Crustal structure, tectonic subsidence and lithospheric stretching of the princess Elizabeth trough basin, East Antarctica

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This paper considers crustal structure, seismic stratigraphy, thermal evolution and lithospheric stretching of the deep-water basin located on the East Antarctic passive margin in the Princess Elizabeth Trough. Seven of the Middle Jurassic to Quaternary seismic sequences was identified based on interpretation of multichannel seismic data. The information about seismic stratigraphy and crustal thickness (calculated from gravity data) along the section crossing the Princess Elizabeth Trough was used for numerical modeling of the thermal regime of the lithosphere, tectonic subsidence of the crystalline basement and lithospheric stretching. Modeling shows that calculated tectonic subsidence is possible only under the assumption of crustal extension before the deposition (during the crustal doming at the early rift phase). Maximum stretching factor in the basin ranges from 1.1 to 2.0 for the period which preceded the deposition and 2.8 for the period of the rift-related deposition.

 

Full Text

Restricted Access

About the authors

G. L. Leitchenkov

Gramberg Research Institute of Geology and Mineral Resources of the World Ocean; Institute of Earth Sciences ‒ St. Petersburg State University

Author for correspondence.
Email: german_l@mail.ru
Russian Federation, St. Petersburg

Yu. I. Galushkin

Museum of Natural History, Lomonosov Moscow State University

Email: german_l@mail.ru
Russian Federation, Moscow

Yu. B. Guseva

Institute of Earth Sciences ‒ St. Petersburg State University

Email: german_l@mail.ru
Russian Federation, St. Petersburg

V. V. Gandyukhin

Polar Marine Geosurvey Expedition

Email: german_l@mail.ru
Russian Federation, St. Petersburg

E. P. Dubinin

Museum of Natural History, Lomonosov Moscow State University

Email: german_l@mail.ru
Russian Federation, Moscow

References

  1. Галушкин Ю.И Моделирование осадочных бассейнов и оценка их нефтегазоносности. М.: Научный мир, 2007. 457 с.
  2. Лейченков Г.Л., Гусева Ю.Б., Гандюхин В.В., Голь К., Иванов С.В., Голынский А.В., Казанков А.Ю. Тектоническое развитие земной коры и формирование осадочного чехла в антарктической части Индийского океана (море Содружества, море Дейвиса, плато Кергелен) // Российские исследования по программе МПГ 2007/2008 гг. Строение и история развития литосферы / Ред. Ю.Г. Леонов. М.: Paulsen Edition. 2010. С. 9–38.
  3. Baranov A., Tenzer R., Bagherbandi M. Combined gravimetric-seismic crustal model for Antarctica // Surv. Geophys. 2018. Vol. 39. No 1. p. 23–56
  4. Barrett P.J. Cenozoic climate and sea level history from glacimarine strata off the Victoria Land coast, Cape Roberts Project. Antarctica // Glacial Processes and Products / M.J. Hambrey, P. Christoffersen, N.F. Glasser, B. Hubbart (eds.). Int. Assoc. Sediment. Spec. Publ. 2007. Vol. 39. P. 259–287.
  5. Bayer A.J. Geotherms evolution of the lithosphere and plate tectonics // Tectonophysics. 1981. Vol. 72. P. 203–227.
  6. Borissova I., Moore A., Sayers J., Parums R., Coffin M.F., Symonds P.A. Geological framework of the Kerguelen Plateau and adjacent ocean basins / Canberra: Geosci. Australia Record, 2002. 120 p.
  7. Coffin M.F., Pringle M.S., Duncan R.A., Gladczenko T.P., Storey M., Muller R.D., Gahagan L.A. Kerguelen Hotspot magma output since 130 Ma // J. Petrology. 2002. Vol. 43. No 7. P. 1121–1139.
  8. Crowley T.J. Comparison of longterm greenhouse projections with the geologic record // Geophys. Res. Lett. 1995. Vol. 22. No. 8. P. 933–936.
  9. Galushkin Yu.I. Non-standard problems in basin modeling. Switzerland: Springer Int. Publ., 2016. 268 p.
  10. Gohl K., Leitchenkov G.L., Parsiegla N., Ehlers B.M., Kopsch C., Damaske D., Guseva Y.B., Gandyukhin V.V. Crustal types and continental-ocean boundaries between the Kerguelen Plateau and Prydz Bay, East Antarctica // Antarctica: A Keystone in a Changing World / Cooper A. K, Raymond C.R. et al. (eds.). Proc. 10th Int. Symposium on Antarctic Earth Sci. USGS–US National Academy. 2007. doi: 10.3133/of2007-1047.srp039.
  11. Golynsky A.V., Ivanov S.V., Kazankov A.Ju., Jokat W., Masolov V.N., von Frese R.R.B., the ADMAP Working Group. New continental margin magnetic anomalies of East Antarctica // Tectonophysics. 2013. Vol. 585. P. 172–184.
  12. Gupta M.I., Sharma, S.R., Sundar, A., and Singh, S.B. Geothermal studies in the Hyderabad granitic region and the crustal thermal structure of the Southern Indian Shield // Tectonophysics. 1987. Vol.140. P. 257–264.
  13. Gupta M.I., Sundar A., and Sharma S.R. Heat flow and heat generation in the Archaean Dharwar cratons and implications for the Southern Indian Shield geotherm and lithospheric thickness // Tectonophysics. 1991. Vol. 144. P. 107–122.
  14. Hinz K., Krause W. The continental margin of Queen Maud Land/Antarctica: seismic sequences, structural elements and geological development // Geol. Jahrbuch. Geol. Paläontol. 1982. Vol. E23. P. 17–41.
  15. Kuvaas B., Kristoffersen Y. The Crary Fan, a trough-mouth fan on the Weddell Sea continental margin, Antarctica // Marine Geol. 1991. Vol. 97. P. 345–362.
  16. Lawver L.A., Gahagan L.M., Coffin M.F. The development of paleoseaways around Antarctica // The role of the Southern Ocean and Antarctica in global change: an Ocean Drilling Perspective / J.P. Kennet, J. Barren (eds.). Antarctic Res. Ser. AGU. 1992. Vol. 56. P. 7–30.
  17. Leitchenkov G.L., Guseva Y.B., Gandyukhin V.V. Cenozoic environmental changes along the East Antarctic continental margin inferred from regional seismic stratigraphy // Antarctica: A Keystone in a Changing World / A.K. Cooper, C.R. Raymond et al. (eds.). Proc. 10th Int. Symposium on Antarctic Earth Sci. USGS–US National Academy, 2007. doi: 10.3133/of2007-1047.srp005.
  18. Leitchenkov G., Guseva Y.B, Gandyukhin V, Ivanov S, Safonova L. Structure of the Earth’s crust and tectonic evolution history of the Southern Indian Ocean (Antarctica) // Geotectonics. 2014. Vol. 48. No. 1. P. 5–23.
  19. McKenzie D., Jackson J., Priestley K. Thermal structure of oceanic and continental lithosphere // Earth. Planet. Sci. Lett. 2005. Vol. 233. P. 337–339.
  20. Negi I.G., Panday O.P., Agrawal P.K. Super-mobility of hot Indian lithosphere // Tectonophysics. 1986. Vol. 131. P. 147–156.
  21. Parsons B., Sclater J.B. Analysis of the variation of ocean floor bathymetry and htat flow with age // J. Geophys. Research. 1977. Vol. 82. No.5. P 803–827
  22. Ungerer Ph., Burrus I., Doligez B., Chenet P., Bessis F. Basin evolution by integrated two-dimensional modelling of heat transfer, fluid flow, hydrocarbon generation, and migration // AAPG Bull. 1990. Vol. 74. N. 3. P. 309–335.
  23. Ungerer Ph. Modeling of petroleum generation and migration // Applied Petrol. Geochem. 1993. P. 397–442.
  24. Welte D.H., Horsfield B., Baker D.R. Petroleum and Basin Evolution. Berlin: Springer, 1997. 535 p.
  25. Williams S.E. Whittaker J.M., Granot R., Müller D.R. Early India-Australia spreading history revealed by newly detected Mesozoic magnetic anomalies in the Perth Abyssal Plain // J. Geophys. Reseach. Ser. Solid Earth. 2013. Vol. 118. doi: 10.1002/jgrb.50239.
  26. Wyllie P.J. Magmas and volatile components // Am. Mineral. 1979. Vol. 64. P. 469–500.
  27. Zachos J., Pagani M., Sloan L., Thomas E., Billups K. Trends, rhythms, and aberrations in global climate 65 Ma to present // Science. 2001. Vol. 292. P. 686–693.
  28. Ziegler P.A., Cloetingh S. Dynamic processes controlling evolution of rifted basins // Earth Sci. Rev. 2004. Vol. 64. P. 1–50.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The position of profiles 4809 and 3910, used for numerical modeling of the basin of the trough of Princess Elizabeth.

Download (397KB)
3. Fig. 2. Interpreted time (a) and deep (b) seismic sections along profile 4809. 1 - seismic boundaries; 2 - age of seismic complexes in million years; 3 - numbers of pseudo-wells, according to which numerical simulation was performed

Download (551KB)
4. Fig. 3. Density section of the earth's crust along profile 3910, obtained from the simulation of gravitational anomalies. 1 - observed gravitational anomalies (reduction in free air); 2 - calculated gravitational anomalies; 3 - density, g / cm3; 4 - numbers of pseudo-wells, according to which numerical modeling was performed; 5 - the boundary between the continental-type riftogenic crust and the oceanic-type crust

Download (249KB)
5. Fig. 4. Changes in rock temperature and organic matter maturity in the history of subsidence of the sedimentary basin of the passive margin in the trough of Princess Elizabeth, numerically reconstructed for pseudo-wells (PS) 2 (a), 7 (b), and 9 (c). 1 - change in the average annual temperature on the surface of the seabed (according to [4, 8, 27]); 2 - change in the depth of seismic complexes (relative to the seabed) during the development of the basin; 3 - isotherms; 4 - contours of the reflectivity of vitrinite (% Ro)

Download (360KB)
6. Fig. 5. The thermal state of the sedimentary cover of the Princess Elizabeth trough basin in the context of profile 4908. 1 - main seismic horizons; 2 - isotherms; 3 - vitrinite reflectivity isolines (% Ro)

Download (224KB)
7. Fig. 6. The thermal history of the lithosphere of the sedimentary basin of Princess Elizabeth’s trough in pseudo-well 7 (a), the evolution of the thermal regime of the lithosphere in pseudo-well 7 (b). The phase transition shows the depth in the mantle at which spinel peridotites are converted to garnet peridotites, according to [1]. The sole of the lithosphere is determined by the intersection of the solidus curve of peridotite with a water content of no more than 0.2% H2O [26] with the current geotherm T (Z, t) in the lithosphere of the basin. 1 - variations of heat flow through the surface of the foundation; 2 - variations of the heat flux through the surface of the sedimentary cover

Download (156KB)
8. Fig. 7. Estimated changes in the depth of the sea in the trough of Princess Elizabeth in PS 1–11. Shown (numbers) pseudo-well numbers.

Download (81KB)
9. Fig. 8. Variations of tectonic subsidence of the foundation surface (a) and sedimentary cover thickness (b) in the history of the development of the basin of the Princess Elizabeth trough. Shown (numbers) pseudo-well numbers.

Download (226KB)

Copyright (c) 2019 Russian academy of sciences