рис. 1. Порошковая дифрактограмма изученного кокимбита, межплоскостные расстояния указаны в Å. Внизу приведены данные для кокимбита из ICDD (карточка № 01-071-2380).

Химический анализ был выполнен на сканирующем электронном микроскопе с вольфрамовым термоэмиссионным катодом "JSM-6480LV" (Jeol Ltd., Япония), оборудованном энергодисперсионным спектрометром "Х-Мах-50" (Oxford Instruments Ltd., GB), при ускоряющем напряжении 20 кВ, силе тока 10.05 ± 0.05 нА. Обработка данных была произведена в программе INCA (Oxford Instruments, v. 22).

По данным микрозондового и термогравиметрического анализов был получен следующий химический состав изученного минерала (мас. %): Na₂O 0.08, K₂O 0.7, Al₂O₃ 4.36, Fe₂O₃ 21.58, SO₃ 43.19, H₂O 29.00. Рассчитанная на 12 зарядов химическая формула минерала имеет вид Al_{0.97}Fe³⁺_{3.04}Na_{0.03}K_{0.02}[SO₄]_{6.04}(H₂O)₁₂·6H₂O и близка к теоретической формуле, рекомендуемой Международной Минералогической Ассоциацией (IMA) AlFe³⁺₃[SO₄]₆(H₂O)₁₂·6H₂O.

Гамма-резонансное исследование кокимбита было выполнено на мессбауэровском спектрометре ЯГРС-6 "Персей" (Россия) при комнатной температуре с использованием источника ⁵⁷Со в матрице Rh активностью 8 мКи. Калибровку спектрометра проводили с помощью стандартного поглотителя α -Fe. Моделирование спектра осуществляли с применением российской компьютерной программы HappySloth (www.happysloth.ru).

Полученный спектр (рис. 3) согласуется со спектром кокимбита, представленным в (Dyar et al., 2013), и был удовлетворительно описан одиночной уширенной лоренцевой линией с параметрами: $^{\text{RT}}\text{IS}_{\alpha-\text{Fe}} = 0.46 \pm 0.01 \text{ мм c}^{-1}$, FWHM = 0.85 ± ± 0.05 мм с $^{-1}$, $\chi^2 = 1.2$. Измеренный изомерный сдвиг соответствует интервалу значений, обычно наблюдаемых для октаэдрических кислородных полиэдров трехвалентного железа [Fe³⁺O₆], несколько превышая расчетное значение (Dedushenko, Perfiliev, 2022), что может быть объяснено

Рис. 2. Термогравиметрические кривые нагревания изученного кокимбита.

Рис. 3. Мёссбауэровский спектр при комнатной температуре изученного кокимбита.

поляризующим действием ионов S⁶⁺. Более детальная интерпретация спектра требует дополнительных исследований при низких температурах.

КР-спектроскопическое изучение было проведено на рамановском микроскопе "EnSpectr R532" (Россия). Длина волны лазерного излучения равнялась 532 нм, выходная мощность луча составляла 20 мВт, голографическая дисперсионная решетка имела 1800 штр./мм, спектральное разрешение – около 6 см⁻¹, диаметр фокального пятна при увеличении 40× равнялся 7 мкм. Спектр был получен в диапазоне от 100 до 4000 см⁻¹ на неориентированном образце в режиме накопления сигнала в течение 1 секунды при усреднении по 50 экспозициям.

Спектр комбинационного рассеяния изученного кокимбита (рис. 4) согласуется со спектрами этого минерала, опубликованными в (Frost et al., 2014; Mauro et al., 2020). Спектральная область от 2800 до 3600 см⁻¹ соответствует валентным коле-

ГЕОХИМИЯ том 68 № 6 2023

баниям гидроксильных групп молекул воды; в интервале 1000–1250 см⁻¹ зарегистрированы линии, относящиеся к симметричному (самая интенсивная линия при 1024 см⁻¹) и антисимметричным валентным колебаниям тетраэдров $[SO_4]^{2-}$; деформационные колебания SO₄-тетраэдров зафиксированы в диапазоне 440–630 см⁻¹; в спектральной области ниже 300 см⁻¹ проявлены линии рассеяния так называемых решеточных мод (валентные колебания Fe–O и Al–O).

Термохимическое исследование было выполнено на высокотемпературном теплопроводящем микрокалориметре Тиана—Кальве "Setaram" (Франция). Методом калориметрии растворения в расплаве состава $2PbO \cdot B_2O_3$ была определена энтальпия образования изученного образца кокомбита. Опыты по растворению осуществляли следующим образом: образцы массой 4-9 ($\pm 2 \times 10^{-3}$) мг

Рис. 4. Спектр комбинационного рассеяния изученного кокимбита.

сбрасывали от комнатной температуры в калориметр с расплавом, находящимся при T = 973 K; зафиксированный при этом тепловой эффект содержал одновременно как приращение энтальпии образца [(H⁰(973 K) – H⁰(298.15 K)], так и энтальпию его растворения $\Delta_{\text{раств}} H^0(973 \text{ K})$. При проведении 6-8 экспериментов в одной порции расплава (30-35 г) соотношение растворенное вещество-растворитель можно было отнести к бесконечно разбавленному раствору с пренебрежимо малой энтальпией смешения. Калибровку микрокалориметра осуществляли методом "сброса" эталонного вещества – платины в расплав в условиях экспериментов по растворению, при этом измерялось только приращение энтальпии $[(H^0(973 \text{ K}) - H^0(298.15 \text{ K})],$ необходимые справочные данные заимствовались из (Robie, Hemingway, 1995).

Среднее значение величины [$H^0(973 \text{ K}) - H^0(298.15 \text{ K}) + \Delta_{\text{раств}}H^0(973 \text{ K})$] из 7 экспериментов, проведенных на микрокалориметре Кальве на природном образце кокимбита, составило 1312.2 \pm 7.3 Дж/г = 1437.1 \pm 8.0 кДж/моль (M = 1095.18 г/моль), погрешности определены с вероятностью 95%.

РЕЗУЛЬТАТЫ ТЕРМОХИМИЧЕСКОГО ИССЛЕДОВАНИЯ

Энтальпии образования из элементов

С использованием полученных калориметрических данных и термохимического цикла, включающего растворение минерала и составляющих его компонентов, по реакции (1) и уравнениям (2) и (3) была рассчитана энтальпия образования изученного кокимбита из элементов.

$$3/2Fe_{2}O_{3} + 6CaSO_{4} + 12AI(OH)_{3} =$$

$$= 6CaO + 11/2AI_{2}O_{3} + AI[SO_{4}]_{6}(H_{2}O)_{12}\cdot 6H_{2}O,$$
(1)
$$\Delta_{p-IIIHI(1)}H^{0}(298.15K) = 1.5 \Delta HFe_{2}O_{3} + 6\Delta HCaSO_{4} +$$

$$+ 12\Delta HAI(OH)_{3} - 6\Delta HCaO - 5.5\Delta HAI_{2}O_{3} - (2)$$

$$- \Delta HAI[SO_{4}]_{6}(H_{2}O)_{12}\cdot 6H_{2}O,$$

$$\Delta_{f}H^{0}(298.15K)AI[SO_{4}]_{6}(H_{2}O)_{12}\cdot 6H_{2}O =$$

$$= \Delta_{p-IIIHI(1)}H^{0}(298.15K) + 1.5\Delta_{f}H^{0}(298.15K)Fe_{2}O_{3} +$$

$$+ 6\Delta_{f}H^{0}(298.15K)CaSO_{4} + (3)$$

$$+ 12\Delta_{f}H^{0}(298.15K)AI(OH)_{3} -$$

$$- 6\Delta_{f}H^{0}(298.15K)CaO - 5.5\Delta_{f}H^{0}(298.15K)AI_{2}O_{3},$$

где $\Delta H = [H^0(973 \text{ K}) - H^0(298.15 \text{ K}) + \Delta_{\text{раств}}H^0(973 \text{ K})]$ – термохимические данные для всех участников реакции (1) (табл. 1); $\Delta_{\text{f}}H^0(298.15 \text{ K})$ – значения энтальпий образования из элементов оксидов, гидроксида алюминия и сульфата кальция (табл. 1). Полученное значение энтальпии образования кокимбита AlFe₃³⁺[SO₄]₆(H₂O)₁₂·6H₂O из элементов приведено в табл. 2.

Калориметрические данные по растворению природного образца кокимбита позволили рассчитать энтальпии образования из элементов алюминококимбита $Al_2Fe_2^{3+}[SO_4]_6(H_2O)_{12}\cdot 6H_2O$.

Компонент	$H^{0}(973 \text{ K}) - H^{0}(298.15 \text{ K}) + \Delta_{\text{pactb}}H^{0}(973 \text{ K})$	$-\Delta_{\rm f} H^0 (298.15 { m K})^{ m a}$
Fe ₂ O ₃ (гематит)	171.6 ± 1.9^{6}	826.2 ± 1.3
Al ₂ O ₃ (корунд)	$107.38 \pm 0.59^{\text{B}}$	1675.7 ± 1.3
СаО(к.)	$-21.78\pm0.29^{ m r}$	635.1 ± 0.9
CaSO4(ангидрит)	$131.3 \pm 1.6^{\pi}$	1434.4 ± 4.2
Al(OH) ₃ (гиббсит)	172.6 ± 1.9^{e}	1293.1 ± 1.2

Таблица 1. Термохимические данные, использованные в расчетах энтальпии образования кокимбита и алюминококимбита (кДж/моль)

Примечания. ^а Справочные данные (Robie, Hemingway, 1995).

 $^{6-a}$ Рассчитано с использованием справочных данных по [H^0 (973 K) – H^0 (298.15)] (Robie, Hemingway, 1995) и экспериментальных данных по растворению $\Delta_{\text{раств}}H^0$ (973 K): 6 (Киселева, 1976), 8 (Ogorodova et al., 2003), $^{\Gamma}$ (Киселева и др., 1979), $^{\alpha}$ (Котельников и др., 2000).

е По данным (Огородова и др., 2011).

Таблица 2. Термодинамические свойства кокимбита и алюминококимбита, полученные в настоящей работе

Состав минерала, молекулярная масса, г/моль	—∆ _f H ⁰ (298.15 K) ^а кДж/моль	<i>S</i> ⁰ (298.15 К) ^б , Дж/(моль К)	−Δ _f S ⁰ (298.15 К) ^в , Дж/(моль К)	−Δ _f G ⁰ (298.15 К) ^г , кДж/моль
Кокимбит AIF e_3^{3+} [SO ₄] ₆ (H ₂ O) ₁₂ ·6H ₂ O M = 1095.18	11118 ± 40^{A}	1248.3 ± 3.0	5714.0 ± 3.0	9411 ± 40
Алюминококимбит AIF e_2^{3+} [SO ₄] ₆ (H ₂ O) ₁₂ ·6H ₂ O M = 1066.31	11537 ± 41 ^е 11543 ± 41 ^ж Среднее: 11540 ± 29	1226.6 ± 2.9	5736.9 ± 2.9	9830 ± 29

Примечания. ^а Получено по результатам расплавной калориметрии растворения.

⁶ Оценено по аддитивным схемам (реакции (4), (5), (6)).

^в Рассчитано с использованием данных по S⁰(298.15 K) элементов, входящих в состав минералов (Robie, Hemingway, 1995).

^г Рассчитано по формуле $\Delta_{\rm f} G^0 = \Delta_{\rm f} H^0 - T \Delta_{\rm f} S^0$.

^д Погрешности всех термодинамических величин рассчитаны методом накопления ошибок.

^е Рассчитано с учетом *М*.

^ж Рассчитано с учетом поправок на различие составов.

Экспериментальные значения $[H^0(973 \text{ K}) - H^0(298.15 \text{ K}) + \Delta_{\text{раств}}H^0(973 \text{ K})]$ пересчитывали на состав алюминококимбита путем введения поправок на отличие его состава от изученного кокимбита, а также с учетом его молекулярной массы. Результаты расчетов, выполненных по уравнениям, аналогичным (1), (2) и (3), представлены в табл. 2.

Энергии Гиббса образования из элементов

Необходимые для расчета энергии Гиббса минералов величины абсолютной энтропии были получены как средние значения из реакций (4), (5) и (6) для изученного кокимбита или аналогичных реакций для алюминококимбита с использованием справочных данных по $S^0(298.15 \text{ K})$ для компонентов этих реакций из (Robie, Hemingway,

ГЕОХИМИЯ том 68 № 6 2023

1995); вклад воды был принят равным 39.3 Дж/(моль К) (Наумов и др., 1971).

$$3/2Fe_{2}(SO_{4})_{3} + 1/2Al_{2}(SO_{4})_{3} + 18H_{2}O =$$

= AlFe_{3}^{3+}[SO_{4}]_{6}(H_{2}O)_{12}\cdot 6H_{2}O, (4)

$$3/2Fe_{2}(SO_{4})_{3} + 1/2Al_{2}(SO_{4})_{3} + 3NiSO_{4} \cdot 6H_{2}O =$$

= AlFe₃³⁺[SO₄]₆(H₂O)₁₂ \cdot 6H₂O + 3NiSO₄, (5)

$$3/2Fe_{2}(SO_{4})_{3} + 1/2AI_{2}(SO_{4})_{3} + 2MgSO_{4} \cdot 7H_{2}O + + 4Mg(OH)_{2} = AI[SO_{4}]_{6}(H_{2}O)_{12} \cdot 6H_{2}O + + 2MgSO_{4} + 4MgO.$$
(6)

Значения $\Delta_{\rm f}S^0(298.15 \text{ K})$ минералов (табл. 2) были рассчитаны с использованием данных по $S^0(298.15 \text{ K})$ для элементов, входящих в их состав (Robie, Hemingway, 1995). Значения $\Delta_{\rm f}G^0(298.15 \text{ K})$, вычисленные с учетом полученных данных по энтропии и энтальпии образования, приведены в табл. 2.

ЗАКЛЮЧЕНИЕ

Полученные термодинамические данные для кокимбита и алюминококимбита могут быть использованы при моделировании процессов выветривания горных пород, приводящих к развитию кислотного дренажа на сульфидсодержащих рудных месторождениях. Результаты моделирования могут быть полезными при разработке технологических схем извлечения из кислых дренажных растворов ценных компонентов, а также для оценки экологических последствий кислотного дренажа, разработки мер по минимизации негативного воздействия кислых вод на окружающую среду и способов нейтрализации и очистки вод от ионов токсичных металлов.

Термическая установка и мессбауэровский спектрометр находятся на химическом факультете МГУ, дифрактометр, сканирующий электронный микроскоп, рамановский микроскоп и микрокалориметр Кальве установлены на геологическом факультете МГУ.

СПИСОК ЛИТЕРАТУРЫ

Киселева И.А. (1976) Термодинамические свойства и устойчивость пиропа. *Геохимия*. (6), 845-854.

Киселева И.А., Огородова Л.П., Топор Н.Д., Чигарева О.Г. (1979) Термохимическое исследование системы CaO-MgO-SiO₂. *Геохимия*. (12), 1811-1825.

Котельников А.Р., Кабалов Ю.К., Зезюля Т.Н., Мельчакова Л.В., Огородова Л.П. (2000) Экспериментальное изучение твердого раствора целестин-барит. *Геохимия.* (12), 1286-1293.

Kotel'nikov A.R., Kabalov Yu.K., Zezyulya T.N., Mel'chakova L.V., Ogorodova L.P. (2000) Experimental study of celestine-barite solid solution. *Geochem. Int.* (12), 1181-1187.

Наумов Г.Б., Рыженко Б.Н., Ходаковский И.Л. (1971) Справочник термодинамических величин (для геологов). М.: Атомиздат. 239 с.

Огородова Л.П., Киселева И.А., Мельчакова Л.В., Вигасина М.Ф., Спиридонов Э.М. (2011) Калориметрическое определение энтальпии образования пирофиллита. *ЖФХ*. (9), 1609-1611.

Ackermann S., Lazic B., Armbruster T., Doyle S., Grevel K.-D., Majzlan J. (2009) Thermodynamic and crystallographic properties of kornelite [$Fe_2(SO_4)_3 \sim 7.75H_2O$] and paracoquimbite [$Fe_2(SO_4)_3$ '9H₂O]. *Am. Mineral.* 94, 1620-1628.

Dedushenko S.K., Perfiliev Yu.D. (2022) On the correlation of the ⁵⁷Fe Mössbauer isomer shift and some structural parameters of a substance *Hyperfine Interactions*. **243**, № 15.

Demartin F., Castellano C., Gramaccioli C.A., Campostrini I. (2010a) Aluminum-for-iron substitution, hydrogen bonding, and a novel structure-type in coquimbite-like minerals. *Canad. Mineral.* **48**, 323-333.

Demartin F., Castellano C., Gramaccioli C.A., Campostrini I. (2010b) Aluminocoquimbite, AlFe (SO₄)₃[•]9H₂O, a new aluminum iron sulfate from Grotta Dell'allume, Vulcano, Aeolian Islands, Italy. Canad. Mineral. 48, 1465-1468.

Dyar M.D., Jawin E.R., Breves E., Marchand G., Nelms M., Lane M.D., Mertzman S.A., Bish D.L., Bishop J.L. (2014) Mössbauer parameters of iron in phosphate minerals: Implications for interpretation of martian data. *Am.Mineral.* **99**, 914-942.

Fang J.H., Robinson P.D. (1970) Crystal structure and mineral chemistry of hydrated ferric sulfates. I. The crystal structure of coquimbite. *Am. Mineral.* **55**, 1534-1540.

Frost R.L., Gobac Ž.Ž., López A., Xi Y., Scholz R., Lana C., Lima R.M.F. (2014) Characterization of the sulphate mineral coquimbite, a secondary iron sulphate from Javier Ortega mine, Lucanas Province, Peru – Using infrared, Raman spectroscopy and thermogravetry. *J. Mol. Struct.* **1063**, 251-258.

Hemingway B., Seal R.R., II, Chou I.-M. (2002) Thermodynamic data for modeling acid mine drainage problems: Compilation and estimation of data for selected soluble iron-sulfate minerals. *U.S. Geol. Survey, Open-File Report*, 02-161, 13 p.

IMA list of minerals. http://cnmnc.main.jp/IMA_Master_List_(2021-11).pdf.

Majzlan J., Navrotsky A., McCleskey R.B., Alpers C.N. (2006) Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and $Fe_2(SO_4)_3(H_2O)_5$. *Eur. J. Mineral.*

Majzlan J., Dordevié T., Kolitsch U. (2010) Hydrogen bonding in coquimbite, nominaly $Fe_2(SO_4)_3$.9H₂O, and the relationship between coquimbite and paracoquimbite. *Miner. Petrol.* **100**, 241-248.

Majzlan J., Alpers C.N., Koch C.B., McCleskey R.B., Myneni S.C.B., Neil J.M. (2011) Vibrational, X-ray absorption, and Mőssbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California. *Chem. Geol.* **284**, 296-305.

Mauro D., Biagioni C., Pasero M., Skogby H., Zaccarini F. (2020) Redefinition of coquimbite, $AlFe_3(SO_4)_6(H_2O)_{12}\cdot 6H_2O$. *Mineral. Magaz.* **84**, 275-282.

Ogorodova L.P., Melchakova L.V., Kiseleva I.A., Belitsky I.A. (2003) Thermochemical study of natural pollucite. *Thermochim. Acta* **403**, 251–256.

Poitras J.T., Cloutis E.A., Salvatore M.R., Mertzman S.A., Applin D.M., Mann P. (2018) Mars analog minerals' spectral reflectance characteristics under Martian surface conditions. *Icarus.* **306**, 50-73.

Robie R.A., Hemingway B.S. (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10^5 pascals) pressure and at higher temperatures. *US Geol. Surv. Bull.* 2131.

Robinson P.D., Fang J.H. (1971) Crystal structure and mineral chemistry of hydrated ferric sulfates. II. The crystal structure of paracoquimbite. *Am. Mineral.* **56**, 1567-1572.

Turenne N., Parkinson A., Applin D.M., Mann P., Cloutis E.A., Mertzman S.A. (2022) Spectral reflectance properties of minerals exposed to Martian surface conditions: Implications for spectroscopy-based mineral detection on Mars. *Planet. Space Sci.* **210**, 105377.

www.happysloth.ru: Левин Д.М., Дедушенко С.К. Программа для ЭВМ "Нарру Sloth". Реестр программ для ЭВМ. № 2016660090.

Yang Z., Giester G. (2018) Structure refinement of coquimbite and paracoquimbite from the Hongshan Cu–Au deposit, NW China. *Eur.J. Mineral.* **30**, 849-858.

ДИФФЕРЕНЦИРОВАННАЯ ОЦЕНКА СОДЕРЖАНИЯ ¹³⁷Cs На биогенном и литогенном взвешенном веществе в черном море

© 2023 г. И. Г. Сидоров^а, О. Н. Мирошниченко^{а, *}, В. Ю. Проскурнин^а, А. А. Параскив^а

^аФедеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Институт биологии южных морей имени А.О. Ковалевского РАН", проспект Нахимова, д. 2, Севастополь, 299011 Россия

> *e-mail: oksaniya_89@mail.ru Поступила в редакцию 30.04.2022 г. После доработки 20.10.2022 г. Принята к публикации 07.11.2022 г.

Седиментационный транспорт ¹³⁷Сs может приводить к накоплению этого радионуклида на глубинах, куда он не мог бы попасть в заметных количествах только за счёт вертикального водообмена, поэтому сравнительная оценка его содержания для различных типов взвеси и регионов Черного моря представляет особый интерес. В связи с этим, был осуществлен отбор проб взвешенного вещества (ВВ) и морской воды на глубоководных и прибрежных станциях для последующего определения содержания ¹³⁷Cs в поверхностном слое воды. Для расчета доли литогенного вещества дополнительно определяли содержание калия во взвеси. Диапазон содержания ¹³⁷Cs на BB для различных станций отличался более чем на порядок – для удельной активности от 7 до 111 Бк/кг, для содержания на взвеси в %, от общего содержания в поверхностном слое воды от 0.03 до 0.69%. Более удаленные от берега станции характеризовались наименьшим процентным содержанием ¹³⁷Cs на BB, тогда как на прибрежных эта величина была более вариабельной. Сопоставление вклада литогенного и биогенного вещества во взвеси и данных по ¹³⁷Cs для различных станций говорит о том, что содержание этого радионуклида во BB определяется в первую очередь динамикой изменения содержания литогенной фракции. В отношении миграции ¹³⁷Cs на BB это приводит к наличию в Черном море как минимум двух регионов. Во-первых, это акватории, достаточно удаленные от источников литогенного вещества и в которых ВВ образуется в основном за счет деятельности живых организмов. Содержание ¹³⁷Сs на взвеси благодаря преобладанию биогенного вещества и незначительной концентрации литогенного в данном случае находится на уровне сотых долей процента от его общего содержания в поверхностном слое воды. Во-вторых, это прибрежные и шельфовые акватории, подверженные с одной стороны береговому и речному стоку значительных количеств литогенного вещества, с другой – характеризуемые повышенной трофностью и биологической продуктивностью. В этих акваториях благодаря изменчивости биотических и абиотических факторов содержание ¹³⁷Cs на ВВ более вариабельно и может испытывать колебания от значений, характерных для открытого моря, до на порядок больших.

Ключевые слова: цезий-137, взвешенное вещество, Черное море **DOI:** 10.31857/S001675252304012X, **EDN:** JXCYCM

введение

В морской среде ¹³⁷Cs находится преимущественно в растворенной форме и обычно его содержание на взвешенном веществе (ВВ) невелико. Для Черного моря непосредственно после аварии на Чернобыльской АЭС наблюдалось довольно значительное содержание ¹³⁷Cs на взвеси до 3—6% от его общего содержания в поверхностном слое воды на станциях в западной части, что очевидно связано с первичными выпадениями на терригенных частицах (Никитин и др., 1988). Впоследствии такие высокие концентрации ¹³⁷Cs в Черном море не наблюдались, и его активность на BB менялось в пределах от десятых до сотых долей % общего содержания.

Многолетние исследования динамики растворенной формы ¹³⁷Cs в Черном море после аварии на Чернобыльской АЭС показывают закономерное снижение темпов уменьшения его активности в поверхностном слое и установление динамического равенства в слое 0—100 м между вторичным поступлением радионуклида, его радиоактивным распадом и удалением в нижележащие слои (Егоров и др., 1993; Gulin et al., 2015; Gulin et al., 2013). Верти-

Рис. 1. Карта-схема отбора проб взвешенного вещества. 1 – бухта РБК; 2 – Артиллерийская бухта.

кальная миграция растворенной формы ¹³⁷Сs происходит преимущественно в слое 0-100 м и, в меньшей степени, в слое 100-200 м, поток ¹³⁷Сs через постоянный пикноклин в основном компенсируется его радиоактивным распадом (Егоров и др., 1993). Результаты мониторинга концентрации этого радионуклида показывают, что к 2000 г. его содержание в слое 0-100 м практически вышло на стационарный уровень благодаря установлению равновесия между процессами его поступления и удаления, при этом в слое 100-200 м содержание ¹³⁷Сs продолжает увеличиваться за счёт удаления из вышележащего слоя (Гулин и др., 2017).

Таким образом, транспорт ¹³⁷Cs, обусловленный вертикальным водообменом, обеспечивает его перераспределение главным образом для слоя 0-200 м. Иная картина наблюдалась для ¹³⁷Cs на BB. Так, уже в июне 1986 г. чернобыльский ¹³⁷Сs был обнаружен в материале из седиментационной ловушки, установленной на глубине 1070 м (Buesseler et al., 1990). Это говорит о том, что несмотря на незначительное содержание цезия на взвеси, седиментация может приводить к довольно высокой скорости переноса этого радионуклида на глубины, куда он не мог бы попасть в заметных количествах только за счет вертикального водообмена (Стокозов и др., 2008). В связи с этим, седиментационный транспорт обеспечивает небольшой, но стабильный поток депонирования ¹³⁷Сѕ в донные отложения.

В заключение необходимо отметить, что, помимо указанных выше, в литературе практически отсутствуют работы по содержанию ¹³⁷Cs на BB в Черном море.

Исходя из вышеизложенного, представляет интерес изучение содержания ¹³⁷Cs на BB. Целью работы была общая сравнительная оценка содержания ¹³⁷Cs для различных типов взвеси и регионов Черного моря.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Фильтрация морской воды на взвесь осуществлялась в 2015, 2016, 2017 и 2019 гг. в рейсах НИС "Профессор Водяницкий" ФИЦ ИнБЮМ и береговых экспедициях. Пробы морской воды на взвесь фильтровали по пути следования судна Тарханкут-Ласпи, непосредственно в бухте Ласпи, на Западной халистазе (ЗХ), в восточной части Черного моря (ВЧ), в бухтах Севастополя – Артиллерийской, бухте радиобиологического корпуса (РБК) ФИЦ ИнБЮМ. Карта-схема районов отбора проб представлена на рис. 1.

Для Западной халистазы и бухты РБК ФИЦ ИнБЮМ фильтрация проводилась дважды, в разные сезоны. На Западной халистазе — в апреле, декабре, в бухте РБК ФИЦ ИнБЮМ — в феврале, апреле. Объемы профильтрованной воды представлены в табл. 1. Отбор проб ВВ осуществляли с помощью тупиковой объемной фильтрации на полипропиленовых фильтрах с номинальным

Район	Концент- рация взвеси, мг/л	Объем фильтрации, л	Активность ¹³⁷ Cs на взвеси, Бк/кг	Активность ⁴⁰ К на взвеси, Бк/кг	Активность растворенной формы ¹³⁷ Cs, Бк/м ³	Содержание ¹³⁷ Сѕ на взвеси в %, от общего содержания	Доля литогенного вещества на взвеси, %
04.2017, Ласпи	0.67	5435	111 ± 11	662 ± 26	14.4 ± 0.7	0.51	85
04.2016 Тарханкут- Ласпи	0.53	22584	25.5 ± 3.1	499 ± 25	15.0 ± 0.7	0.09	60
04.2017, Западная халистаза	1.06	32117	7.1 ± 1.1	72 ± 8	15.0 ± 0.7	0.05	0
12.2017, Западная халистаза	0.53	6530	27.0 ± 3.2	591 ± 29	15.0 ± 0.7	0.09	74
12.2015, Восточная часть	0.42	24215	12.0 ± 1.8	372 ± 18	15.0 ± 0.7	0.03	40
02.2019, Севасто- поль, РБК	0.34	5721	33.0 ± 4.0	723 ± 22	12.5 ± 0.5	0.09	94
04.2019, Севасто- поль, РБК	1.5	7780	21.4 ± 2.6	336 ± 27	12.5 ± 0.5	0.25	36
05.2017, Севасто- поль, Артиллерий- ская бухта	1.2	3183	85 ± 9	558 ± 33	15.0 ± 0.7	0.69	69

Таблица 1. Содержание ¹³⁷Cs и ⁴⁰K на взвеси для различных районов Черного моря

размером пор 0.5 мкм. Для учёта величины проскока при фильтрации через полипропиленовые фильтры определяли концентрацию взвеси в исходной морской воде и в фильтрате. Общую массу отфильтрованного сухого ВВ определяли исходя из разности концентраций взвеси на входе и выходе из фильтрационной установки и общего объема профильтрованной воды. Величина проскока проточной фильтрации не превышала 5%. После фильтрации полипропиленовые фильтры высушивали на воздухе и озоляли в муфельной печи с доступом кислорода при температуре 330°С. Полученную золу помешали на измерение на гамма-спектрометр 1282 CompuGamma CS (LKB Wallac, Финляндия). Данный гамма-спектрометр выполнен на основе кристалла NaI(Tl) колодезного типа, что обеспечивает геометрию счёта, наиболее приближенную к 4π , с диапазоном энергий от 10 кэВ до 2 МэВ. Определение активности ¹³⁷Cs было осуществлено по гаммаизлучению его дочернего радионуклида ^{137m}Ва с энергией 661.6 кэВ, природного ⁴⁰К – по его гамма-излучению с энергией 1460.8 кэВ, с учетом радиоактивного фона и эффективности регистрации для 137 Cs - 11%, 40 K - 1%. Дополнительно по той же процедуре проводили холостые измерения золы полипропиленового фильтра, который не использовался для фильтрации. Уровни активности в этом случае не превышали фоновые значения.

Концентрацию общего взвешенного вещества в морской воде определяли весовым методом путём вакуумной фильтрации через мембранные фильтры из нитроцеллюлозного волокна с диаметром пор 0.45 мкм, которые затем промывали дистиллированной водой для удаления солей. После прогрева при 60°С в сушильном шкафу, осуществлялось взвешивание мембранных фильтров (до и после фильтрации) на аналитических весах с погрешностью 1×10^{-4} г. Относительная погрешность определения концентрации общего ВВ не превышала 5%.

Доля биогенного и литогенного вещества определялась по разработанной нами ранее методике с использованием 40 К (Gulin et al., 2014). Калий представляет довольно распространенный в земной коре элемент (7-й по распространенности) со средним содержанием калия около 25 г/кг (Виноградов, 1962). Кларк калия в живом веществе значительно ниже – около 3 г/кг (Иванов, 1994; Перельман, 1972). При этом для карбонатов основного материала биогенной седиментации в Черном море (Митропольский и др., 1982), содержание калия составляет 2.7-2.9 г/кг (Turekian, Wedepohl, 1961) и, наконец, определенные непосредственно для осадочного материала Черного моря значения для биогенного и литогенного вещества составляли 2-3 и 25 г/кг соответственно (Гавшин и др., 1988).

Рис. 2. Содержание ¹³⁷Сs на взвеси в процентах от общего содержания радионуклида в поверхностном слое воды в зависимости от глубины станции.

Определив фактическое содержание калия в донных осадках в граммах калия на килограмм (г/кг), можно рассчитать относительный вклад биогенного материала в процентах от общей массы осадка или BB, используя балансовое уравнение:

$$B = \frac{Clk_L - K}{Clk_L - Clk_B} \times 100\%, \tag{1}$$

где Clk_L и Clk_B – значения кларков калия в литогенном и биогенном веществе, соответственно, 25 и 3 г/кг, *K* – фактическое содержание калия в исследуемой пробе, г/кг, определенное по результатам радиометрических измерений активности калия-40. Для определения содержания калия по активности его изотопа ⁴⁰К использовали величину удельной радиоактивности, равную 1 г калия = 30.65 Бк ⁴⁰К.

Доля литогенного вещества, в процентах от общей массы осадка или BB, L, рассчитывалась на основе B как

$$L = 100 - B.$$
 (2)

Для каждой станции содержание ¹³⁷Сs на взвеси в процентах от общего содержания этого радионуклида в поверхностном слое воды рассчитывалось следующим образом. Используя значения концентрации взвеси, мг/л и удельной активности цезия на взвеси, Бк/кг, рассчитывали активность цезия на BB в м³, Бк/м³. Общее содержание цезия в объеме воды 1 м³ принимали равным сумме активности его растворенной формы (в Бк) и его активности на BB (в Бк). Затем, зная общее содержание цезия в 1 м³ воды, рассчитывали какая его часть, в %, приходится на BB.

Для определения растворенной формы ¹³⁷Cs в пробах поверхностной морской воды был использован метод, основанный на его концентрировании с помощью проточной сорбции в двух последовательно соединенных адсорберах, импрегнированных смешанным ферроцианидом никелякалия ($K_{1,33}Ni_{1,33}$ [Fe(CN)₄]) с последующим измерением содержания ¹³⁷Cs по гамма-излучению на NaI(Tl) гамма-спектрометре 1282 CompuGamma CS (Miroshnichenko et al., 2019). Эффективность сорбции определяли по разнице активностей ¹³⁷Cs в первом и втором адсорберах.

РЕЗУЛЬТАТЫ

Удельная активность ¹³⁷Cs на BB менялась в пределах от 7 до 111 Бк/кг, его содержание на взвеси в % от общего содержания в поверхностном слое также могло на различных станциях отличаться почти на порядок — от 0.03 до 0.69% (табл. 1). Наибольшая удельная активность ¹³⁷Cs на BB была обнаружена на станциях около Ласпи (111 Бк/кг) и в Артиллерийской бухте Севастополя (85 Бк/кг), на этих же станциях было наибольшим процентное содержание ¹³⁷Cs на взвеси — 0.51 и 0.69% соответственно (табл. 1).

Активность растворенной формы 137 Cs, напротив, была распределена довольно равномерно — от 12.5 до 15 Бк/м³ (табл. 1).

На рис. 2 представлено содержание ¹³⁷Cs на взвеси в процентах от общего содержания этого радионуклида в поверхностном слое воды в зависимости от глубины станции. Ось глубин представлена в логарифмическом масштабе. Более удаленные от берега станции характеризовались наименьшей долей ¹³⁷Cs на BB, тогда как на прибрежных эта величина была более вариабельной.

Рассчитанное на основе ⁴⁰К процентное содержание литогенного вещества (табл. 1) было максимальным на станции Ласпи в апреле и РБК в феврале, а также, несмотря на удаленность станции от берега, на Западной халистазе в декабре. При этом в апреле на той же станции у Западной халистазы взвешенное вещество было исключительно биогенным. Также значительную долю составляло литогенное вещество на станции в Артиллерийской бухте — 69%.

ОБСУЖДЕНИЕ

Информация, представленная в литературе по конкретным деталям геохимического поведения цезия в природных водах довольно противоречива – см. подробное рассмотрение вопроса в (Касаткина, 2008; Lammers et al., 2017). Тем не менее, в целом общие закономерности миграции и перераспределения ¹³⁷Сs связаны с химическим и гранулометрическим составом взвешенного вешества и донных отложений, а также с составом морской воды. Известно, что ¹³⁷Сѕ в большей степени накапливается на мелкозернистом литогенном вешестве, что связано с присутствием в нем глинистых минералов (Comans et al., 1991: Gulin et al., 2001; Sawhney, 1972; Матишов, 2001; Duursma, 1996; Дунаева, Мироненко, 2000). Их сорбционные свойства могут существенно отличаться (Sawhney, 1972), но считается, что в процессе накопления цезия морскими донными отложениями определяющую роль играет глинистый минерал иллит (Aston et al., 1973; Cremers et al. 1988; Fuller et al., 2015). Вместе с тем отмечается, что зависимость сорбции цезия от содержания иллита может носить более сложный характер и значимая корреляция установлена также с содержанием в осадке других минералов, в том числе даже таких как кварц и кальцит (Duursma, 1996).

Существенное влияние на поведение ¹³⁷Сѕ в водной среде оказывает наличие его химического аналога, широко распространенного в природе, калия (Livingston, 1988; Fuller et al., 2015). В связи с этим, в пресных водоемах ¹³⁷Cs более активно накапливается взвесью и выводится в донные отложения, чем в морских, где он находится в основном в растворенной форме в виде простого иона (Polikarpov et al., 1991). Более сложная ситуашия наблюдается в таких областях, как, например, приустьевые акватории, где пресная речная вода смешивается с морской и происходит перенос цезия с твердым речным стоком в море. При этом, в условиях с более высокой соленостью, возможен переход сорбированного на речной взвеси ¹³⁷Сs в растворенное состояние (Gulin et al., 2013; Durrant et al., 2018).

В отношении этих факторов прибрежные регионы, как правило более вариабельны, чем глубоководные. Станции в Севастопольской бухте подвержены влиянию городских ливневых стоков в районе Артиллерийской бухты и взмучиванию поверхностного слоя донных отложений в

штормовую погоду. Такие условия обеспечивают широкий диапазон изменчивости состава взвеси, а также изменение солености воды за счет городских ливневых стоков. Поэтому на рис. 2 наибольший разброс значений содержания ¹³⁷Сs мы наблюдаем для прибрежных станций в Севастопольской бухте, в отличие от глубоководных станций. гле процентное содержание ¹³⁷Cs на взвеси менялось от 0.03 до 0.09%. Низкий уровень достоверности для линии тренда связан с указанной высокой изменчивостью содержания ¹³⁷Cs на прибрежных станциях и, очевилно, в связи с этим достоверность аппроксимации любой функциональной зависимостью будет довольно низкой. Такой уровень достоверности аппроксимации является дополнительной иллюстрацией разницы геохимических условий, которые оказывают влияние на содержание ¹³⁷Сѕ на ВВ, в прибрежных и глубоковолных акваториях моря – более изменчивых в прибрежных и относительно стабильных в глубоководных.

Полноценное определение генезиса взвеси в обшем случае представляет собой довольно сложную задачу и основано на использовании различных маркеров, в первую очередь таких, как содержание C_{opr} , CaCO₃, SiO₂ и Al по отношению к общей массе вещества (Гавшин и др., 1988; Brumsack, 2006; Hay et al., 1991; Martinez et al., 2007). Поскольку в цели статьи не входила детальная и точная типология компонентов ВВ, для определения относительного содержания литогенной и биогенной составляющей нами был использован более простой метод по ⁴⁰К, который является природным радионуклидом литогенного происхождения. Он уже был с успехом применен для определения вклада биогенной составляющей в процесс накопления донных отложений во всем диапазоне глубин Черного моря (Gulin et al., 2014), а также при изучении биогенного осадконакопления в Севастопольской бухте на сезонном масштабе времени с параллельным определением уровня первичной продукции по радиоуглеродному методу и общего потока вещества по короткоживущему ²³⁴Th (Гулин и др. 2019).

На основе рассчитанного по ⁴⁰К вклада литогенной составляющей и концентрации общего взвешенного вещества была определена концентрация литогенного вещества для каждой станции. На рис. 3, 4 представлено процентное содержание ¹³⁷Сs на общей взвеси и его удельная активность, в беккерелях на килограмм массы общей взвеси, в зависимости от концентрации литогенной компоненты взвешенного вещества, мг/л.

В связи с тем, что содержание ¹³⁷Cs, как растворённой его формы, так и на BB в Черном море невелико, по-видимому, более корректно аппроксимировать представленные на рис. 3 и рис. 4 данные линейной зависимостью. Видно, что определяющим

Рис. 3. Содержание ¹³⁷Cs на общем взвешенном веществе в процентах от суммарного содержания радионуклида в поверхностном слое воды в зависимости от концентрации литогенной фракции взвешенного вещества.

Рис. 4. Удельная активность ¹³⁷Cs в Бк на кг общего взвешенного вещества в зависимости от концентрации его литогенной фракции.

фактором содержания ¹³⁷Cs на взвеси является изменение концентрации литогенного вещества, что вполне согласуется с современными представлениями о механизмах сорбшии этого ралионуклида в природных средах (Comans et al., 1991; Gulin et al., 2001; Sawhney, 1972). Более высокая степень достоверности аппроксимации для процентного содержания ¹³⁷Сs связана с тем, что эта величина учитывает вариабельность концентрации взвеси на различных станциях, в отличие от удельной активности. Например, для Западной халистазы в апреле и декабре 2017 г. активность ¹³⁷Cs отличалась почти в четыре раза – 7.1 и 27 Бк/кг, в то время как процентное содержание – фактически менее, чем в два раза (0.05 и 0.09%) из-за меньшей концентрации взвешенного вещества в декабре. Высокое процентное содержание литогенного вещества при низкой концентрации суммарной взвеси в декабре на Западной халистазе, по-видимому, было связано с его эоловым переносом в период зимних штормов.

Наибольшая активность на ВВ и процентное содержание ¹³⁷Сs было обнаружено в районе бухт Ласпи и Артиллерийской. В первом случае это можно связать с геологическим строением данного региона (Снегирева, 1969) и поступлением глинистых частиц за счет береговой абразии. По берегам Артиллерийской бухты расположена плотно застроенная городская набережная, благодаря смыву с ливневой канализацией литогенная взвесь поступает в бухту — известно, что используемые для строительства облицовочные и бутовые камни часто изготавливаются из гранитов и, менее прочных и более подверженных выветриванию, сиенитов (Козловский, 1991).

Активность ¹³⁷Сѕ на взвешенном веществе Западной халистазы в апреле 2017 г. составляла 7.1 Бк/кг, при содержании калия 2.3 г/кг. Известно, что содержание калия в биогенном веществе в Черном море не превышает 3 г/кг (Гавшин и др., 1988) и, таким образом, в данном случае взвесь была полностью образована биогенной фракци-

Таблица 2. Коз	ффициенты накопления
----------------	----------------------

Район	Коэффициент накопления	Доля биогенного вещества
04.2017, Ласпи	8×10^{3}	0.15
04.2016 Тарханкут-Ласпи	2×10^{3}	0.40
04.2017, Западная халистаза	5×10^{2}	1
12.2017, Западная халистаза	2×10^{3}	0.26
12.2015, Восточная часть	8×10^{2}	0.6
02.2019, Севастополь, РБК	3×10^{3}	0.06
04.2019, Севастополь, РБК	2×10^{3}	0.64
05.2017, Севастополь, Артиллерийская бухта	6×10^{3}	0.31

ей. Органические компоненты биогенного ВВ в большинстве своем имеют неполярную природу и вещества, которые находятся в ионной форме, такие как цезий, в меньшей степени накапливаются ими (Duursma, 1996; Lujaniene, 2003). Покрытые органическими пленками литогенные глинистые минералы также значительно снижают свою сорбционную активность (Dumat, 1999; Kim et al., 2006). Коэффициент накопления ¹³⁷Сs для биогенного вещества, рассчитанный по этим данным составил 5×10^2 , что совпадает с аналогичными данными для морских организмов, а также акваторий с высокой биопродуктивностью и значительным вкладом биогенного вешества в общую массу ВВ (Егоров и др., 2013; ІАЕА, 1985; Sidorov et al., 2022). По порядку величины такой же коэффициент накопления был определен для взвеси в восточной части Черного моря, для остальных станций он был равен $n \times 10^3$ (с наибольшим значением 8×10^3 для бухты Ласпи), что соответствует коэффициенту накопления ¹³⁷Сs в донных отложениях (Егоров и др., 2013; ІАЕА, 1985) (табл.2).

Таким образом, различные акватории Черного моря характеризуются разным, отличающемся примерно на порядок содержанием ¹³⁷Cs на BB, что обусловлено различиями в типе взвеси. Если сопоставить станции, наиболее сходные по концентрации общего взвешенного вещества и одновременно наиболее различные по доле литогенного вещества – Артиллерийскую бухту и Западную халистазу в апреле (табл. 1), то удельная активность и процентное содержание ¹³⁷Cs на взвеси будет также относиться на этих станциях примерно как 10 к 1. Такое различие будет, очевидно, приводить к существенной зависимости переноса ¹³⁷Сѕ на взвешенном веществе от региональных факторов, определяющих вклад его биогенной и литогенной составляющей – динамикой фитопланктонных сообществ, климатических изменений, влияющих на поступление в прибрежные районы литогенного вещества и других.

выводы

Содержание ¹³⁷Сѕ на взвеси в Черном море в целом контролируется динамикой литогенной фракции взвешенного вещества, при этом на биогенном веществе цезия на порядок меньше как по удельной активности, так и по процентному содержанию. Это обеспечивает естественное разделение Черного моря в отношении миграции ¹³⁷Сѕ на ВВ как минимум на два типа регионов. Во-первых, это акватории, лостаточно улаленные от источников литогенного вещества и в которых ВВ образуется в основном за счет деятельности живых организмов – такие как Западная халистаза и восточная часть Черного моря. Содержание ¹³⁷Сѕ на взвеси благодаря преобладанию биогенного вещества и незначительной концентрации литогенного в данном случае находится на уровне сотых долей процента от его общего содержания в поверхностном слое воды. Во-вторых, это прибрежные и шельфовые акватории Черного моря — зона северо-западного шельфа и западное побережье Крыма, а также Севастопольская бухта, подверженные с одной стороны береговому и речному стоку значительных количеств литогенного вещества, с другой – характеризуемые повышенной трофностью и биологической продуктивностью. В этих акваториях благодаря изменчивости биотических и абиотических факторов содержание ¹³⁷Сѕ на ВВ более вариабельно и может испытывать колебания от значений. характерных для открытого моря до на порядок больших.

Исследования выполнены по результатам 82, 84, 93, 99, 100 рейсов НИС "Профессор Водяницкий" (Центр коллективного пользования "НИС Профессор Водяницкий" Федерального государственного бюджетного учреждения науки Федерального исследовательского центра "Институт биологии южных морей имени А.О. Ковалевского РАН").

Работа подготовлена в рамках темы государственного задания ФИЦ ИнБЮМ "Молисмологиче-

ские и биогеохимические основы гомеостаза морских экосистем", номер государственной регистрации 121031500515-8.

СПИСОК ЛИТЕРАТУРЫ

Виноградов А.П. (1962) Средние содержания химических элементов в главных типах изверженных горных пород земной коры. *Геохимия*. (7), 555-571.

Гавшин В.М., Лапухов С.В., Сараев С.В. (1988) Геохимия литогенеза в условиях сероводородного заражения (Черное море). Новосибирск: Наука, 194 с.

Гулин С.Б., Егоров В.Н., Мирзоева Н.Ю., Проскурнин В.Ю., Бей О.Н., Сидоров И.Г. (2017) Радиоемкость кислородной и сероводородной зон Черного моря в отношении ⁹⁰Sr и ¹³⁷Cs. *Радиационная биология*. *Радиоэкология*. **57**(2), 191-200.

Гулин С.Б., Сидоров И.Г., Поповичев В.Н. (2019) Сезонная динамика биоседиментации и первичной продукции в Севастопольской бухте: оценка взаимосвязи с использованием ²³⁴Th и ⁴⁰K. *Биология моря.* **45**, 171-176.

Дунаева А.Н., Мироненко М.В. (2000) Сорбция цезия некоторыми глинистыми минералами. *Геохимия*. (2), 213-221

Егоров В.Н., Гулин С.Б., Поповичев В.Н., Костова С.К., Гулина Л.В., Малахова Л.В., Малахова Т.В., Плотицына О.В., Мирзоева Н.Ю., Терещенко Н.Н., Лазоренко Г.Е., Проскурнин В.Ю., Сидоров И.Г., Стецюк А.П., Марченко Ю.Г. (2013) Биогеохимические механизмы формирования критических зон в отношении загрязняющих веществ в Черном море. *Морской экологический журнал.* **12**(4), 5-26.

Егоров В.Н., Поликарпов Г.Г., Кулебакина Л.Г., Стокозов Н.А., Евтушенко Д.Б. (1993) Модель крупномасштабного загрязнения Черного моря долгоживущими радионуклидами цезием—137 и стронцием—90 в результате аварии на ЧАЭС. *Водные ресурсы*. **20**(3), 326-330.

Иванов В.В. (1994) Книга 1: s-элементы. Экологическая геохимия элементов: Справочник: в 6 кн. (Под ред. Э. К. Буренкова). М.: Недра, 304 с.

Касаткина, Н.Е., (2008) Адсорбция радионуклидов цезия на донных отложениях и оценка радиоэкологической ситуации в бассейнах Баренцева и Азовского морей (дис. канд. хим. наук: 03.00.16). Иваново.

Козловский Е.А. (1991) Горная энциклопедия. Т. 1–5. М.: Советская энциклопедия, 541 с.

Матишов Д.Г. (2001) Радиационная экологическая океанология. Апатиты: Изд-во КНЦ РАН, 417 с.

Митропольский А.Ю., Безбородов А.А., Овсяный Е.И. (1982) Геохимия Черного моря. К.: Наукова думка, 144 с.

Никитин А.И., Мединец В.И., Чумичев В.Б., Катрич И.Ю., Вакуловский С.М., Козлов А.И., Лепешкин В.И. (1988) Радиоактивное загрязнение Черного моря вследствие аварии на ЧАЭС по состоянию на октябрь 1986 г. *Атомная энергия*. **65**(2), 134-137.

Перельман А.И. (1972) Геохимия элементов в зоне гипергенеза. М.: Недра, 424 с. Снегирева О.В. (1969) Юрская система, Средний отдел. *Геология СССР. Т. 8. Крым. Часть 1. Геологическое описание* (Под ред. М.В. Муратова). М.: Недра, 99-114.

Стокозов Н.А., Гулин С.Б., Мирзоева Н.Ю. (2008) Содержание ¹³⁷Сѕ и ⁹⁰Sг на взвешенном веществе и в донных отложениях Черного моря после аварии на Чернобыльской АЭС. *Радиоэкологический отклик Черного моря на чернобыльскую аварию* (Под ред. Г.Г. Поликарпова и В.Н. Егорова). Севастополь: ЭКОСИ-Гидрофизика, 519-547.

Aston S.R., Duursma E.K. (1973) Concentration effects on 137 Cs, 65 Zn, 60 Co and 106 Ru sorption by marine sediments with geochemical implications. *Netherlands J. Sea Research.* **6**(1–2), 225-240.

Brumsack H.-J. (2006) The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* **232**(2–4), 344-361

Buesseler K.O., Livingston H.D., Honjo S., Hay B.J., Konuk T., Kempe S. (1990) Scavenging and particle deposition in the southern Black Sea – evidence from Chernobyl radiotracers. *Deep–Sea Res.* **37**(3), 413-430.

Comans R.N., Haller M., Preter P.D. (1991) Sorption of cesium on illite: Nonequilibrium behavior and reversibility. *Geochim. Cosmochim. Acta.* **55**(2), 433-440.

Cremers A., Elsen A., Preter P.De, Maes A. (1988) Quantitative analysis of radiocaesium retention in soils. *Nature*. **335**(6187), 247-336.

Dumat C. (1999) Reduced adsorption of caesium on clay minerals caused by various humic substances. *J. Environ. Radioact.* **46**, 187-195

Durrant C.B., Begg J.D., Kersting A.B., Zavarin M. (2018) Cesium sorption reversibility and kinetics on illite, montmorillonite, and kaolinite. *Sci. Total Environ.* **610**, 511-520.

Duursma E.K. (1996) Environmental compartments: equilibria and assessment of processes between air, water, sediments and biota. E.K. Duursma, J. Carroll. Berlin: Springer, 280 p.

Fuller A.J., Shaw S., Ward M.B., Haigh S.J., Mosselmans J.F.W., Peacock C.L., Stackhouse, S., Dent A.J., Trivedi D., Burke I.T. (2015) Caesium incorporation and retention in illite interlayers. *Appl. Clay Sci.* **108**, 128-134.

Gulin S.B., Egorov V.N., Duka M.S., Sidorov I.G., Proskurnin V.Yu., Mirzoyeva N.Yu., Bey O.N., Gulina L.V. (2015) Deep-water profiling of ¹³⁷Cs and ⁹⁰Sr in the Black Sea. A further insight into dynamics of the post-Chernobyl radioactive contamination. *J. Radioanal. Nucl. Ch.* **304**(2), 779-783.

Gulin S.B., Mirzoyeva N.Yu., Egoron V.N., Polikarpov G.G., Sidorov I.G., Proskurnin V.Yu. (2013) Secondary radioactive contamination of the Black Sea after Chernobyl accident: recent levels, pathways and trends. *J. Environ. Radioact.* **124**, 50-56.

Gulin S.B., Gulina L.V., Sidorov I.G., Proskurnin V.Yu., Duka M.S., Moseichenko I.N., Rodina E.A. (2014) ⁴⁰K in the Black Sea: a proxy to estimate biogenic sedimentation. *J. Environ. Radioact.* **134**, 21-26.

Gulin S.B., Polikarpov G.G., Egorov V.N., Korotkov A.A., Stokozov N.A., Martin J.M. (2001) Radioactive contami-

nation of the north-western Black Sea sediments. *Estuar. Coast. Shelf Sci.* **54**(3), 541-549.

Hay B.J., Arthur M.A., Dean W.E., Neff E.D., Honjo S. (1991) Sediment deposition in the Late Holocene abyssal Black Sea with climatic and chronological implications. *Deep Sea Research Part A. Oceanographic Research Papers*. **38(suppl. 2)**, 1211-1236.

International Atomic Energy Agency (1985) Sediment K_dS and Concentration Factors for Radionuclides in the Marine Environment. Technical Report Series. (247). IAEA, 74 p.

Kim Y., Cho S., Kang H.-D., Kim W., Lee H.-R., Doh S.-H., Kim K., Yun S.-G., Kim D.-S., Jeong G.Y. (2006) Radiocesium reaction with illite and organic matter in marine sediment. *Mar. Pollut. Bull.* **52**(6), 659-665.

Lammers L.N., Bourg I.C., Okumura M., Kolluri K., Sposito G., Machida M. (2017) Molecular dynamics simulations of cesium adsorption on illite nanoparticles. *J. Colloid and Interface Science*. **490**, 608-620.

Livingston H.D. (1988) The use of Cs and Sr izotopes as tracers in the Arctic Mediterranean Seas. *Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.* **325**(1583), 161-176.

Lujanienė G., Vilimaitė-Šilobritienė B., Jokšas K. (2003) Effect of coatings on caesium sorption-desorption behavior in bottom sediments. *Environmental and Chemical Physics*. **25**(3), 129-135. Martinez N.C., Murray R.W., Thunell R.C., Peterson L.C., Muller-Karger F., Astor Y., Varela R. (2007) Modern climate forcing of terrigenous deposition in the tropics (Cariaco Basin, Venezuela). *Earth Planet. Sci. Lett.* **264**(3–4), 438-451.

Miroshnichenko O.N., Paraskiv A.A., Gulin S.B. (2019) Cesium-137 Concentration in the Surface Waters of Eurasian Seas: Evidence from the Expedition Research of 2017. *Geochem. Int.* **57**(12), 1349-1354.

Polikarpov G.G., Kulebakina L.G., Timoshchuk V.I., Stokozov N.A. (1991)⁹⁰Sr and ¹³⁷Cs in surface waters of the Dnepr River, the Black Sea and the Aegean Sea in 1987 and 1988. *J. Environ. Radioact.* **13**(1), 25-28.

Sawhney B.L. (1972) Selective sorption and fixation of cations by clay minerals: A review. *Clays and Clay Minerals*. **20**(2), 93-100.

Sidorov I.G., Tereshchenko N.N., Korotkov A.A., Chuzhikova-Proskurnina O.D., Hiep N.T., Trapeznikov A.V. (2022) ¹³⁷Cs, ⁴⁰K and ²¹⁰Po in abiotic components of aquatic ecosystems two rivers in the Can Gio biosphere reserve, Vietnam. *Nuclear Engineering and Technology*. (Available online 6 July 2022)

https://doi.org/10.1016/j.net.2022.07.005

Turekian K.K., Wedepohl K.H. (1961) Distribution of the elements in some major units of the Earth's crust. *Geol. Soc. Am. Bull.* **72**(2), 175-192.

ЭЛЕМЕНТНЫЙ СОСТАВ РАСТЕНИЙ СЕМЕЙСТВА РЯСКОВЫЕ (Lemnaceae) НА УРБАНИЗИРОВАННЫХ ТЕРРИТОРИЯХ РОССИЙСКОЙ ФЕДЕРАЦИИ

© 2023 г. Н. В. Барановская^{*a*, *}, А. Ю. Барановская^{*a*, **}, А. Ф. Судыко^{*a*, ***}

^аНациональный исследовательский Томский политехнический университет, пр. Ленина, 30, Томск, 634050 Россия

*e-mail: nata@tpu.ru **e-mail: kyzmen44@mail.ru ***e-mail: sudykoAF@yandex.ru Поступила в редакцию 28.02.2022 г. После доработки 10.10.2022 г. Принята к публикации 18.10.2022 г.

Впервые представлены данные по содержанию 28 химических элементов в водных растениях семейства рясковые (Lemnaceae) озер, расположенных на территории 65 населенных пунктов Российской Федерации. Изучены особенности элементного состава и характер пространственного распределения рясковых урбанизированных территорий России, рассчитаны коэффициенты концентрирования исследованных элементов в макрофитах, отобранных в разных регионах, относительно полученных средних оценок. Показано, что элементный состав водных растений семейства рясковые несет информацию о сложившейся эколого-геохимической ситуации исследуемой территории и может служить индикатором состояния окружающей среды.

Ключевые слова: растения семейства рясковые, химический элементный состав, озера урбанизированных территорий России, эколого-геохимические особенности, техногенез

DOI: 10.31857/S0016752523040027, **EDN:** IVJFSS

введение

Одним из актуальных направлений биогеохимии является геохимическая экология растений, значимость которого особенно возросла в связи с наблюдающимся мощным техногенным преобразованием биосферы (Уфимцева, 2015; Моисеенко, 2017; Ермаков, 2018). Растения являются одним из ключевых звеньев накопления химических элементов в водных экосистемах (Prasad et al., 2018). Произрастая на урбанизированных территориях и подвергаясь в той или иной степени антропогенному воздействию, макрофиты могут выступать индикатором состояния окружающей среды (Farias et al., 2018; Oyedeji et al., 2013).

Водные растения семейства рясковые (Lemnaceae) произрастают на стыке двух сред "вода—атмосфера" и способны накапливать элементы непосредственно из среды обитания, а также, ввиду особенностей строения листеца, улавливать пылеаэрозоли из атмосферного воздуха (Teles et al., 2017; Borisjuk et al., 2018). Такое концентрирование элементов данными растениями позволяет использовать их в качестве индикаторов экологогеохимического состояния окружающей среды. Первые работы по исследованию элементного состава рясковых как объекта биогеохимических и эколого-геохимических исследований были выполнены еще в 30-х гг. ХХ столетия сотрудниками Биогеохимической лаборатории (ныне Институт геохимии и аналитической химии им. В.И. Вернадского Российской академии наук, Москва). Полученные результаты демонстрировали значимость информации об элементном составе макрофитов для развития биогеохимии (Бруновский, Кунашева, 1930; Вернадский, Виноградов, 1931).

В настоящий момент растения семейства рясковые активно используются в области биотестирования и экотоксикологии (Mkandawire et al., 2014; Bocuk et al., 2013; Basiglini et al., 2018; Ceschin et al., 2020; Ekperusi et al., 2020). Внимание большинства исследователей занимает прикладная специализация аккумулятивных способностей водных растений, использование их в качестве фиторемедиаторов сточных вод (Varga et al., 2013; Rofkar et al., 2014; Sasmaz et al., 2016, 2018). При этом работы по изучению индикаторных свойств элементного состава рясковых немногочисленны и требуют особенного внимания, исходя из высокой перспективности данных макрофитов в области биогеохимической индикации и мониторинга. Целью данной работы является определение особенностей элементного состава растений семейства рясковые (Lemnaceae), произрастающих в водоемах на урбанизированных территориях Российской Федерации с выявлением элементовиндикаторов природно-техногенных обстановок.

МЕТОДИКА

В качестве объекта исследования выбраны водные растения семейства рясковые (Lemnaceае), имеющие обширный ареал распространения на территории России. Наиболее распространенными видами на исследуемой территории являются: *Lemna turionifera* Landolt, *Spirodela polyrhiza* (L.) Schleid, *Lemna minor* L. и *Lemna trisulca* L. (Капитонова, 2019).

Вышеупомянутые виды растений семейства рясковые произрастают преимущественно совместно, образуя общие фитоценозы, с большим или меньшим участием каждого вида в каждом конкретном сообществе растительного континуума, что соответствует одной из выделенных Landolt и Kandeler (1987) ассоциаций видов семейства Lemnaceae. Частое совместное произрастание Lemna minor, L. turionifera, Spirodela polyrhiza и L. trisulca были отмечены и другими авторами (Wiegleb, 1978; Рябова и др., 2009; Chytry, 2011).

Вопрос концентрирования химических элементов различными видами растений семейства рясковые в настоящий момент остается открытым и требует детальной проработки. В данной работе в качестве объекта исследования использована смесь представителей рясковых, которые произрастают на контакте двух сред "вода-атмосфера", а именно Lemna minor, L. turionifera и Spirodela polvrhiza, без разделения по видам, учитывая их совместное произрастание, а также концентрирование большинства химических элементов в одинаковых пределах (Вернадский, Виноградов, 1931; Landolt, Kandeler, 1987; Teles et al., 2017). Обитающая в основном в толще воды Lem*na trisulca* (на поверхность поднимается только в период цветения) исключалась в обязательном порядке из анализируемых проб.

Полевые исследования проводились с 2013 по 2017 гг. во время вегетационного периода макрофитов, с июня по август. Отобраны пробы растений семейства рясковых, на территории 65 населенных пунктов Российской Федерации (рис. 1). В каждом населенном пункте осуществлялся отбор проб не менее чем из 2—4 водоемов.

Основная выборка населенных пунктов представляет урбанизированные территории, в состав которых входят города, поселки городского типа или близко расположенные к городам, районные центры с населением более 2000 чел. Исключение составляют три населенных пункта (д. Вехручей (Респ. Карелия), д. Якшино (Тульская обл.), п. Юган (Респ. Татарстан)), не подходящие под выше обозначенные характеристики.

Пробы представителей семейства рясковые отбирали из природных преимущественно бессточных водоемов, относящихся к эвтрофным, что характерно для мест обитания этих растений (Landolt, Kandeler, 1987; Рябова и др., 2009), с площадью зеркала преимущественно до 500 м².

Пробоподготовка заключалась в проведении видовой идентификации растений, удалении минеральных и биологических включений, видимых невооруженным глазом. Далее пробы растений высушивались при комнатной температуре до воздушно-сухого состояния и гомогенизировались (истирались в агатовой ступке). Далее пробы развешивались по 100 мг и упаковывались в пакетики из алюминиевой фольги. Промывание проб до высушивания авторами не выполнялось.

Основным аналитическим методом в данной работе являлся инструментальный нейтронно-активационный анализ (ИНАА), который позволил определить в образцах валовое содержание 28 химических элементов, наиболее качественно определяемых данным методом (ошибка анализа при внутреннем и внешнем контроле составляет 10%). ИНАА проводился на исследовательском реакторе ИРТ-Т в ядерно-геохимической лаборатории МИНОЦ "Урановая геология" Томского политехнического университета (аттестат аккредитации № РОСС RU.0001.518623 от 10.10.2011 г., аналитики – с.н.с. А.Ф. Судыко и Л.Ф. Богутская). Плотность потока тепловых нейтронов в канале облучения составляла 2×10^{13} нейтр./(см² с). Продолжительность облучения проб 20 ч. Измерение производилось на многоканальном анализаторе импульсов АМА 02Ф с полупроводниковым Ge-Li детектором ДГДК-63А. Метод ИНАА, реализуемый в лаборатории, используется также для аттестации стандартных образцов состава (СОС) как отечественных, так и зарубежных (МАГАТЭ, Германия, Япония, Индия и др.). В этом методе анализа сигнал снимается с ядер химических элементов, поэтому физическое состояние пробы не влияет на результат. При анализе образцов рясковых использовались стандарты: ЭК-1 (элодея канадская), БИЛ-1 (байкальский ил) и стандарт ЛБ-1 (лист березы).

В качестве средних значений элементов в рясковых на урбанизированных территориях России определены их средние геометрические значения, по причине статистически значимого отличия распределения всех анализируемых элементов в макрофитах на исследуемой территории от нормального.

Для каждого исследованного населенного пункта определены коэффициенты концентрирования химических элементов в рясковых, кото-

Рис. 1. Точки обора проб растений семейства рясковые на территории Российской Федерации: 1 – г. Калининград, 2 – Прионежский р-н (Респ. Карелия), 3 – г. Санкт-Петербург, 4 – д. Шумилкино (Псковская обл.), 5 – г. Ярославль, 6 – г. Гусь-Хрустальный, 7–10 – п. Косино, г. Солнечногорск, с. Киясово, г. Звенигород (Московская обл.), 11 – г. Мосальск (Калужская обл.), 12 – г. Смоленск, 13 – г. Брянск, 14 – г. Орел, 15 – Дубенский р-н (Тульская обл.), 16 - п. Подгоренский (Воронежская обл.), 17 - г. Тамбов, 18 - г. Волгоград, 19 - г. Кореновск (Краснодарский край), 20 – п. Энем (Респ. Адыгея), 21 – п. Новая Теберда (Респ. Карачаево-Черкесия), 22 – с. Нижняя Саниба (Респ. Северная Осетия-Алания), 23 – г. Ставрополь, 24 – п. Выездное (Нижегородская обл.), 25 – п. Лесной (Пензенская обл.), 26 - г. Саратов, 27 - п. Знаменский (Респ. Марий Эл), 28 - Нурлатский р-н (Респ. Татарстан), 29 - г. Чебоксары, 30 - г. Инза (Ульяновская обл.), 31 - г. Самара, 32 - с. Нижняя Вязовка (Оренбурская обл.), 33, 34 - д. Просница, г. Киров (Кировская обл.), 35 – с. Березовка (Пермский край), 36 – г. Магнитогорск, 37 – г. Курган, 38 – г. Екатеринбург, 39, 40 – г. Когалым, г. Нефтеюганск (ХМАО-Югра), 41 – г. Называевск (Омская обл.), 42–46 – г. Стрежевой, г. Асино, с. Парабель, с. Новый Васюган, с. Тимирязево (Томская обл.), 47 – г. Новосибирск, 48 – г. Камень-на-Оби, 49 – п. Колывань (Новосибирская обл.), 50 - г. Кемерово, 51 - с. Усть-Серта (Кемеровская обл.), 52 - г. Юрга, 53 - г. Барнаул, 54 – г. Бийск, 55 – с. Тюменцево (Алтайский край), 56 – с. Туим (Респ. Хакасия), 57 – г. Красноярск, 58 – г. Иркутск, 59 – г. Тайшет (Иркустская обл.), 60 – г. Улан-Удэ, 61 – с. Газимурский Завод (Забайкальский край), 62 – г. Якутск, 63 – г. Хабаровск, 64 – г. Партизанск (Приморский край), 65 – г. Петропавловск-Камчатский.

рые рассчитывались путем нормирования средней геометрической концентрации элемента в растениях из отдельных регионов к среднему геометрическому данного элемента, вычисленному по всему массиву данных по рясковым.

Для каждого химического элемента определен коэффициент вариации (*V*) в растениях (соотношение среднеквадратичного отклонения (**о**) и среднего содержания элемента (**С**) в макрофитах):

$$V = \sigma/C \times 100\%$$
.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Содержание всех исследованных элементов в растениях семейства рясковые отличается неоднородностью распределения на исследуемой территории, что может говорить о высокой степени чувствительности исследуемых растений к элементному составу окружающей среды, которая отличается высокой геохимической неоднородностью, связанной со сменой эколого-геохимических ситуаций природного и техногенного характера (рис. 2).

Статистическая обработка полученных аналитических данных приведена в таблице 1.

Относительно полученных значений коэффициентов вариации все исследуемые элементы в рясковых на урбанизированных территориях России могут быть разделены на ряд групп:

1) Элементы близкой к однородной группе распределения с коэффициентом вариации меньше 80% (Na, Ca, Rb).

2) Такие элементы как Br и Ba со значениями коэффициента вариации 80–100%, образуют группу химических элементов с неоднородным характером распределения.

3) Остальные элементы, к которым относится большинство из определенных, с коэффициентом вариации больше 100%, имеют крайне неравномерное распределение. Особенно это харак-

Рис. 2. Интервалы разброса и медианное содержание химических элементов в сухом веществе растений семейства рясковые в озерах, изученных на территории Российской Федерации (мг/кг).

Рис. 3. Коэффициенты концентрирования элементов в растениях семейства рясковые (сухое вещество) для высоко урбанизированных территорий России.

терно для As и Ag, имеющим коэффициент вариации более 200%.

Анализ групп элементов, концентрируемых растениями, показал, что широким спектром элементов, концентрации которых выше среднего (более 20-ти элементов) характеризуются растения водоемов, расположенных в зонах высокой урбанизации и антропогенной нагрузки: гг. Санкт-Петербург, Ставрополь, Хабаровск, Красноярск и Томск. Для данных населенных пунктов можно отметить общие закономерности: концентриро-

ГЕОХИМИЯ том 68 № 6 2023

вание радиоактивных (за исключением U для Ставрополя и Томска) и редкоземельных элементов (РЗЭ) выше среднего по России, вычисленного по данным настоящего исследования (рис. 3).

В табл. 2 представлены данные об элементах, имеющую высокую степень встречаемости в рясковых того или иного федерального округа с концентрациями выше средних по России. Данная информация носит предварительный характер и требует дальнейшего уточнения, поскольку затрагивает весьма обширные территории Россий-

БАРАНОВСКАЯ и др.

Элемент	Среднее арифмети- ческое (С _а), мг/кг	V, %	Среднее геометрическое С _г , мг/кг	Медиана, мг/кг	Минимальное, мг/кг	Максимальное, мг/кг
Na	4440	71	3566	3537	574	21868
Ca	21738	79	17 150	16003	4175	134125
Sc	0.6	167	0.2	0.3	0.003	9.5
Cr	5.8	141	1.0	1.9	0.01	57.8
Fe	7146	123	3908	4293	71.2	50157
Co	7.9	153	4.7	4.5	0.5	96.5
Zn	54.2	160	31.7	36.4	1	1184
As	6.3	249	2.6	2.5	0.1	184
Br	24	89	15.7	18.2	0.003	179
Rb	20.4	59	16.8	17.9	0.5	68
Sr	140	110	91	100	10	1602
Ag	1.4	504	0.1	0.1	0.01	71
Sb	0.3	151	0.1	0.1	0.002	3.9
Cs	0.2	194	0.05	0.05	0.0003	3.6
Ba	136	88	96	103	0.5	791
La	1.5	140	0.7	0.9	0.006	19
Ce	4	199	1.9	2	0.1	105
Nd	1.5	145	0.8	0.5	0.001	19.6
Sm	0.5	139	0.2	0.2	0.006	6.2
Eu	0.06	164	0.02	0.02	0.0003	0.8
Tb	0.05	151	0.02	0.02	0.0002	0.7
Yb	0.2	144	0.06	0.08	0.001	1.6
Lu	0.02	156	0.01	0.01	0.0003	0.2
Hf	0.2	158	0.1	0.08	0.001	2.8
Та	0.05	162	0.01	0.01	0.0004	0.6
Au	0.003	183	0.002	0.002	0.0001	0.1
Th	0.4	169	0.2	0.2	0.0001	7.4
U	0.3	184	0.1	0.1	0.001	5

Таблица 1. Статистические параметры распределения химических элементов в растениях семейства рясковых на территории России (на сухое вещество, мг/кг)

ской Федерации при малом количестве образцов, т.е. весьма локальна.

Данные табл. 2, не позволяют определить природную или техногенную составляющую специфики концентрирования элементов рясковыми того или иного федерального округа, по причине необходимости более детального анализа и сопоставления данных по конкретным исследованным городам с фоновыми концентрациями. При этом полученные результаты позволяют выделить предварительные закономерности концентрирования элементов исследуемыми макрофитами в зависимости от территории произрастания.

Центральный и Южный федеральные округа, в состав которых входят такие города как Брянск, Гусь-Хрустальный, Воронеж, Звенигород, Орел, Ярославль, Волгоград, Кореновск и т.д., характеризуются наименьшим спектром элементов в растениях семейства Lemnaceae, с концентрациями, превышающими среднее по России. В то время как Сибирский и Дальневосточный федеральные округа, в состав которых входят города Новосибирск, Юрга, Кемерово, Томск, Красноярск, Якутск, Хабаровск, Партизанск и т.д., отличаются широким спектром элементов с коэффициентами концентрирования больше 1. Стоит отметить, что в данный спектр также входят редкоземельные (Sc, Tb, Yb, Ce, Lu) и радиоактивные (Cs, Th, U) элементы.

Рис. 4. Распределение суммы РЗЭ в растениях семейства рясковые (сухое вещество, мг/кг) на территории Российской Федерации: Условные обозначения представлены на рис. 1.

Наблюдается дифференциация по накоплению редкоземельных элементов (РЗЭ) в водных растениях на территории Российской Федерации. Европейская часть России характеризуется преимущественно низкими концентрациями РЗЭ в макрофитах, за исключением г. Калининград и г. Санкт-Петербург, в то время как рясковые Уральского, Сибирского и Дальневосточного федеральных округов характеризуются исключительно повышенными содержаниями РЗЭ (рис. 4). Наибольшее суммарное значение РЗЭ (30 мг/кг) в сухом веществе исследуемых растений обнаружено на территории г. Хабаровск.

Исследуемая территория Центральной Сибири, на которой обнаружены высокие содержания РЗЭ в растениях семейства Lemnaceae, характеризуется сложной тектоникой регионов (Забайкалье, Кузнецкое Алатау, Колывань-Томская складчатая зона и т.д.), гранитоидных массивов, и имеет активное развитие коры выветривания с широким площадным распространением и большим количеством выходов ее продуктов на дневную поверхность (Удодов и др., 1971; Поляков и др., 2006; Злобина и др., 2019). Так, например, окраины Колывань-Томской складчатой зоны являются перспективными на циркон-ильменитовые россыпи и имеют промышленное значение на территории северных и западных ее окраин (юг Томской области, Новосибирская обл.). Это отражено в ряде работ различных авторов (Колубаева, 2015; Лапин, Оленченко, 2018; Янченко и др., 2019).

Немаловажно развитие промышленности в некоторых регионах (Кузбасс, Урал и др.), освоение полиметаллических месторождений, активизирующее горно-обогатительной и горно-перерабатывающей деятельности, что также влияет на формирующуюся эколого-геохимическую обстановку территории.

По данным С.И. Арбузова (2014) месторождения углей Сибири также отличаются редкометальной специализацией (РЗЭ, U, Ge, Zr).

Повышенные содержания РЗЭ в городах европейской части (Калининград, Санкт-Петербург, Ставрополь), по мнению авторов, преимущественно связаны с высокой степенью урбанизации и развития промышленности районов, кото-

Федеральный округ	Количество водоемов	Количество проб	K _K > 1
Центральный	13	26	Na, Cr, Rb, Th, U
Северо-Западный	4	8	Na, Cr, Zn, Rb, Sb, Cs, Ba, Tb, Ta, Sm
Южный	3	6	Na, Ca, Br, Cs
Северо-Кавказский	3	6	Na, Cr, Br, Sr, Sb, U
Приволжский	12	24	Na, Ca, Br, Sr, Ag, Ta, U
Уральский	5	10	Cr, Co, Sr, Sb, Cs, Eu, Yb, Lu
Сибирский	19	30	Sc, Fe, Sr, Br, Ag, Ba, Cs, Ce, Lu, Hf, Th, U
Дальневосточный	6	12	Sc, Cr, Zn, As, Br, Sr, Ag, Sb, Tb, Yb, Th, U

Таблица 2. Группы элементов, концентрируемых растениями семейства рясковые федеральных округов России

* К_к – коэффициент концентрирования относительно среднего состава рясковых по России.

Рис. 5. Распределение сурьмы в растениях семейства рясковые (сухое вещество, мг/кг) на территории Российской Федерации: Условные обозначения представлены на рис. 1.

рые характеризуются такими отраслями, как машиностроение, металлургия, радиоэлектроника, легкая и полиграфическая промышленность.

Стоит обратить внимание на характер распределения сурьмы в рясковых на исследуемой территории. Среднее геометрическое этого элемента в изученных водных растениях составляет 0.1 мг/кг, в то время как в с. Газимурский Завод (Забайкальский край) концентрация Sb возрастает до 2 мг/кг (рис. 5). По нашему мнению, данная ситуация в отношении высоких концентраций сурьмы в растениях Газимурского завода является следствием геологической специфики данного региона. Населенный пункт расположен в Восточно-Забайкальской сурьмяной провинции, отличающейся крупным ресурсным потенциалом по Sb (Павленко, Поляков, 2010).

Наиболее яркими индикаторами техногенеза на фоне изменяющегося содержания элементов в различных средах являются их соотношения (Рихванов и др., 2007; Юсупов и др., 2019).

Использование соотношений элементов нашло широкое применение в геохимических и литолого-геохимических исследованиях. В отношении их индикаторной роли в эко-геохимических исследованиях стоит подчеркнуть следующее:

– Th/U в объектах живой природы, составляющее более 3.5 характеризует воздействие преимущественно природных факторов, а низкие значение, как правило, предприятий ядерно-топливного цикла (Рихванов и др., 2007);

– La/Се в ряде природных компонентов варьирует в узких пределах и в среднем составляет 0.6 (Рихванов и др., 2007). Изменение данного отношения характерно для зон нефте-газопереработки (Шахова и др., 2018).

Для индикации техногенного загрязнения нами использованы величины отношения радиоактивных (Th/U) и редкоземельных элементов (La/Ce) (рис. 6а, 6б). На территории России соотношение Th/U в исследуемых водных растениях варьирует в широких пределах, от 0.02 (с. Нижняя Вязовка) до 21 (г. Курган), среднее арифметическое составляет 2, а медианное – 0.8. Максимальные концентрации Th (1.8 мг/кг) и U (1 мг/кг) обнаружены в рясковых г. Хабаровск. Также аномальными концентрациями урана характеризуются макрофиты нефтедобывающего района, г. Нефтеюганск, и составляет 4.6 мг/кг.

Мы предполагаем, что выявленная на территории г. Хабаровска специфика концентрирования обусловлена ее металогенетическими особенностями. что отмечается некоторыми исследователями (Коковкин, 2013), но при этом исследуемый регион насчитывает около 100 радиационных объектов (организации, осуществляющие деятельность с открытыми радиоактивными веществами, воинские части и т.д.), являющихся потенциальными источниками поступления радиоактивных элементов в окружающую среду. Поэтому не исключен и техногенный источник полученного соотношения (Th/U = 1.8). Такая величина вполне соответствует критерию техногенности Л.П. Рихванова, связанного с предприятиями ЯТЦ (см. выше).

Стоит отметить, что рясковые водоемов высоко урбанизированных городов (Калининграда, Санкт-Петербурга, Волгограда, Барнаула, Красноярска, Хабаровска) характеризуются Th/U больше 1, а также содержанием данных элементов выше средних значений.

Повышенными концентрациями отдельных радиоактивных элементов, например, тория, характеризуются макрофиты городов Юрга (Th = 1 мг/кг; K_{κ} (Th) = 6), Томск (Th = 0.9 мг/кг; K_{κ} (Th) = 5), Ставрополь (Th = 0.8 мг/кг; K_{κ} (Th) = 5), п. Колывань (Th = 0.6 мг/кг; K_{κ} (Th) = 3), а урановой – городов Улан-Удэ (U = 0.7 мг/кг; K_{κ} (U) = 5), Волгоград (U = 0.8 мг/кг; K_{κ} (U) = 6) и Красноярск (U =

Рис. 6. (а) Соотношение Th/U в растениях семейства рясковые (сухое вещество) урбанизированных территорий России, (б) Соотношение La/Ce в растениях семейства рясковые (сухое вещество) урбанизированных территорий России: Условные обозначения представлены на рис. 1.

= 0.8 мг/кг; $K_{\kappa}(U) = 6$), для которого схожая ситуация концентрирования радиоактивных элементов была обнаружена и для листьев тополя (Юсупов, 2019).

La/Ce отношение в исследуемых макрофитах варьирует в узких пределах от 0.3 до 0.5. Содержание Се в рясковых исследуемых населенных пунктов всегда больше, чем La, за исключением рясковых из оз. Песчаное с. Тимирязево (Томская область), где La/Ce в растениях составляет 1.2. Преобладание лантана в растениях семейства рясковых данного объекта наблюдается на фоне преобладания церия в воде озера. Воды оз. Песчаное относятся к пресным с малой минерализацией, гидрокарбонатным кальциевого состава. Полученные данные могут свидетельствовать о том, что элементный состав растений не зависит от типа вод, где они произрастали, несмотря на имеющуюся информацию многих авторов о том, что вода является основным источником поступления элементов в исследуемые растения через корневую систему (Landolt, Kandeler, 1987; Bocuk et al., 2013; Sasmaz et al., 2016). Можно предположить, что

полученные нами результаты не исключают высокую долю влияния терригенной составляющей, сорбцию пыли фитомассой.

ЗАКЛЮЧЕНИЕ

В результате проведенных исследований впервые было определено среднее содержание 28 химических элементов в водных растениях семейства рясковые (Lemnaceae), произрастающих на урбанизированных территориях России.

Для выявления региональной и локальной специфики элементного состава рясковых, а также определения элементов-индикаторов авторами использованы следующие критерии оценки природной и антропогенной составляющих: сопоставление данных по концентрированию РЗЭ макрофитами, соотношениям Th/U и La/Ce, а также вычисление коэффициентов концентрирования элементов в рясковых относительно средних значений.

По результатам сопоставления данных по содержанию РЗЭ и пространственному распределению некоторых микроэлементов в исследованых макрофитах, Выявлено, что широким спектром элементов, концентрации которых выше средних величин во всей выборке рясковых, характеризуются населенные пункты, отличающиеся высокой степенью урбанизации и техногенным прессингом (гг. Санкт-Петербург, Ставрополь, Хабаровск, Красноярск и Томск), в то время как природная геохимическая специализация территории отражается в водных растениях повышенными содержаниями элементов, поступающих преимущественно с акцессорными минералами (с. Газимурский Завод).

По величине соотношения радиоактивных элементов в растениях высоко урбанизированные города (Калининград, Санкт-Петербург, Волгоград, Барнаул, Красноярск, Хабаровск) характеризуется Th/U в рясковых меньше 3, что свидетельствует о преобладании техногенной составляющей, а также содержанием данных элементов выше средних значений.

La/Ce отношение в макрофите варьирует в узких пределах: от 0.3 до 0.5. Характерно концентрирование рясковыми Се больше, чем La, а также изменение данного соотношения в зависимости от влияния терригенной составляющей.

Определено, что природно — техногенная геохимическая специализация районов отражается в локальном концентрировании редкоземельных элементов и сурьмы ассоциированными видами ряски *Lemna minor*, *L. turionifera* и *Spirodela polyrhiza*, произрастающих в зоне контакта атмосферы с поверхностью водоемов.

Авторы благодарят и выражают особую признательность за рекомендации и незаменимые сове-

ты доктору геол.-минерал. наук, профессору Леониду Петровичу Рихванову и всем, кто бескорыстно помог в сборе материала: Надежде Стрюк (г. Воронеж), Дамиру Робертовичу Каримову (г. Бор), Александру Валерьевичу Тарасову (г. Коломна), Кристине Федосовой (г. Москва), Анастасии Андреевне Зориной (г. Кирово-Чепецк), Дарье Сергеевне Ленисовой (г. Орел), Федору Марушак (г. Москва), Екатерине Алексеевне Монаховой (г. Омск), Николаю Владимировичу Торговкину (г. Якутск), Анастасии Олеговне Сороке и Олегу Витальевичу Сороке (г. Тайшет), Агате Андреевне Шилениной (г. Бийск), Никите Алексеевичу Шангину (г. Санкт-Петербург), Екатерине Евгеньевне Михайловой (г. Екатеринбург), Павлу Сергеевичу Шатиафу (г. Партизанск), Анне Кондратьевой (г. Псков), Евгению Анатольевичу Миханьтьеву (г. Новосибирск), Заурбеку Владимировичу Дзуцеву (г. Владикавказ), Анастасии Георгиевне Воробьевой (г. Владимир), Ольге Валентиновне Мартыновой и ее ученикам (г. Мосальск) и многим другим.

Работа выполнена при частичной поддержке гранта РНФ № 20-64-47021.

СПИСОК ЛИТЕРАТУРЫ

Алексеенко В.А., Алексеенко А.В. (2013) Химические элементы в геохимических системах. Кларки почв селитебных ландшафтов. Ростов н/Д.: Издательство Южного федерального университета, 380 с.

Арбузов С.И., Машенькин В.С., Рыбалко В.И., Судыко А.Ф. (2014) Редкометалльный потенциал углей Северной Азии (Сибирь, российский Дальний Восток, Казахстан, Монголия). *Геология и минерально-сырьевые ресурсы Сибири.* (3), 32-36.

Бруновский Б.К., Кунашева К.Г. (1930) О содержании радия в некоторых растениях. *ДАН СССР*. (20), 537-540.

Павленко Ю.В., Поляков О.А. (2010) Восточно-Забайкальская сурьмяная провинция. Вестник Забайкальского государственного университета. (9), 77-84.

Вернадский В.И., Виноградов А.П. (1931) О химическом элементарном составе рясок как видовом признаке. *ДАН СССР.* (9), 473-476.

Глазовский Н.Ф. (1982) Техногенные потоки веществ в биосфере. Добыча полезных ископаемых и геохимия природных экосистем. М.: Наука, 7-28.

Гула К.Е., Крупская Л.Т., Дербенцева А.М., Волобуева Н.Г. (2012) Использование водных растений в процессе очистки сточных вод золотодобывающих предприятий. *Проблемы региональной экологии*. (5), 144-147. Дайнеко Н.М., Тимофеев С.Ф., Жадько С.В. (2016) Накопление тяжелых металлов прибрежно-водной растительностью водоемов вблизи г. Жлобина Гомельской области Республики Беларусь. Известия Томского политехнического университета. Инжиниринг георесурсов. (5), 124-132.

Ермаков В.В., Петрунина Н.С., Тютиков С.Ф., Данилова В.Н., Хушвахтова С.Д., Дегтярев А.П., Кречетова Е.В. (2015) Концентрирование металлов растениями рода Salix и их значение при выявлении кадмиевых

аномалий. *Геохимия*. (11), 978-978. Ermakov V.V., Petrunina N.S., Tyutikov S.F., Danilova V.N. Khushvakhtova S.D., Degtyarev A.P., Krechetova E.V. (2015) Concen tration of metals by plants of the genus Salix and their implication in detection of cadmium anomalies. *Geochem. Int.* **53**(11), 951-963.

Ермаков В.В., Ковальский Ю.В. (2018) Живое вещество биосферы: масса и химический элементный состав. *Геохимия*. (10), 931-944.

Ermakov V.V., Kovalsky Y.V. (2018) Living Matter of the Biosphere: Mass and Chemical Elemental Composition. *Geochem. Int.* **56**(10), 969-981.

Злобина А.Н., Рихванов Л.П., Барановская Н.В., Фархутдинов И.М., Нанпинг В. (2019) Радиоэкологическая опасность для населения в районах распространения высокорадиоактивных гранитов. Известия Томского политехнического университета. Инжиниринг георесурсов. **330**(3), 111-125.

Иванова А.И., Лазарева Г.А., Кузнецова Н.В. (2018) Оценка качества воды реки Волгуши по макрофитам. Вестник Международного университета природы, общества и человека "Дубна". **39**(2), 9-15.

Капитонова О.А. (2019) Материалы к биологии и экологии рясковых (Lemnaceae) Сибири. *Проблемы ботаники Южной Сибири и Монголии*. **1**(18), 127-131.

Коковкин А.А. (2013) Новейшая структура Сихотэ-Алинского орогена, металлогения Сихотэ-Алинской рудной провинции. *Региональная геология и металлогения.* **53**, 105-113.

Коломиец Н.Э., Туева И.А., Мальцева О.А., Дмитрук С.Е., Калинкина Г.И. (2004) Оценка перспективности некоторых видов лекарственного растительного сырья с точки зрения их экологической чистоты. *Химия растительного сырья.* (4), 25-28.

Колубаева Ю.В. (2015) Химический состав подземных вод зоны активного водообмена территории северной части Колывань-Томской складчатой зоны. Вестник Томского государственного университета. (391), 202-208.

Лапин П.С., Оленченко В.В. (2018) Проявление интрузивных тел в современном рельефе земной поверхности Колывань-Томской складчатой зоны. Интерэкспо Гео-Сибирь. **2**(3), 176-183.

Моисеенко Т.И. (2017) Эволюция биогеохимических циклов в современных условиях антропогенных нагрузок: пределы воздействий. *Геохимия* (10), 841-862. Moiseenko T.I. (2017) Evolution of biogeochemical cycles under anthropogenic loads: Limits impacts. *Geochem. Int.* **55**(10), 841-860.

Поляков Г.В., Изох А.Э., Кривенко А.П. (2006) Платиноносные ультрамафит-мафитовые формации подвижных поясов Центральной и Юго-Восточной Азии. *Геология и геофизика.* **47**(12), 1227-1241.

Рихванов Л.П., Барановская Н.В., Волостнов А.В., Архангельская Т.А., Межибор А.М., Берчук В.В., Иванов А.Ю., Таловская А.В., Шатилова Е.Г., Язиков Е.Г. (2007) Радиоактивные элементы в окружающей среде. Известия Томского политехнического университета. Инжиниринг георесурсов. **311**(1), 128-136.

Рябова В.Н., Васильева В.А. (2009) Восстановление растительности рекультивированных прудов западной

ветви водоподводящей системы г. Петергофа. *Вестник Санкт-Петербургского университета*. **3**(3), 146-157.

Удодов П.А., Паршин П.Н., Левашева Б.М., Лукин А.А., Рассказов Н.М., Копылова Ю.Г., Коробейникова Е.С., Солодовникова Р.С., Фатеев А.Д., Шестаков Б.И. (1971) Гидрогеохимические исследования Колывань-Томской складчатой зоны. Томск: Издательство Томского университета, 284 с.

Уфимцева М.Д. (2015) Закономерности накопления химических элементов высшими растениями и их реакции в аномальных биогеохимических провинциях. *Геохимия*. (5), 450-460.

Шахова Т.С., Таловская А.В., Язиков Е.Г. (2018) Эколого-геохимические особенности снежного покрова (твердой фазы) в районах размещения нефтеперерабатывающих заводов (г. Омск, Ачинск, Павлодар). Вопросы естествознания. **4**, 125-130.

Юсупов Д.В., Рихванов Л.П., Судыко А.Ф., Барановская Н.В., Дорохова Л.А. Радиоактивные элементы (торий, уран) в листьях тополя на урбанизированных территориях и их индикаторная роль. *Разведка и охрана недр.* (2), 61-68.

Янченко О.М., Ворошилов В.Г., Тимкин Т.В., Мартыненко И.В., Мансур З. (2019) Морфология и состав золота кор выветривания Томь-Яйского междуречья. Известия Томского политехнического университета. Инжиниринг георесурсов. 330(3), 84-92.

Basiglini E., Pintore M., Forni C. (2018) Effects of treated industrial wastewaters and temperatures on growth and enzymatic activities of duckweed (Lemna minor L.). *Ecotoxicology and environmental safety.* **153**, 54-59.

Bocuk H., Yakar A., Turker O.C. (2013) Assessment of Lemna gibba L. (duckweed) as a potential ecological indicator for contaminated aquatic ecosystem by boron mine effluent. *Ecological indicators*. 29, 538-548.

Borisjukl N., Peterson A.A., Lv J., Qu G., Luo Q., Shi L., Chen G., Kishchenko O., Zhou Y., Shi J. (2018). Structural and biochemical properties of duckweed surface cuticle. *Frontiers in chemistry.* **6**, 317-324.

Ceschin S., Crescenzi M., Iannelli M.A. (2020) Phytoremediation potential of the duckweeds Lemna minuta and Lemna minor to remove nutrients from treated waters. *Environmental Science and Pollution Research.* **27**, 1-9.

Chytry M., Sumberova K., Hajkova P., Hajek M., Hroudova Z., Navratilova J. (2011). *Vegetace České republiky 3. Vodní a mokřadní vegetace*. Praha: Academia, 827 p.

Ekperusi A.O., Sikoki F.D., Nwachukwu E.O. (2019) Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. *Chemosphere.* **223**, 285-309.

Farias D.R., Hurd C.L., Eriksen R.S., Macleod C.K. (2018). Macrophytes as bioindicators of heavy metal pollution in estuarine and coastal environments. *Marine Pollution Bulletin.* **128**, 175-184.

Landolt E., Kandeler R. (1987) Biosystematic investigations in the family of duckweeds (Lemnaceae), Vol. 4: the family of Lemnaceae-a monographic study, Vol. 2 (phytochemistry, physiology, application, bibliography). Veroeffentlichungen des Geobotanischen Instituts der ETH, Stiftung Ruebel (Switzerland), 317 p.

Mkandawire M., Teixeira J.A., Dudel E.G. (2014) The Lemna bioassay: contemporary issues as the most standardized plant bioassay for aquatic ecotoxicology. *Critical Reviews in Environmental Science and Technology*. **44**(2), 154-197.

Prasad M.N., Greger M., Aravind P. (2005) Biogeochemical cycling of trace elements by aquatic and wetland plants: relevance to phytoremediation. Trace elements in the environment, 469-500.

Rofkar J.R., Dwyer D.F., Bobak D.M. (2014) Uptake and toxicity of arsenic, copper, and silicon in Azolla caroliniana and Lemna minor. *International J. phytoremediation*. **16**(2), 155-166.

Oyedeji S., Fatoba P.O., Ogunkunle C.O., Akanbi G.M. (2013) Water hyacinth and duckweed as indicator of heavy metal pollution in River Asa. *J. Ind. Pollut. Control.* **29**(2), 155-162.

Sasmaz M., Obek E., Sasmaz A. (2016) Bioaccumulation of uranium and thorium by Lemna minor and Lemna gibba in

Pb–Zn–Ag tailing water. Bulletin of environmental contamination and toxicology. 97(6), 832-837.

Sasmaz M., Obek E., Sasmaz A. (2018) The accumulation of La, Ce and Y by Lemna minor and Lemna gibba in the Keban gallery water, E lazig T urkey. *Water and Environment J.* 32(1), 75-83.

Teles C.C., Mohedano R.A., Tonon G., Belli Filho P., Costa R.H.R. (2017) Ecology of duckweed ponds used for wastewater treatment. *Water Sci. Technol.* **75**(12), 2926-2934.

Varga M., Horvatić J., Čelić A. (2013) Short term exposure of Lemna minor and Lemna gibba to mercury, cadmium and chromium. *Central European J. Biology.* **8**(11), 1083-1093.

Wiegleb G. (1978) Der soziologische konnex der 47 häufigsten makrophyten der gewässer mitteleuropas. *Vegetatio*. **38**(3), 165-174.