Kriorezistivnyy metod kontrolya urovnya zhidkogo azota v kriogennykh rezervuarakh

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


The enhancement of economic efficiency of the use of the capacitive cryogenic equipment is reached thanks to the increase of its unit volume and turnover. But the requirements to accuracy of the control of the charge level of large vessels with cryoagents increase too. The control of the liquid level in the vessels is one of the main functions of the control system that directly influences their safety. Modern level sensors may be mechanical, hydrostatic, conductometric, acoustic, radioactive, capacitive, thermoelectric and thermoresistive according to their operation principle. Thermoresistive sensors are the most reliable and sensitive. The modern development of technology of composite high temperatures superconductors (HTSC) gives the possibility to use them for creation of sensors of level measurement of cryogenic liquids. The article deals with development and investigation of a thermoresistive sensor that is simple, convenient, has low heat inflows to cryoagent, that possesses good metrological, inertial and economic indices based on high temperature superconductors. The results of modeling of heat exchange of HTSC with liquid nitrogen, operation characteristics of HTSC as well as the data of tests of a prototype model of a liquid nitrogen level gauge are cited. Keywords: method of control of cryogenic liquids level, thermoresistive sensor, high temperature superconductor.


  1. Беляков В.П. Криогенная техника и технология. - М.: Энергоиздат 1982.
  2. ВТСПпроводники 2го поколения/ Самойленков С.В. American Superconductor vs. SuperPower,
  3. Емельянов В.Ю., Колосов М.А. Математическое моделирование проволочного ВТСПдатчика уровня жидкостей// Химическое и нефтегазовое машиностроение. 2008. №4.
  4. Мадера А.Г. Моделирование теплообмена в технических системах. - М.: НО Научный фонд «ПИЛ им. акад. В.А. Мельникова», 2005. - 208 с.
  5. Пантакар С. Численные методы решения задач теплообмена и динамики жидкости. - М.: Энергоатомиздат, 1984. - 152 с.
  6. Сверхпроводники для электроэнергетики, T. 4, вып. 6, 2007.
  7. Справочник по физикотехническим основам криогеники / Под ред. Малкова. - М.: Энергоиздат, 1985. - 420 с.
  8. Фастовский В.Г., Петровский Ю.В., Ровинский А.Е. Криогенная техника. - М.: Энергия, 1967.
  9. StarCD Methology, v.3.26, CD Adapco group, 2006 г.
  10. Belyakov V.P. Cryogenic engineering and technology. - M.: Energoizdat 1982.
  11. HTSCconductors of 2d generatio/Samoilenko C.B. American Superconductor vs. SuperPower.
  12. Emelyanov V.Yu., Kolosov M.A. Mathematical modeling wire HTSCsensor of liquids level// Khimicheskoe I neftegazovoe mashinostroenie. 2008. №4.
  13. Madera A.G. Modeling heat exchange in technical schemes. - M.: NO Scientific fund “PIL n.a. academician V.A. Melnikov”, 2005. 208 p.
  14. Pantakar S. Numeric methods of solving the problems of heat exchange and liquid dynamics. - M.: Energoatomizdat, 1984. 152 p.
  15. Superconductors for electroenergetics, Vol. 4, issue 6, 2007.
  16. Reference book on physical and technical grounds of cryogenics/Edited by Malkov. - M.: Energoizdat, 1985. 420 p.
  17. Fastovskiy V.G., Petrovskiy Yu. V., Rovinskiy A.E. Cryogenic engineering. - M.: Energia, 1967.
  18. StarCD Methology, v.3.26, CD Adapco group, 2006 г.

Copyright (c) 2015 Kolosov -., Emel'yanov V.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies