Metodika rascheta linii fazovogo ravnovesiya khladagentov ot troynoy do kriticheskoy tochki

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Within the framework of the method offered the equilibrium line calculation is based on the set of interconsistent equations including the equation of elasticity line ps = ps(Ts) (where ps is the pressure on the elasticity line; Ts is the temperature on the elasticity line) as well as the equations describing the vapor r- = r-(Ts) and the liquid r+ = r+(Ts) branches of saturation (where r is density). At that the equation for r- = r-(Ts) is derived on the basis of the Clayperon-Clausius modified equation that includes “apparent” heat of vaporization r* linked with the heat of vaporization by dependence r = r*(1 - r-/ r+). The line of the phase equilibrium is calculated using the method offered. It meets the mean diameter rule of saturation line fd in accordance with “final” scaling: fd ~ t2b, where b is the critical index of saturation line. The method was tested on the example of the calculation of the phase equilibrium line for R32 at the range of temperatures from triple to critical point. It was shown that the error of ps and r± calculation corresponds to the experimental error of these values in the range mentioned.

Full Text

Restricted Access


  1. Кудрявцева И.В., Рыков В.А., Рыков С.В. Асимметричное единое уравнение состояния R134а // Вестник Международной академии холода. 2008. № 2. С. 36-39.
  2. Кудрявцева И.В., Рыков А.В., Рыков В.А. Модифицированное уравнение линии насыщения, удовлетворяющее требованиям масштабной теории // Холодильная техника и кондиционирование. 2013. № 2. С. 3.
  3. Рыков С.В., Кудрявцева И.В., Рыков В.А., Полторацкий М.И., Свердлов А.В. Уравнение состояния хладагента R32 // Холодильная техника. 2016. № 11. С. 34-37.
  4. Рыков С.В., Кудрявцева И.В., Рыков В.А. Физическое обоснование метода псевдокритических точек // Научнотехнический вестник Поволжья. 2014. № 2. С. 44.
  5. Рыков С.В., Кудрявцева И.В., Рыков В.А., Устюжанин Е.Е., Попов П.В., Свердлов А.В. Методика расчета термодинамических свойств 2,3,3,3- тетрафторпропана в диапазоне температур 230…370 К и давлений 0,1…10 МПа. ГСССД 247 - 2016.
  6. Рыков В.А. Анализ закономерностей изменения термодинамических свойств веществ в широком диапазоне параметров состояния, включая окрестность критической точки и метастабильную область: дис.. канд. техн. наук. - Л.: ЛТИХП, 1988. - 275 с.
  7. Устюжанин Е.Е., Шишаков В.В., Абдулагатов И.М., Рыков В.А., Попов П.В. Давление насыщения технически важных веществ: модели и расчеты для критической области // Вестник МЭИ. 2012. № 2. С. 34-43.
  8. Defibaugh D.R., Morrison G., Weber L.A. Termodynamic properties of difluoromethane // J.Chem.Eng.Data. 1994. V. 39. 333-340.
  9. Fan J., Zhao X., Liu Z. Estimation of the vaporization heat // Fluid Phase Equilibria. 2012. V. 313 P. 91-96.
  10. Kim Y. C., Fisher M. E., Orkoulas G. Asymmetric fluid criticality. I. Scaling with pressure mixing // Physical Review E. 2003. М. 67. 061506.
  11. Kudryavtseva I.V., Rykov S.V. A Nonparametric Scaling Equation of State, Developed on the Basis of the Migdal’s Phenomenological Theory and Benedek’s Hypothesis // Russian J. of Physical Chemistry A. 2016. V. 90. № 7. P. 1493-1495.
  12. Kuwabara S., Aoyama H., Sato H., Watanabe K. Vaporliquid coexistence curves in the critical region and the critical temperatures and densities of difluoromethane and pentafluoroethane // J. Chem. Eng. Data. 1995. V.40. № 1. P. 112-116.
  13. Magee J.W. Isochoric p-r-T Measurements on Difluoromethane (R32) from 142 to 396 K and Pentafluoroethane (R125) from 178 to 398 K at Pressures to 35 MPa // Int. J. of Thermophysics. 1996. V. 17. № 4. P. 803-822.
  14. Malbrunot P.F., Meunier P.A., Scatena G.M. Pressurevolumetemperature behavior of difluorometane // J. Chem. Eng. Data. V.13. № 1. P. 13-21.
  15. Outcalt S.L., McLinden M.O. Equations of State for the Thermodynamic Properties of R32 (Difluoromethane) and R125 (Pentafluoroethane) // Int. J. of Thermophysic. 1995. V. 16. №. 1. P.79-89.
  16. Polikhronidi N. G.,·Abdulagatov I.M.,·Batyrova R.G., Stepanov G.V., Ustuzhanin E.E., Wu J.T. Experimental study of the thermodynamic properties of diethyl ether (DEE) at saturation // Int. J. Thermophys. 2011. V.32. P. 559-595.
  17. Sato T., Sato H., Watanabe K. PVT property measurements for difluoropromethane // J.Chem.Eng.Data. 1994. V.39. P. 851-854.
  18. Ustyuzhanin E.E., Shishakov V.V., Abdulagatov I.M., Popov P.V., Rykov V.A., Frenkel M.L. Scaling models of thermodynamic properties on the coexistence curve: problems and some solutions // Russian J. of Physical Chemistry B. 2012. Т. 6. № 8. С. 912-931.
  19. Vorob’yev V. S., Rykov V. A., Ustyuzhanin E. E., Shishakov V. V., Popov P.V., Rykov S. V. Comparison of the scaling models for substance densities along saturation line // Journal of Physics: Conference Series. 2016. V. 774. 012017.
  20. Weber L.A., Silva A.M. Measurements of the vapor pressures of difluoromethane, 1Chloro1,2,2,2tetrafluoroethane, and pentafluoroethane // J. Chem. Eng. Data. 1994. V. 39. P. 808-812.
  21. Weber L.A., Goodwin R.H. Ebulliometric Measurement of the Vapor Pressure of Difluoromethane // J. Chem. Eng. Data 1993. 38. P. 254-256.
  22. Widiatmo J.V., Sato H., Watanabe K. SaturatedLiquid Densities and Vapor Pressures of 1,1,1Trifluoroethane, Difluoromethane, and Pentafluoroethane // J. Chem. Eng. Data 1994. V. 39. P. 304-308.
  23. Zhu M.S., Li J., Wang B.X. Vapor pressure of difluorometane // Int. J. of Termophysics. 1993. V.14. N6. P. 1221-1227.

Copyright (c) 2017 Rykov S.V., Kudryavtseva I.V., Rykov V.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies