Novye vozmozhnosti snizheniya sily soprotivleniya skol'zheniyu v ledovykh vidakh sporta



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article presents a new approach to solve the problem of reducing the friction force when the sliding surfaces of sports apparatuses interact with ice. The qualitative analysis of major factors impacting on the resistance to sliding of blades and sledge runners is given, the algorithm of further minimization of deformation and molecular components of the friction force is offered. Also technical characteristics of surfaces of real sports apparatuses are cited and the methods of their additional processing based on the analogy with natural surfaces at minimal adhesion with water are offered. The impact of physical and chemical properties of a liquid film in the zone of the contact of a skate with ice as a factor of an adhesion component of friction is grounded. The possibilities of modern laser technologies in the field of formation of an artificial structure at “double roughness” on sliding surfaces of blades identical to the structure of the lotus leaf are described. The results of experimental studies of sliding properties of blades with different types of additional processing are presented. The results confirm the advantages of the structure at “double roughness” to reduce the total resistance force to sliding. Keywords: structure at “double roughness”, laser processing, sliding friction, lotus effect

References

  1. Архаров И.А., Гончарова Г.Ю. Экспериментальное исследование ледовых структур, модифицированных полимерами//Холодильная техника. 2010. № 11.
  2. Гончарова Г.Ю., Печурица А.Н., Осипова А.П., Петроградский А.В. Новый этап развития ледовых технологий (от гомеопатии к пластической хирургии) //Холодильная техника. 2009. № 5.
  3. Гончарова Г.Ю. Новый подход к выбору соединений для направленного воздействия на свойства ледовых поверхностей //Холодильная техника. 2009. № 9.
  4. Bowden F.P. Nature // Proc. Roy. Soc. London, 1955. Vol. A 226.p. 346 - 385.
  5. Feng Lin, Zhang Yanan, Xi Jinming et al. Petal Effect: A Superhydrophobic State with High Adhesive Force, Langmuir, 2008, 24 (8), pp 4114-4119.
  6. Kietzig AnneMarie, Mirvakili Mehr Negar, Kamal Saeid et al. Nanopatterned metallic surfaces: their wettability and impact on ice friction //Journal of Adhesion Science and Technology 25, 2011, 1293-1303.
  7. Kietzig AnneMarie, Hatzikiriakos Savvas G., Englezos Peter. Ice friction: the effect of thermal conductivity //Journal of Glaciology, 2010, Vol. 56, No. 197.
  8. Sarkar Anjishnu, Kietzig AnneMarie. General equation of wettability: A tool to calculate the contact angle for a rough surface// Chemical Physics Letters, 06/2013, Vol. 574, pp 106 - 111.
  9. Sun M, Liang A, Watson GS, Watson JA, Zheng Y, et al. (2012) Influence of Cuticle Nanostructuring on the Wetting Behaviour/States on Cicada Wings. PLoS ONE 7(4): e35056. doi: 10.1371/journal.pone.0035056.
  10. Arkharov I.A., Goncharova G.Yu. Experimental study of ice structures modified with polymers //Kholodilnaya Tekhnika. 2010. № 11.
  11. Goncharova G.Yu., Pechuritsa A.N., Osipova A. P., Petrogradskiy A.V. New stage of ice technologies development (from homeopathy to plastic surgery)//Kholodilnaya Tekhnika 2009. № 5.
  12. Goncharova G.Yu. New approach to choice of compounds for a directed impact on properties of ice surfaces//Kholodilnaya Tekhnika 2009. № 9.
  13. Bowden F.P. Nature // Proc. Roy. Soc. London, 1955. Vol. A 226.p. 346 - 385.
  14. Feng Lin, Zhang Yanan, Xi Jinming et al. Petal Effect: A Superhydrophobic State with High Adhesive Force, Langmuir, 2008, 24 (8), pp 4114-4119.
  15. Kietzig AnneMarie, Mirvakili Mehr Negar, Kamal Saeid et al. Nanopatterned metallic surfaces: their wettability and impact on ice friction //Journal of Adhesion Science and Technology 25, 2011, 1293-1303.
  16. Kietzig AnneMarie, Hatzikiriakos Savvas G., Englezos Peter. Ice friction: the effect of thermal conductivity //Journal of Glaciology, 2010, Vol. 56, No. 197.
  17. Sarkar Anjishnu, Kietzig AnneMarie. General equation of wettability: A tool to calculate the contact angle for a rough surface// Chemical Physics Letters, 06/2013, Vol. 574, pp 106 - 111.
  18. Sun M, Liang A, Watson GS, Watson JA, Zheng Y, et al. (2012) Influence of Cuticle Nanostructuring on the Wetting Behaviour/States on Cicada Wings. PLoS ONE 7(4): e35056. doi: 10.1371/journal.pone.0035056.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Goncharova G.Y., Nikiforova I.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies