УЛК 550.4:552.11

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЙ РЕЖИМ ФОРМИРОВАНИЯ ПОРОД ПРИИСКОВОГО МАССИВА И ЕГО МЕТАЛЛОГЕНИЧЕСКИЕ СЛЕДСТВИЯ (ЮЖНЫЙ СИХОТЭ-АЛИНЬ, ПРИМОРЬЕ, РОССИЯ)

© 2023 г. Е. А. Коновалова^a, *, Ю. В. Талтыкин a , Ю. Ю. Юрченко b , Л. Ф. Мишин a

^аИнститут тектоники и геофизики им. Ю.А. Косыгина ДВО РАН, ул. Ким-Ю-Чена, 65, Хабаровск, 680000, Россия

^bВсероссийский научно-исследовательский геологический институт им. А.П. Карпинского, Средний проспект, 74, Санкт-Петербург, 199106, Россия

*E-mail: ekaterinaandreevna.mail@gmail.com

Поступила в редакцию 15.07.2022 г. После доработки 15.02.2023 г. Принята к публикации 20.02.2023 г.

По циркону Приискового массива U-Pb методом (SHRIMP-II) установлен близкий сеноманский возраст амфиболовых гранодиоритов магнетитовой и ильменитовой серий (96.91 \pm 0.88 и 96.5 \pm 1.2 млн лет). На основании комплекса признаков (замеры магнитной восприимчивости, содержание магнитной фракции, состав темноцветных и магнитных минералов, содержание Fe^{2+} и Fe^{3+}) установлены существенные различия магнитных характеристик одновозрастных интрузивных пород. Среди относительно однородной центральной ильменитовой зоны Сихотэ-Алиньского орогенного пояса локальное появление магнетитовых пород Приискового массива объясняет распределение месторождений и рудопроявлений изученного узла. Все месторождения и рудопроявления олова в границах Приискового массива находятся в зоне распространения пород ильменитовой серии (восстановительные условия), а месторождения и россыпи золота и проявления полиметаллической минерализации — в зоне пород магнетитовой серии (окислительные условия).

Ключевые слова: ильменитовая серия, магнетитовая серия, Приисковый массив, редокс-условия **DOI:** 10.31857/S0016777023030012, **EDN:** TXUEZU

ВВЕДЕНИЕ

Окислительно-восстановительные условия являются определяющими в изменении степени окисления элементов и, следовательно, в их поведении в геохимических процессах (Борисов и др., 1991; Мишин и др., 1988; Мишин, Петухова, 1990; Мишин, 1994; Rollinson, 2013). Сихотэ-Алиньский орогенный пояс (САОП) протяженностью 1350 км и шириной 200-250 км сложен интрузивными и вулканогенными породами различного формационного состава с возрастом от раннего мела по кайнозой включительно. Осевую зону САОП протяженностью 900 км и шириной 150-200 км слагают слабомагнитные магматические породы, сформировавшиеся в восстановительных условиях (ильменитовая серия - ИС), характерными признаками которой являются высокая железистость темноцветных минералов, низкое содержание рудного минерала, представленного

чаще ильменитом (
$$\frac{\text{FeO}}{\text{FeO} + \text{TiO}_2}$$
 < 0.61) и реже маг-

нетитом $(\frac{\text{FeO}}{\text{FeO} + \text{TiO}_2} > 0.74)$ и, как следствие этого, с низкими показателями магнитной восприимчивости до 0.5×10^{-3} ед. СИ (фиг. 1) (Мишин и др., 2020). В зону распространения пород ильменитовой серии полностью вписывается ареал распространения проявлений и месторождений олова и сопутствующего олову вольфрама (фиг. 2). С востока и запада ильменитовые породы САОП обрамляются породами магнетитовой серии, сформировавшимися в окислительных условиях. С ними тесно связаны эпитермальные золото-серебряные месторождения и проявления, а также медно-порфировые и реже — молибденовые и полиметаллические.

Районы распространения пород ильменитовой и магнетитовой серий отчетливо различаются по формационному составу гидротермально измененных пород. В зоне распространения пород ильменитовой серии отмечается более высокотемпературный состав гидротермальных минералов, а распространение метасоматических образований формации вторичных кварцитов и пло-

щадная цеолитизация — исключительная принадлежность пород магнетитовой серии (Мишин, Бердников, 2010) (фиг. 2).

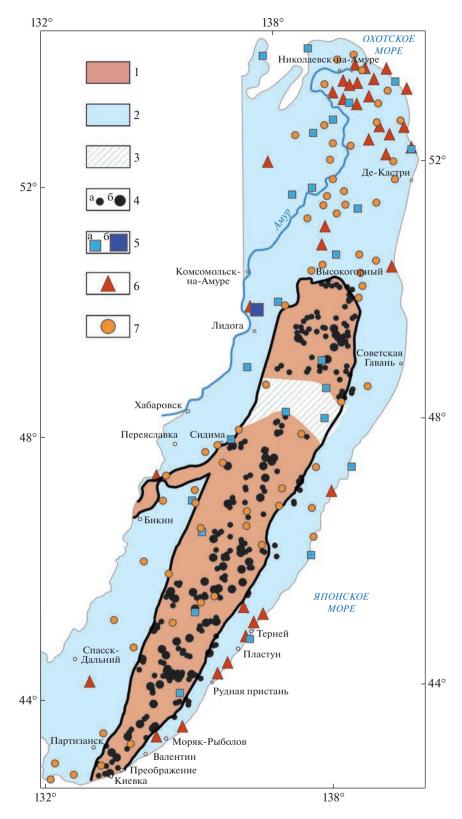
Интрузивные тела и покровы вулканических пород, расположенные в зоне перехода от ильменитовой серии к магнетитовой, как правило, имеют зональное строение с сочетанием в одном теле пород магнетитовой и ильменитовой серий. Типичными примерами таких массивов являются Аксакинский и Южный Сидиминский гранитоидные плутоны (Мишин и др., 2020).

Приисковый интрузив является своеобразной аномалией. Имея зональное строение и ограниченные размеры, он расположен внутри обширной региональной зоны, в которой большинство магматических пород относятся к ильменитовой серии. Приисковый массив достаточно хорошо изучен, имеются полное петрографическое, геохимическое и геохронологическое обоснование его гетерогенности (Изох и др., 1957; Стрижкова 1980; Родионов, 2005; Гоневчук и др., 2015; Сахно, 2016; Крук и др., 2019). Массив площадью около 200 км² расположен в правом борту р. Большая Уссурка к северу от с. Мельничное. В геологоструктурном плане массив представляет собой выходы меловых гранитоидов ольгинского и татибинского плутонических комплексов (Комплект цифровых..., 2020). В пределах массива и вмещающих его пород зафиксированы проявления гидротермально-измененных пород, проявления и пункты минерализации вольфрама, олова, свинца, молибдена. Рудоконтролирующую и рудогенерирующую роль массива также подчеркивают многочисленные россыпи золота, приуроченные к водотокам, дренирующим массив в его южной половине (Комплект цифровых..., 2020).

Отнесение гранитоидных массивов к магнетитовой (окислительные условия формирования) и ильменитовой (восстановительные условия формирования) сериям (Ishihara, 2004; Мишин и др., 2020) является одним из важных металлогениче-

ских критериев, в особенности при прогнозировании оловянного и золото-медно-молибденпорфирового оруденения (Петров и др., 2019, 2020а, 2020б и др.).

МЕТОДЫ ИССЛЕДОВАНИЯ


В ходе полевых работ были опробованы породы Приискового массива, проведены детальные маршруты с замерами магнитной восприимчивости (MS) с помощью каппаметра КТ-5 через 2—50 м в коренных выходах вдоль лесовозных дорог и в бортах рек, секущих массив (1-я Щедринка, 3-я Щедринка, Большая Уссурка). Для всех проб были изготовлены петрографические шлифы, определен минеральный и химический состав.

В аналитическом центре ИТиГ ДВО РАН получены результаты РФА (S4 Pioneer фирмы Bruker, Германия – аналитики И.А. Астапов, В.О. Крутикова, Л.М. Ильин), ИСП-МС анализов (ICP-MS Elan 9000 (Канада) – аналитики В.О. Крутикова, А.В. Штарева, В.Е. Зазулина, А.Ю. Петрова). Для наиболее представительных проб определены химическим методом содержания окисного и закисного железа (Fe³⁺ определялось трилонометрическим методом. Fe²⁺ – бихроматным методом, аналитик В.Е. Зазулина). Проанализирован состав темноцветных и рудных минералов, отобранных под бинокуляром (растровый электронный микроскоп VEGA 3 LMN (TESCAN, Чехия), энергодисперсионный спектрометр X-Max 80 (Oxford Instruments, Великобритания). Фотографирование образцов и поиск микровключений велся в режиме обратно рассеянных электронов (BSE – детектор), аналитик – Крутикова). Минералогическим магнитом B.O. А.Я. Сочнева из дробленой породы размером 0.25— 0.5 мм выделялась магнитная фракция, рассчитывалось ее процентное содержание в породе.

Работы по определению радиологического возраста гранодиоритов Приискового массива выполнялись на ионном микроанализаторе

Фиг. 1. Схема распространения магматических пород ильменитовой и магнетитовой серии в САОП на основе (Grebennikov et al., 2016) с добавлениями авторов.

^{1 —} Ранние палеозойские континентальные блоки: BR — Буреинский, KHN — Ханкайский; 2 — палеозойские окраинно-континентальные террейны, надвинутые на юрские аккреционные призмы; 3 — террейны юрской аккреционной призмы, содержащие фрагменты палеозойских офиолитов, кремнистых сланцев, известняков и триасовых кремнистых сланцев: SM — Самаркинский, NB — Наданьхада-Бикинский, KHB — Хабаровский; 4 — террейн среднемеловой аккреционной призмы, содержащий фрагменты юрских базальтов, кремнистых сланцев и пород раннемеловой островной дуги; 5 — террейн раннемеловой (неоком) аккреционной призмы, содержащий фрагменты девонско-триасовых известняков, базальтов и позднепалеозойских и триасово-юрских кремнистых сланцев и аргиллитов: TU — Таухинский; 6 — террейн раннемелового турбидитового бассейна: ZH — Журавлевско-Амурский; 7 — раннемеловая островная дуга: КМ — Кемская; 8 — палеогеновые гранитоиды (а) и вулканические породы (б); 9 — поздний альб — раннесеноманские гранитоиды (а) и вулканические породы (б); 12 — готерив-аптские гранитоиды; 13 — Центральный Сихотэ-Алиньский разлом; 14 — граница распространения пород магнетитовой (МС) и ильменитовой (ИС) серий, выделенная по комплексу признаков (а) и по соотношению Fe₂O₃/(Fe₂O₃+FeO) (б) (Мишин и др., 2003); 15 — интрузивы, на которых задокументирована зона перехода ильменитовой серии к магнетитовой; 16 — Приисковый массив.

Фиг. 2. Схема распределения магматических пород магнетитовой и ильменитовой серий в САОП с элементами металлогении на основе (Мишин и др., 2020; Минина и др., 2019) с добавлениями авторов.

1 — магматические породы ильменитовой серии; 2 — магматические породы магнетитовой серии; 3 — область с промежуточными характеристиками окислительных условий (?) с медно-порфировыми и Au—Ag рудопроявлениями; 4 — проявления (а) и месторождения (б) Sn, и Sn—W; 5 — (молибден)-медно-порфировые рудопроявления (а), месторождения (б) (Минина и др., 2019); 6 — залежи высокоглиноземистых вторичных кварцитов; 7 — месторождения и рудопроявления золота.

SHRIMP-II в ЦИИ ФГУП "ВСЕГЕИ" U-Рь методом изотопного датирования по акцессорному циркону, а также использовались многочисленные определения возраста из опубликованных работ (Сахно и др., 2016; Гоневчук и др., 2015; Родионов, 2005; Крук и др., 2019)

Информация о полезных ископаемых снималась с карты полезных ископаемых масштаба 1:200000 (Комплект цифровых..., 2020). Информация о магнитных аномалиях — с карты аномального магнитного поля масштаба 1:500000 (Комплект цифровых..., 2020).

Разделение гранитоидов на магнетитовую и ильменитовую серию проводилось по комплексу признаков, описанных в работах (Мишин и др., 2020; Мишин и др., 2022) (фиг. 3а). За границу между магнетитовой и ильменитовой сериями по магнитной восприимчивости (MS) бралось значение 0.5×10^{-3} ед. СИ (фиг. 3б).

По коэффициенту окисленности железа, вычисленному по формуле

$$f = \frac{\text{Fe}_2\text{O}_3}{\text{Fe}_2\text{O}_3 + \text{FeO}} + 0.38 - \frac{\text{SiO}_2}{200}$$

(Мишин, 1994), разделение между сериями проходит по значению 0.3.

Границы между магнетитовой и ильменитовой сериями интрузивных пород САОП по магнитной восприимчивости и коэффициенту окисленности железа коррелируют между собой (фиг. 3в), а граница по магнитной восприимчивости совпадает с данными из работы (Hart et al., 2004) (фиг. 4).

ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ И МЕТАЛЛОГЕНИЯ ПРИИСКОВОГО МАССИВА

Приисковый массив вытянут в субширотном направлении и имеет лакколитоподобную форму (Изох и др., 1957). Южная часть его (140 км 2) сложена татибинским монцонит-диорит-гранитным комплексом альб-сеномана. На севере (60 км 2) это ольгинский гранитный комплекс (сантонкампан) (фиг. 5), который имеет рвущие контакты с вмещающими терригенными породами валанжин-готерива и гранодиоритами татибинского комплекса (табл. 1, табл. 2). С последними граница большей частью тектоническая по широтному разлому. В экзоконтактах развиты кордиеритовые и биотитовые роговики (ширина ареала -1-2.5 км) и грейзенизированные породы. В отдельных случаях граниты на контакте с терригенными породами обогащены биотитом с шириной обогащенных зон до 1 м. Местами гранитоиды ольгинского комплекса прорываются дайками диорит-порфиров и спессартитов дальнегорского диорит-гранодиорит-гранитного комплекса маастрихта (Комплект цифровых..., 2020).

Гранодиориты южной части массива имеют следующий минеральный состав: плагиоклаз (47.5%), роговая обманка (8.1%), биотит (7.7%), калишпат (16.7%), кварц (19.9%).

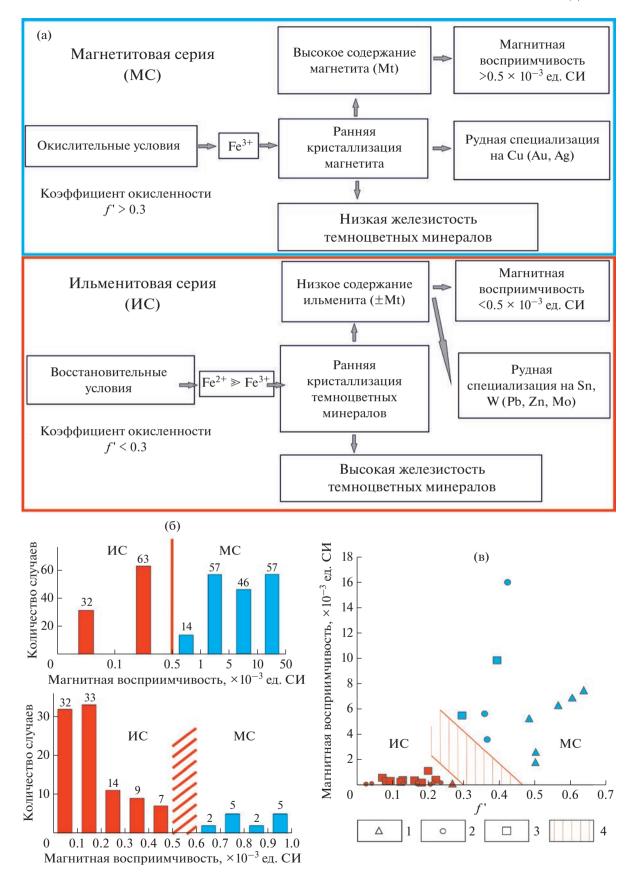
В гранитах северной части калишпат (33.6%) и кварц (34.8%) преобладают над плагиоклазом (27.4%) и биотитом (4.2%) (Стрижкова, 1980).

По опубликованным данным, возраст пород Приискового массива составляет:

- гранодиориты 105 ± 2 млн лет, U-Pb метод по циркону (SHRIMP-II) (Сахно и др., 2016); 97 \pm 2 млн лет (K-Ar по биотиту), 100.5 ± 3 млн лет (K-Ar по паре биотит—амфибол, по амфиболу), 81.1 ± 1.9 млн лет (K-Ar по паре биотит—амфибол, по биотиту) (Гоневчук и др., 2015); 84 ± 1.9 млн лет, Rb/Sr (Родионов, 2005);
- граниты северной части 80-85 млн лет (Крук и др., 2019); 80.8 ± 1.9 млн лет, K-Ar по биотиту (Гоневчук и др., 2015).

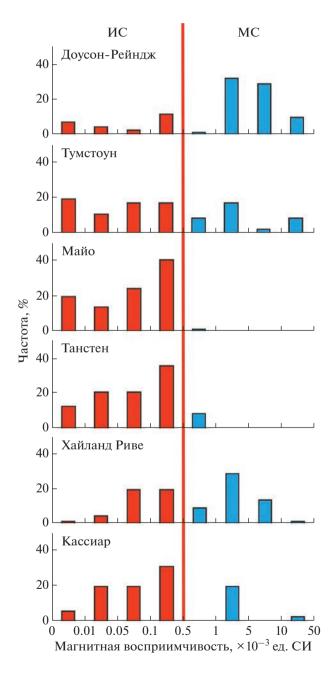
По циркону из гранодиоритов Приискового массива U-Pb методом (SHRIMP-II) получены оценки возраста 96.5 ± 1.2 млн лет (проба EK-2157) и 96.91 ± 0.88 млн лет (проба EK-2159).

В металлогеническом плане Приисковый массив приурочен к сочленению Забытого вольфрамово-оловорудного и Благодатненского золоторудно-россыпного узлов.

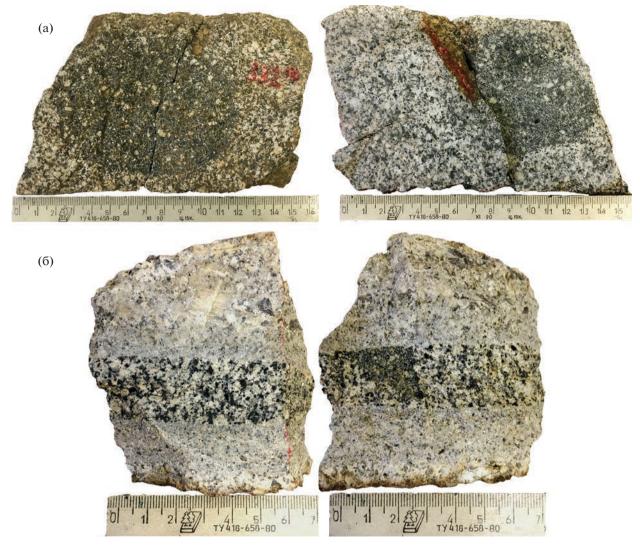

Ниже перечислены рудные объекты, проявленные вблизи Приискового массива (Комплект карт..., 2020), представляющие интерес для выделения зон окислительно-восстановительных условий формирования магматических пород.

На рассматриваемой территории (см. фиг. 9) находится 6 месторождений олова (Рудное, Забытое, Дерсу, руч. Конечный Лог, Туенгу, Средне-Микулинское, Зимнее) и 2 месторождения золота (Благодатненское, Глухое). Все перечисленные месторождения олова, за исключением руч. Конечный Лог — коренные, месторождение Зимнее относится по запасам руд к средней категории. Благодатненское месторождение относится к золоторудной малосульфидной формации, а Глухое — к золотоносной черносланцевой формации.

Кроме коренной золоторудной минерализации, в пределах массива проявлены многочисленные россыпи золота, приуроченные к водотокам, дренирующим южный фланг Приискового массива на участках распространения монцонитоидов магнетитовой серии.


ПЕТРОМАГНИТНАЯ ХАРАКТЕРИСТИКА ПОРОД ПРИИСКОВОГО МАССИВА: СВЯЗЬ С ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫМИ УСЛОВИЯМИ

При кристаллизации магматических пород в окислительных условиях железо находится пре-



Фиг. 3. Основные параметры для выделения магнетитовой и ильменитовой серий среди кислых и основных магматических пород.

а — влияние окислительно-восстановительных условий на состав, последовательность кристаллизации рудных и темноцветных минералов и металлогеническую специализацию магматических пород; б — выделение магнетитовой и ильменитовой серий по магнитной восприимчивости на примере магматических пород САОП; в — коэффициент окисленности железа в гранитоидных массивах Сихотэ-Алиньского орогенного пояса, расположенных в зоне перехода ильменитовая—магнетитовая серии. Массивы: Аксакинский (1), Южный Сидимийский (2), Приисковый (3); 4 — граница между ильменитовой и магнетитовой сериями.

Фиг. 4. Гистограммы распределения магнитной восприимчивости в плутонических породах Юкона (Hart et al., 2004) с добавлениями.

Фиг. 5. а — мафическое включение среди среднезернистого кварцевого монцонита из южной части Приискового массива (проба K-332a); б — кварцевый монцонит с мафическим включением среди крупнозернистых лейкократовых биотитовых гранитов северной части Приискового массива (проба K-334a, б).

имущественно в менее подвижной трехвалентной форме, и поэтому на ликвидусе происходит кристаллизация весовых содержаний магнетита, в результате остаточный расплав обедняется железом, а кристаллизующиеся после магнетита темноцветные породообразующие минералы отличаются относительным дефицитом железа (Мишин, Романовский, 1992; Печерский, 1964; Ishihara, 1977). Магматические породы в таком случае принято называть магнетитовыми. При полевом определении с использованием каппаметра магнетитовые и ильменитовые породы разделяются по значению магнитной восприимчивости (MS) 0.5 × 10⁻³ ед. СИ (Мишин и др., 2020; Hart et al., 2004).

Измерения магнитной восприимчивости в полевых условиях позволили построить поперечные профили распространения пород магнетитовой и ильменитовой серии в Приисковом массиве вдоль бортов р. 1-я и 3-я Щедринка. Общее количество замеров — 270, из них 64 больше 0.5×10^{-3} ед. СИ, а 206 — меньше.

При пересечении границы массива вдоль борта р. Третья Щедринка поле ороговикованных алевролитов сменяется коренными выходами ильменитовых амфиболовых гранодиоритов. Замеры магнитной восприимчивости в коренных выходах сделаны на протяжении $2500\,\mathrm{m}$, все замеры меньше $0.5\times10^{-3}\,\mathrm{eg}$. СИ.

Вдоль борта р. Первая Щедринка замеры ${\bf MS}$ были сделаны на протяжении 3000 м от границы с вмещающими ороговикованными породами. На протяжении 2100 м маршрута измерения магнитной восприимчивости в коренных выходах были меньше 0.5×10^{-3} ед. СИ (ильменитовая серия). Далее по маршруту через распадок по замерам ${\bf MS}$ начинается магнетитовая серия.

Таблица 1. Содержания петрогенных (мас. %) элементов в представительных пробах гранитоидов Приискового массива с раздельным определением Fe_2O_3 и FeO.

	№ проб	f'	Серия	SiO ₂	TiO ₂	Al_2O_3	Fe_2O_3	FeO	MnO	CaO	MgO	Na ₂ O	K ₂ O	P_2O_5	H ₂ O+	H ₂ O-	ппп
1	ЦП-722	0.015	ИС	74.91	0.05	13.73	0.01	1.06	0.03	1.04	0.08	3.58	4.91	0.03	0.00	0.14	0.43
2	ЦП-721/1	0.023	ИС	73.63	0.05	14.36	0.01	0.89	0.02	0.86	0.06	3.79	5.63	0.02	0.00	0.16	0.50
3	C-4037	0.075	ИС	74.37	0.29	12.96	0.17	2.37	0.04	1.12	0.51	3.48	4.55	0.00	0.00	0.00	0.14
4	C-4039	0.146	ИС	73.62	0.29	13.29	0.37	2.38	0.06	0.98	0.61	3.66	4.42	0.00	0.00	0.30	0.00
5	K-5121	0.183	ИС	62.85	0.66	16.04	0.62	4.67	0.12	4.77	2.67	3.88	2.60	0.26	0.73	0.14	0.00
6	C-4040	0.243	ИС	62.17	0.86	16.63	0.95	4.53	0.02	5.30	2.92	3.79	2.44	0.00	0.00	0.00	0.40
7	529a	0.299	ИС	62.29	0.52	15.50	1.33	4.42	0.13	4.47	3.94	3.03	2.97	0.00	0.20	0.00	1.20
8	ЦП-549/1	0.348	MC	69.09	0.31	14.52	1.06	2.33	0.08	3.78	1.48	3.54	2.67	0.16	0.00	0.89	0.08
9	548	0.378	MC	65.32	0.53	15.40	1.56	3.25	0.10	4.21	2.35	3.52	2.74	0.15	0.00	н.о.	0.87
10	ЦП-549/2	0.411	MC	67.78	0.33	15.42	1.33	2.26	0.08	3.86	1.66	3.45	2.76	0.18	0.00	0.81	0.08
11	270и	0.417	MC	72.02	0.14	14.96	0.89	1.35	0.08	1.37	0.08	3.66	4.12	0.00	0.33	0.00	1.01
12	571a	0.451	MC	74.07	0.01	14.80	0.34	0.43	0.03	1.26	0.40	3.49	4.47	0.00	0.21	0.00	0.51
13	258	0.455	MC	72.61	0.31	14.01	0.99	1.27	0.03	1.40	0.71	3.96	4.25	0.00	0.00	0.48	0.00
14	ЦП-723	0.468	MC	65.46	0.38	15.00	1.66	2.34	0.08	4.47	2.04	3.57	2.86	0.21	0.00	1.78	0.14
15	549	0.49	MC	75.73	0.12	12.17	1.33	1.39	0.03	1.13	0.11	2.70	4.79	н.о.	0.00	н.о.	0.51
16	1548	0.497	MC	75.37	0.04	13.29	0.84	0.86	0.04	0.44	н.о.	2.90	4.88	н.о.	0.00	0.38	0.96
17	722	0.536	MC	74.68	0.10	12.74	1.61	1.43	0.04	0.92	0.33	3.20	4.35	0.01	0.00	0.12	0.48
18	723	0.593	MC	65.50	0.52	15.09	2.85	2.42	0.09	3.80	2.07	3.49	2.93	0.15	0.00	0.12	0.98
19	308д	0.607	MC	72.68	0.02	16.77	0.59	0.41	0.05	1.14	0.12	3.38	4.45	0.00	0.16	0.00	0.22

Примечание. 1—3 — диориты, 4—8 — гранодиориты, 9—19 граниты: 9 — крупнозернистый биотитовый гранит, слегка порфировидный, правый берег р. Куала, близ контакта с вмещающими породами; 11 — мелкозернистый биотитовый гранит из дайки, секущей порфировидные биотитовые граниты, верховья р. Б. Ямутинза; 14 — резко порфировидный биотитовый гранит, верховья р. Б. Ямутинза; 13, 16—19 — лейкогранит. 1, 3, 10, 12, 15 — Стрижкова, 1980; 2, 9, 11, 14 — Изох и др., 1957; 4—8, 13, 16—19 — ГГК, 2020. ИС — ильменитовая серия, МС — магнетитовая серия.

При лабораторном определении индикаторами окислительно-восстановительных условий являются: соотношение в магматических породах двух- и трехвалентного железа (коэффициент окисленности с размерностью от 0 до 1), состав рудного минерала (магнетит—ильменит), процентное содержание магнитной фракции, магнитная восприимчивость пород, железистость породообразующих темноцветных минералов (биотит и роговая обманка) (Мишин и др., 2020).

Коэффициент окисленности в амфиболовых гранодиоритах Приискового массива четко показывает разделение этих пород на магнетитовые (окисленные) и ильменитовые (восстановленные) (Мишин и др., 2020) и положительно коррелирует с замерами магнитной восприимчивости (фиг. 3в).

Рудный минерал представлен магнетитом (FeO -100%) и ильменитом (близкое содержание FeO и TiO₂). Содержание магнитной фракции соответствует полученным замерам магнитной восприимчивости в образцах (фиг. 6), а железистость биотитов растет с уменьшением содержания магнитной фракции в породе (фиг. 7).

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ УСЛОВИЯ ФОРМИРОВАНИЯ ПРИИСКОВОГО МАССИВА

По опубликованным данным (Стрижкова, 1980; Изох и др., 1957; ГГК..., 2020; Крук и др., 2019; табл. 1), среди гранитов северной части Приискового массива наряду с ильменитовыми, присутствуют и магнетитовые образцы.

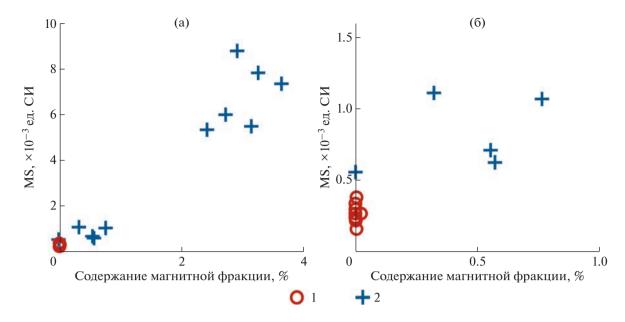
Геологическая карта Приискового массива с выделением зон распространения пород магнетитовой и ильменитовой серий (карта окислительно-восстановительных условий формирования Приискового массива) (фиг. 8) построена с учетом полученных геохимических данных и профильных замеров магнитной восприимчивости в ходе полевых работ. Там, где авторских данных для проведения границы было недостаточно, использовалась карта аномалий магнитного поля масштаба 1:500000 (Комплект цифровых..., 2020).

Граница распространения пород, сформировавшихся в разных окислительно-восстановительных условиях, не соответствует распределению петрографических разностей. Зона распространения пород магнетитовой серии, образовавшихся в

Таблица 2. Содержания петрогенных (мас. %) элементов в представительных пробах гранитоидов Приискового массива с суммарным определением Fe_2O_3 и $FeO-Fe_2O_3^*$.

J	№ проб	МS, ×10 ⁻³ ед. СИ	Серия	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃ *	MnO	CaO	MgO	Na ₂ O	K ₂ O	P ₂ O ₅	ппп
1	K-331-3	_	_	54.88	0.80	15.91	9.26	0.15	4.36	3.24	4.58	4.42	0.23	2.16
2	K-334a	_	_	64.13	0.50	15.48	5.24	0.12	3.70	2.35	5.69	1.67	0.16	0.96
3	K-336	0.16	ИС	62.01	0.66	18.96	5.13	0.09	1.62	1.98	3.93	3.99	0.13	1.50
4	K-389	0.22	ИС	64.38	0.57	14.88	4.95	0.10	4.68	3.29	3.88	2.38	0.18	0.71
5	K-331-1	0.24	ИС	62.10	0.55	16.14	5.18	0.10	3.87	2.52	5.54	2.70	0.18	1.12
6	K-392	0.26	ИС	61.82	0.53	15.97	3.37	0.10	5.03	2.39	3.36	6.76	0.23	0.45
7	K-332a-2	0.27	ИС	63.50	0.54	14.86	5.47	0.11	3.80	2.94	4.58	2.79	0.21	1.20
8	K-335	0.30	ИС	61.16	0.53	18.74	5.05	0.10	3.88	2.16	4.07	2.80	0.18	1.34
9	K-336-1	0.33	ИС	64.29	0.64	15.89	5.08	0.09	1.79	2.18	5.25	3.46	0.13	1.18
10	K-332-2	0.34	ИС	51.35	0.92	17.20	10.45	0.16	7.63	4.33	4.94	1.84	0.28	0.90
11	EK-2157	0.34	ИС	63.46	0.60	14.77	5.40	0.11	5.00	3.12	3.77	2.84	0.17	0.76
12	K-332a-1	0.37	ИС	56.62	0.75	14.49	9.00	0.19	5.02	4.75	4.98	2.69	0.18	1.34
13	K-332	0.38	ИС	54.60	0.80	17.17	8.84	0.16	6.77	3.76	5.64	1.26	0.21	0.80
14	K-331	0.55	MC	62.03	0.55	16.29	5.24	0.10	4.23	2.60	5.01	2.86	0.18	0.90
15	K-391	0.62	MC	61.33	1.02	11.79	8.80	0.16	7.94	5.24	1.41	1.43	0.24	0.64
16	K-390	0.70	MC	59.47	0.87	14.46	8.07	0.14	7.84	5.65	1.29	1.07	0.21	0.92
17	K-388	1.06	MC	50.26	1.37	14.48	9.57	0.14	8.03	7.21	4.67	0.97	0.71	2.59
18	К-334б	1.10	MC	74.95	0.07	12.22	1.18	0.03	0.70	0.07	3.79	4.69	0.02	2.27
19	K-396-3	13.00	MC	54.27	0.67	14.13	9.68	0.24	6.77	6.50	4.45	1.26	0.22	1.80
20	K-396	14.10	MC	63.45	0.51	15.93	4.71	0.10	4.96	3.21	4.35	1.47	0.18	1.12
21	EK-2159	2.29	MC	65.07	0.60	14.05	5.48	0.10	4.63	3.14	3.09	3.27	0.15	0.42
22	K-396-2	5.34	MC	53.77	0.70	14.62	8.81	0.25	6.47	7.13	4.99	1.24	0.17	1.85
23	K-329	5.49	MC	61.42	0.59	16.90	4.81	0.10	4.26	2.76	5.33	2.45	0.19	1.20
24	K-333	6.00	MC	60.20	0.58	18.27	5.53	0.12	4.16	2.82	3.93	2.80	0.19	1.40
25	K-330	7.36	MC	61.46	0.57	16.61	4.96	0.10	4.08	3.02	5.29	2.61	0.19	1.12
26	K-236	7.83	MC	63.26	0.57	14.29	5.35	0.11	4.70	3.07	4.83	2.89	0.18	0.76
27	K-236-1	8.80	MC	62.31	0.63	14.11	5.60	0.11	5.01	3.85	4.67	2.69	0.20	0.81

Примечание. 1 — монцо-габбро, 2-5 — монцодиорит, 6-12 — монцонит, 13-14 — диорит, 15 — сиенит, 16-22 — кварцевый монцонит, 23-26 — гранодиорит, 27 — гранит. ИС — ильменитовая серия, МС — магнетитовая серия. Названия пород в табл. 1 и 2 даны в соответствии (Middlemost, 1994).

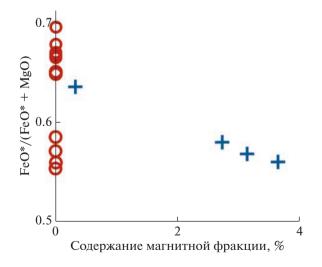

окислительных условиях, занимает южную, западную и частично восточную области амфиболовых гранодиоритов, а также захватывает западный выступ гранитов. Центральная, северная и частично восточная области Приискового массива представлены породами ильменитовой серии, сформированными в восстановительных условиях, как и вся центральная зона САОП.

Гранодиориты южной части массива, отобранные по обе стороны восточной границы распространения пород магнетитовой (обр. ЕК-2159) и ильменитовой (обр. ЕК-2157) серий, имеют одинаковый сеноманский возраст. Это свидетельствует о том, что кристаллизация магматических

пород происходила одновременно в окислительных и восстановительных условиях.

Однако зона локальных окислительных условий вблизи Приискового массива не ограничена выходами магнетитовых гранитоидов. Там, где на дневной поверхности отсутствует магматизм, можно использовать косвенные данные: распределение рудной минерализации и аномалии магнитного поля.

Предположительные границы зоны окислительных условий формирования магматических пород вблизи Приискового массива (фиг. 9) контролируются расположением оловорудных месторождений и рудопроявлений, индикаторных для восстановительных условий формирования



Фиг. 6. Соотношение содержания магнитной фракции и магнитной восприимчивости (**MS**) (а) в гранитоидах Приискового массива, с детализацией от 0 до 1% (б).

1 — ильменитовая серия, 2 — магнетитовая серия.

магматических пород, а также нулевой изолинией с карты аномалий магнитного поля. Построенная на фиг. 8 зона магнетитовых пород Приискового массива расширяется на юго-запад, юг, а в восточном направлении — до золоторудного месторождения Глухое.

Окислительно-восстановительный потенциал (Eh) в литосфере существует не зависимо от магматизма (Рябчиков, 2003), так же, как и летучесть кислорода (fO_2) (Рябчиков, Когарко, 2010). По аналогии с температурным полем, имеющим по-

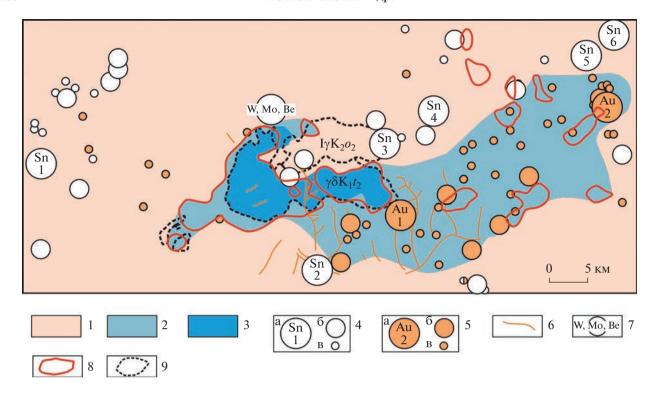


Фиг. 7. Соотношение содержания магнитной фракции и железистости биотитов в гранитоидах Приискового массива. Условные обозначения см. фиг. 6.

ложительное и отрицательное значение относительно температуры замерзания воды, мы вводим понятие окислительного и восстановительного (редокс-) фона относительно буфера FQM, опираясь на исследования редокс-состояния литосферы, обобщенные в работах Кадика, Луканина, Летникова и др., (Кадик, Луканин, 1986; Кадик, 2003; Летников, 2006; Wang et al., 2020; Li et al., 2020; Hong et al., 2020; Foley, 2011; Duan et al., 2022).

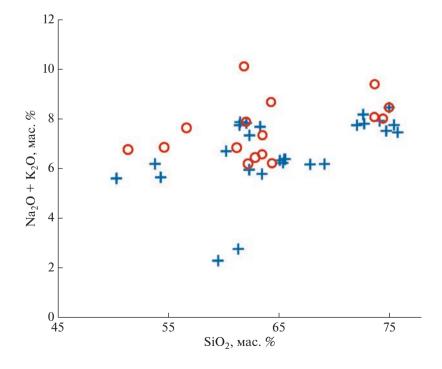
Региональный восстановленный фон в центральной зоне САОП существовал в литосфере региона как минимум с готерива по сеноман, магматизм является его визуализацией (Талтыкин и др., 2020). Локальные окислительные условия кристаллизации при формировании южной части Приискового массива могли возникнуть при взаимодействии магматических флюидов с определенными вмещающими породами. Вопрос о происхождении локальных редокс-условий в САОП пока еще изучен слабо (Талтыкин и др., 2021).

На диаграмме $Na_2O + K_2O - SiO_2$ точки составов пород магнетитовой и ильменитовой серий образуют единый рой (фиг. 10). Минеральный состав магнетитовых и ильменитовых гранитоидов южной части массива также совпадает (фиг. 11). Это еще раз подтверждает выводы Ш. Ишихара (Ishihara, 1977) о том, что разделение на ИС и МС не подразумевает существенных различий в петрографическом составе. Различия есть среди акцессорных минералов: в ильменитовой серии до 0.1% ильменита, а в магнетитовой — от 0.1 до 3% магнетита, а также ильменит (Ishihara, 1977).


Фиг. 8. Геологическая карта Приискового массива с выделением зон распространения пород магнетитовой и ильменитовой серий. При построении карты за основу были приняты данные (Изох и др., 1957; Гоневчук и др., 2015; Комплект цифровых..., 2020). 1 — амфиболовые гранодиориты; 2 — мелкозернистые и среднезернистые лейкократовые биотитовые граниты; 3 — крупнозернистые биотитовые граниты; 4 — вмещающие валанжинские терригенные отложения; 5 — кварцевые диориты; 6 — тоналиты; 7 — гранит-порфиры; 8 — дайки базитов пред- и постгранитные; 9 — зона локальных окислительных условий формирования (породы магнетитовой серии); 10 — точки отбора проб ильменитовой (а) и магнетитовой (б) серий; 11 — месторождения и рудопроявления Au (в т.ч. россыпи) и Sn; 12 — разломы; 13 — зоны приконтактового ороговикования. МS — магнитная восприимчивость.

Подобные массивы с участками магнетитовых гранитоидов в ильменитовой зоне Сихотэ-Алиньского орогенного пояса, видимо, не редкость. Авторами обнаружено несколько положительных аномалий магнитного поля над гранитными массивами в осевой части САОП, в зоне распространения магматических пород ильменитовой серии.

Такие аномалии не противоречат нашим взглядам на природу региональных зон с различными редокс-условиями кристаллизации магматитов (Талтыкин и др., 2020), т.к. являются примерами локального уровня окислительно-восстановительного фона. Связаны ли они с редоксаномалиями в земной коре, влиянием серы или галогенов на фугитивность кислорода или другими факторами — это одна из задач дальнейших исследований.


Ряд работ (Soloviev et al., 2019a, 2019b; Sillitoe, Lehmann, 2022), посвященных различным этапам возникновения месторождений олова, меди, а также смешанным Sn—Си проявлениям, не дают ответа на вопрос, может ли эта минерализация иметь петрологически единый магматический источник, различные части которого кристаллизовались в отличающихся окислительно-восстановительных условиях. Наши исследования показали, что даже в случае локального (однородного по составу и возрасту кристаллизации) массива редокс-условия кристаллизации его частей могут быть разными.

Также авторами закартированы микролокальные аномалии при замерах магнитной восприимчивости в обнажениях Аксакинского гранитоидного массива (северная часть САОП). Эти микроаномалии представляют собой области диаметром до

Фиг. 9. Зона локальных окислительных условий формирования магматических пород вблизи Приискового массива и связь с металлогенией.

1 — восстановительные условия формирования магматических пород; 2 — локальные окислительные условия формирования магматических пород; 3 — магнетитовые породы Приискового массива (окислительные условия формирования магматических пород в пределах Приискового массива); 4 — месторождения (а), рудопроявления (б) и пункты минерализации (в) олова: 1 — Рудное, 2 — Дерсу (Сидатунское), 3 — руч. Конечный Лог, 4 — Туенгу, 5 — Средне-Микулинское, 6 — Зимнее; 5 — месторождения (а), рудопроявления (б) и пункты минерализации (в) золота: 1 — Благодатненское, 2 — Глухое; 6 — россыпи золота по водотокам; 7 — вольфрам-молибден-бериллиевое месторождение Забытое; 8 — нулевая изолиния с карты аномалий магнитного поля; 9 — границы интрузивных тел.

Фиг. 10. Диаграмма $Na_2O + K_2O - SiO_2$ для пород Приискового массива. Условные обозначения см. фиг. 6.

Фиг. 11. Микрофотографии пород Приискового массива: (а) ЕК-2159 — магнетитовый гранодиорит; (б) ЕК-2157 — ильменитовый гранодиорит.

 $50~\rm cm$ со значениями **MS** значительно больше 0.5×10^{-3} ед. СИ среди зоны распространения ильменитовых пород.

РЕДОКС-УСЛОВИЯ И РАСПРЕДЕЛЕНИЕ РУДНОЙ МИНЕРАЛИЗАЦИИ В ПОРОДАХ ПРИИСКОВОГО МАССИВА

Редокс-условия, определяемые фугитивностью кислорода, являются важнейшей характеристикой термодинамического состояния магматогенно-рудных систем. Растворимость $\mathrm{Sn^{2+}}$ на порядок выше растворимости $\mathrm{Sn^{4+}}$, при этом $\mathrm{Sn^{2+}}$ может существовать в расплаве в растворенном виде только в восстановительных условиях (Борисов и др., 1991; Некрасов, 1984; Linnen et al., 1995).

По экспериментальным данным, медь (Борисов и др., 1991) и молибден (Ishihara, 1977) ведут себя диаметрально противоположно олову. В восстановительных условиях медь находится в расплавах преимущественно в одновалентной форме и растворимость ее при этом крайне низкая. В окислительных условиях доля Cu²⁺ и ее растворимость в расплавах резко возрастает.

По результатам геохимических исследований распределение содержаний Си и Sn в магматических породах Приискового массива находятся в соответствии с экспериментальными данными

Таблица 3. Среднее содержание Си и Sn в породах Приискового массива, в скобках — количество проб.

Серии	Cu, г/т	Sn, r/τ			
Ильменитовая серия	27.68 (11)	40.52 (11)			
Магнетитовая серия	32.46 (13)	7.36 (13)			

(табл. 3). Следовательно, распределение рудной минерализации в гранитоидах зависит не от петрографического состава пород, а является следствием валентного состояния элементов, которое определяется исключительно окислительно-восстановительной обстановкой формирования пород.

выводы

Пространственное распределение ильменитовых и магнетитовых пород Приискового массива не совпадает с границами распространения сеноманских амфиболовых гранодиоритов и кампанских биотитовых гранитов в южной и северной частях массива соответственно. Следовательно, окислительно-восстановительные условия становления массивов не зависят от петрографического состава и возраста магматических пород.

Совпадающие результаты изотопного датирования магнетитовых и ильменитовых амфиболовых сеноманских гранодиоритов Приискового массива U-Pb методом подтверждают, что кристаллизация магматических пород происходила одновременно в окислительных и восстановительных условиях, следовательно, редокс-условия становления массивов напрямую не отражаются на химическом и петрографическом составе слагающих их магматических пород.

Положительная магнитная аномалия среди немагнитных и слабомагнитных пород осевой ильменитовой зоны САОП связана с магнетитовыми гранодиоритами Приискового массива.

Все месторождения и рудопроявления олова вблизи Приискового массива находятся в зоне распространения пород ильменитовой серии (восстановительные условия), а месторождения и

россыпи золота — в зоне пород магнетитовой серии (окислительные условия).

Выявленная геохимическая разнородность близких по возрасту гранодиоритов Приискового массива показывает, что для построения точных карт распределения редокс-условий как регионального, так и локального масштаба, необходимы детальные исследования индикаторов окислительно-восстановительных условий кислого магматизма (коэффициент окисленности железа, магнитная восприимчивость магматических пород, состав темноцветных, рудных минералов).

БЛАГОДАРНОСТИ

Авторы выражают искреннюю благодарность рецензентам за сделанные замечания, которые позволили существенно улучшить статью.

СПИСОК ЛИТЕРАТУРЫ

Борисов А.А., Жаркова Е.В., Кадик А.А., Кравчук И.Ф., Луканин О.А., Малинин С.Д., Шилобреева С.Н. Флюиды и окислительно-восстановительные равновесия в магматических системах. М.: Наука, 1991. 256 с.

Гоневчук В.Г., Ханчук А.И., Гоневчук Г.А., Лебедев В.А. Новые калий-аргоновые датировки гранитоидов Сихотэ-Алиня (Дальний восток, Россия) по биотиту и амфиболу: критерии достоверности и интерпретация // Тихоокеан. геология. 2015. Т. 34. № 6. С. 16—33.

Комплект цифровых материалов по листу L-53-XXII (Мельничное) Государственной геологической карты РФ м-ба $1:200\,000$ (второе издание). Серия Южно-Сихотэ-Алинская. ISBN 978-5-93761-756-9. Организация-составитель: АО "Дальневосточное ПГО". Авторы: А.В. Лызганов, А.Т. Кандауров, Н.П. Михальченко. Главный редактор: С.В. Коваленко. 2020 г. http://geo.mfvsegei.ru/200k/l-53/l-53-22/index.html

Изох Э.П., Колмак Л.М., Наговская Г.И., Русс В.В. Позднемезозойские интрузии Центрального Сихотэ-Алиня и связь с ними оруденения. М.: ГОСГЕОЛТЕХ-ИЗДАТ, 1957. 248 с.

Кадик А.А., Луканин О.А. Дегазация верхней мантии при плавлении. М.: Наука, 1986. 95 с.

Кадик А.А. Восстановленные флюиды мантии: связь с химической дифференциацией планетарного вещества // Геохимия. 2003. № 9. С. 928—940.

Крук Н.Н., Гвоздев В.И., Орехов А.А., Круг Е.А., Касаткин С.А., Голозубов В.В., Руднев С.Н., Шого Аоки, Цуйоши Комия, Ковач В.П., Серов П.А. Раннемеловые гранитоиды и монцонитоиды южной части Журавлевского террейна (Сихотэ-Алинь): геохимические особенности и источники расплавов // Тихоокеан. геология. 2019. Т. 38. № 3. С. 30—49.

Летников Ф. А. Сверхглубинные флюидные системы Земли. 2006. (Электронный ресурс). URL:http://csr.sp-bu.ru/pub/RFBR_publications/articles/geoscienc-es/2006/sverhglubinnie_flyuidnie_sistemi_Zemli_06_-geo.pdf

Минина О.В., Мигачёв И.Ф., Звездов В.С. Прогнознометаллогеническое районирование южной части Дальневосточного региона на медно-порфировое оруденение // Отечеств. геология. 2019. № 1. С. 35–49.

Мишин Л.Ф. Субвулканические интрузии кислого состава // М.: Наука, 1994. 207 с.

Мишин Л.Ф. Геохимия европия в магматических породах окраинно- континентальных вулканогенных поясов // Геохимия. 2010. № 6. С. 618-631.

Мишин Л.Ф., Бердников Н.В. Индикаторная роль высокоглиноземистых вторичных кварцитов при поисках рудных месторождений // Руды и Металлы. 2010. № 3. С. 14-24.

Мишин Л.Ф., Романовский Н.П. Окислительно-восстановительные обстановки формирования и металлогеническая специализация рудно-магматических систем юга Дальнего Востока // Тихоокеан. геология. 1992. Т. 11. № 6. С. 31—42.

Мишин Л.Ф., Романовский Н.П., Гурович В.Г. О двух типах вулкано-плутонических ассоциаций // Докл. АН СССР. 1988. Т. 298. № 5. С. 1186-1188.

Мишин Л.Ф., Петухова Л.Л. Окисленность железа как показатель металлогенической специализации вулкано-плутонических комплексов на примере Востока СССР // Тихоокеан. геология. 1990. Т. 9. № 3. С. 69—77.

Мишин Л.Ф., Чжао Ч., Солдатов А.И. Мезозойскокайнозойские вулкано-плутонические пояса и системы в континентальной части Востока Азии и их зональность // Тихоокеан. геология. 2003. Т. 22. № 3. C. 28–47.

Мишин Л.Ф., Коновалова Е.А., Талтыкин Ю.В., Крутикова В.О., Добкин С.Н., Юрченко Ю.Ю., Штарева А.В. Окислительные условия и связанная с ними геохимическая и металлогеническая зональности магматических образований Сихотэ- Алиньского орогенного пояса // Тихоокеан. геология. 2020. Т. 39. № 3. С. 51–67. https://doi.org/10.30911/0207-4028-2020-39-3-51-67

Мишин Л.Ф., Коновалова Е.А., Талтыкин Ю.В. Влияние окислительных условий на геохимическую и металлогеническую зональности на примере мезозойских магматических поясов Восточной Якутии // Петрология. 2021. Том 30. № 3. С. 260—280.

https://doi.org/10.31857/S0869590322030050

Некрасов И.Я. Олово в магматическом и постмагматическом процессах. М.: Наука, 1984. 236 с.

Печерский Д.М. Магнитные свойства гранитоидов Северо-Востока СССР / Магнитные свойства изверженных пород. Магадан, 1964. С. 6—158.

Родионов С.М. Металлогения олова Востока России. М.: Наука, 2005. 327 с.

Рябчиков И.Д. Флюидный режим мантийных плюмов // Геохимия. 2003. № 9. С. 923—927.

Рябчиков И.Д., Когарко Л. Н. Окислительно-восстановительный потенциал мантийных магматических систем // Петрология. 2010. Т. 18. № 3. С. 257—269.

Сахно В.Г., Коваленко С.В., Лызганов А.В. Гранитоидный магматизм Арминского блока Центрального Сихотэ-Алиня Приморья: U-Pb-датирование, изотопная характеристика (3 He/ 4 He), особенности петрохимического состава и рудной минерализации // Докл. АН. 2016. Т. 466. № 6. С. 692—698.

Стрижкова А.А. Петрология и геохимия гипабиссальных гранитоидов Центрального Сихотэ-Алиня. М.: Наука, 1980. 124 с.

Талтыкин Ю.В., Мишин Л.Ф., Коновалова Е.А. Окислительно-восстановительный фон в земной коре Сихотэ-Алиньского орогенного пояса при кристаллизации магматитов мел-палеогенового возраста: связь с геодинамикой // Вестник Северо-Восточного научного центра ДВО РАН. 2020. № 4. С. 24—38.

Талтыкин Ю.В., Мишин Л.Ф., Коновалова Е.А. Структура редокс-зональности в литосфере Сихотэ-Алиньского орогенного пояса в мел-палеогеновое время // Тектоника, глубинное строение и минерагения Востока Азии: XI Косыгинские чтения: материалы Всероссийской конференции с международным участием, 15—18 сентября 2021, г. Хабаровск / Отв. ред. А.Н. Диденко, Ю.Ф. Манилов. Хабаровск: ИТиГ им. Ю.А. Косыгина ДВО РАН, 2021. С. 64—66.

Duan W.-Y., Li X.-P., Schertl H.-P., Willner A. P. C-O-H-S fluids released by oceanic serpentinite in subduction zones: Implications for arc-magma oxidation // Earth Planet. Sci. Lett. 2022. V. 594.

Grebennikov A.V., Khanchuk A.I., Gonevchuk V.G., Kovalenko S.V. Cretaceous and Paleogene granitoid suites of the Sikhote-Alin area (Far East Russia): Geochemistry and tectonic implications // Lithos. 2016. 261. P. 250–261.

Hart C.J.R., Goldfarb R. J., Lewis L. L., Mair J. L. The Northern Cordilleran Mid-Cretaceous Plutonic Province: Ilmenite/Magnetite-series Granitoids and Intrusion-related Mineralisation // Resource Geology. 2004. V. 54. № 3. P. 253–280.

Hong L., Xu Y., Zhang L., Liu Z., Xia X., Kuang Y. Oxidized Late Mesozoic subcontinental lithospheric mantle beneath the eastern North China Craton: A clue to understanding cratonic destruction // Gondwana Research. 2020. V. 81. P. 230–239.

Ishihara S. The magnetite-series and ilmenite-series granitic rocks. // Mining Geology, 1977. № 27. P. 293–305.

Ishihara S. The redox state of granitoids relative to tectonic setting and earth history: The magnetite-ilmenite series 30 years later // Earth Sciences. 2004. V. 95. P. 23–33.

Foley S.F. A Reappraisal of Redox Melting in the Earth's Mantle as a Function of Tectonic Setting and Time // J. Petrol. 2011. V. 52. № 8. P. 1363–1391.

https://doi.org/10.1093/petrology/egq061

Li W., Yang Z., Chiaradia M., Lai Y., Yu C., Zhang J. Redox state of southern Tibetan upper mantle and ultrapotassic magmas // Geology. 2020. V. 48

Linnen R. L., Pichavant M., Holtz F., Burgess S. The effect of fO₂ on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850°C and 2 kbar // Geochim. Cosmochim. Acta. 1995. V. 59. № 8. P. 1579—1588

Middlemost Eric A.K. Naming materials in the magma/igneous rock system // Earth-Sci. Rev. 1994. V. 37, Issues 3–4. P. 215–224.

Sillitoe R.H., Lehmann B. Copper rich tin deposits // Mineral. Deposita. 2022. V. 57. P. 1–11.

Soloviev S.G., Kryazhev S.G., Avilova O.V., Andreev A.V., Girfanov M.M., Starostin I.A. The Lazurnoe deposit in the Central Sikhote-Alin, Eastern Russia: Combined shoshonite-related porphyry Cu—Au—Mo and reduced intrusion-related Au mineralization in a post-subduction setting // Ore Geol. Rev. 2019. V. 112. Paper 103063.

Soloviev S.G., Kryazhev S.G., Dvurechenskaya S.S., Vasyukov V.E., Shumilin D.A., Voskresensky K.I. The superlarge Malmyzh porphyry Cu—Au deposit, Sikhote-Alin, eastern Russia: Igneous geochemistry, hydrothermal alteration, mineralization, and fluid inclusion characteristics // Ore Geol. Rev. 2019. V. 113. Paper 103112.

Wang Z.-Z., Liu J., Xia Q.-K., Hao Y.-T., Wang Q.-Y. The distribution of water in the early Cretaceous lithospheric mantle of the North China Craton and implications for its destruction // Lithos. 2020. V. 360–361.