Мицеллообразующие и антимикробные свойства серии бис-кватернизованных аммониевых соединений на основе производных дабко

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Комплексом методов (тензиометрия, кондуктометрия, динамическое рассеяние света, спектроскопия, флуориметрия) исследована самоорганизация длинноцепочечных бис-кватернизованных производных 1,4-диазабицикло[2.2.2]октана, содержащих гидроксиэтильную группу. Определены значения критической концентрации мицеллообразования, адсорбционные характеристики на поверхности раздела фаз воздух–вода, солюбилизационная емкость в отношении плохорастворимого в воде красителя ОранжОТ, числа агрегации и размеры ассоциатов. Установлено влияние структуры исследуемых соединений (длина алкильной цепи и заряд головной группы) на мицеллообразующие, антимикробные свойства и гемолитическую активность.

Полный текст

Доступ закрыт

Об авторах

З. М. Шайхутдинова

Институт органической и физической химии им. А.Е. Арбузова, ФИЦ Казанский научный центр РАН; Казанский (Приволжский) федеральный университет

Email: tatyana_pashirova@mail.ru
Россия, Казань; Казань

А. С. Сапунова

Институт органической и физической химии им. А.Е. Арбузова, ФИЦ Казанский научный центр РАН

Email: tatyana_pashirova@mail.ru
Россия, Казань

Д. В. Салахиева

Казанский (Приволжский) федеральный университет

Email: tatyana_pashirova@mail.ru
Россия, Казань

Т. Н. Паширова

Институт органической и физической химии им. А.Е. Арбузова, ФИЦ Казанский научный центр РАН

Автор, ответственный за переписку.
Email: tatyana_pashirova@mail.ru
Россия, Казань

А. Д. Волошина

Институт органической и физической химии им. А.Е. Арбузова, ФИЦ Казанский научный центр РАН

Email: tatyana_pashirova@mail.ru
Россия, Казань

А. В. Богданов

Институт органической и физической химии им. А.Е. Арбузова, ФИЦ Казанский научный центр РАН

Email: tatyana_pashirova@mail.ru
Россия, Казань

Список литературы

  1. Obłąk E., Futoma-Kołoch B.,Wieczyńska A. Biological activity of quaternary ammonium salts and resistance of microorganisms to these compounds // World J. Microbiol. Biotechnol. 2021. V. 37. P. 22. https://doi.org/10.1007/s11274-020-02978-0
  2. Hu Y., Xing Y., Yue H. et al. Ionic liquids revolutionizing biomedicine: recent advances and emerging opportunities // Chem. Soc. Rev. 2023. v. 52. p. 7262–7293. https://doi.org/10.1039/D3CS00510K
  3. Saverina E.A., Frolov N.A., Kamanina O.A. et al. From antibacterial to antibiofilm targeting: An emerging paradigm shift in the development of quaternary ammonium compounds (QACs) // ACS Infect. Dis. 2023. v. 9. № 3. p. 394–422. https://doi.org/10.1021/acsinfecdis.2c00469
  4. Zakharova L.Y., Pashirova T.N., Doktorovova S. et al. Cationic surfactants: Self-assembly, structure-sctivity sorrelation and their biological applications // Int. J. Mol. Sci. 2019. v. 20. № 22. p. 5534. https://doi.org/10.3390/ijms20225534
  5. Frantz A.L. Chronic quaternary ammonium compound exposure during the COVID-19 pandemic and the impact on human health // Toxicol. Environ. Health Sci. 2023. V. 15. P. 199–206. https://doi.org/10.1007/s13530-023-00173-w
  6. Arnold W.A, Blum A., Branyan J. et al. Quaternary ammonium compounds: A chemical class of emerging concern // Environ. Sci. Technol. 2023. v. 57. № 20. p. 7645–7665. https://doi.org/10.1021/acs.est.2c08244
  7. Raj S., Ramamurthy K. Classification of surfactants and admixtures for producing stable aqueous foam // Adv. Colloid Interface Sci. 2024. V. 331. P. 103234. https://doi.org/10.1016/j.cis.2024.103234
  8. Bjerk T.R., Severino P., Jain S. et al. Biosurfactants: properties and applications in drug delivery, biotechnology and ecotoxicology // Bioengineering. 2021. v. 8. № 8. p. 115. https://doi.org/10.3390/bioengineering8080115
  9. Vavina A.V., Seitkalieva M.M., Strukova E.N. et al. Fatty acid-derived ionic liquids as soft and sustainable antimicrobial agents // J. Mol. Liq. 2024. v. 410. p. 125483. https://doi.org/10.1016/j.molliq.2024.125483
  10. Pashirova T.N., Shaikhutdinova Z.M., Mironov V.F. et al. Ammonium amphiphiles based on natural compounds: Design, synthesis, properties, and biomedical applications. A Review // Dokl. Chem. 2023. V. 509. p. 71–88. https://doi.org/10.1134/S0012500823700179
  11. Pernak J., Rzemieniecki T., Klejdysz T. et al. Conversion of quinine derivatives into biologically active ionic liquids: Advantages, multifunctionality, and perspectives // ACS Sustain. Chem. Eng. 2020. v. 8. № 25. p. 9263–9267. https://doi.org/10.1021/acssuschemeng.0c03501
  12. Bazina L., Maravić A., Krce L. et al. Discovery of novel quaternary ammonium compounds based on quinuclidine-3-ol as new potential antimicrobial candidates // Eur. J. Med. Chem. 2019. v. 163. p. 626–635. https://doi.org/10.1016/j.ejmech.2018.12.023
  13. Burilova E.A., Pashirova T.N., Lukashenko S.S. et al. Synthesis, biological evaluation and structure-activity relationships of self-assembled and solubilization properties of amphiphilic quaternary ammonium derivatives of quinuclidine // J. Mol. Liq. 2018. v. 272. p. 722–730. https://doi.org/10.1016/j.molliq.2018.10.008
  14. Pashirova T.N., Zhil’tsova E.P., Kashapov R.R. et al. Supramolecular systems based on 1-alkyl-4-aza-1-azoniabicyclo[2.2.2]octane bromides // Russ. Chem. Bull. 2010. V. 59. P. 1745–1752. https://doi.org/10.1007/s11172-010-0307-9
  15. Gilbert P., Al-taae A. Antimicrobial activity of some alkyltrimethylammonium bromides // Lett. Appl. Microbiol. 1985. V. 1. № 6. P. 101–104. https://doi.org/10.1111/j.1472-765X.1985.tb01498.x
  16. Lainioti G.C. Druvari D. Designing antibacterial-based quaternary ammonium coatings (surfaces) or films for biomedical applications: Recent advances // Int. J. Mol. Sci. 2024. V. 25. № 22. p. 12264. https://doi.org/10.3390/ijms252212264
  17. Dan W., Gao J., Qi X., et. al. Antibacterial quaternary ammonium agents: Chemical diversity and biological mechanism // Eur. J. Med. Chem. 2022. V. 243. p. 114765. https://doi.org/10.1016/j.ejmech.2022.114765
  18. Zhou C., Wang Y. Structure–activity relationship of cationic surfactants as antimicrobial agents // Curr. Opin. Colloid Interface Sci. 2020. V. 45. P. 28–43. https://doi.org/10.1016/j.cocis.2019.11.009
  19. Zhou C., Wang F., Chen H. et al. Selective antimicrobial activities and action mechanism of micelles self-assembled by cationic oligomeric surfactants // ACS Appl. Mater. Interfaces. 2016. V. 8. № 6. P. 4242–4249. https://doi.org/10.1021/acsami.5b12688
  20. Jennings J., Ašćerić D., Semeraro E.F. et al. Combinatorial screening of cationic lipidoids reveals how molecular conformation affects membrane-targeting antimicrobial cctivity // ACS Appl. Mater. Interfaces. 2023. V. 15. № 34. P. 40178–40190. https://doi.org/10.1021/acsami.3c05481
  21. Subedi Y.P., Alfindee M.N., Shrestha J.P. et al. Tuning the biological activity of cationic anthraquinone analogues specifically toward Staphylococcus aureus // Eur. J. Med. Chem. 2018. V. 157. P. 683–690. https://doi.org/10.1016/j.ejmech.2018.08.018
  22. Nadagouda M.N., Vijayasarathy P., Sin A. et al. Antimicrobial activity of quaternary ammonium salts: structure-activity relationship // Med. Chem. Res. 2022. V. 31. P. 1663–1678. https://doi.org/10.1007/s00044-022-02924-9
  23. Forman M.E., Jennings M.C., Wuest W.M. et al. Building a better quaternary ammonium compound (QAC): Branched tetracationic antiseptic amphiphiles // ChemMedChem. 2016. V. 11. № 13. P. 1401–1405. https://doi.org/10.1002/cmdc.201600176
  24. Kontos R.C., Schallenhammer S.A., Bentley B.S. et al. An Investigation into rigidity–activity relationships in BisQAC amphiphilic antiseptics // ChemMedChem. 2019. V. 14. № 1. P. 83–87. https://doi.org/10.1002/cmdc.201800622
  25. Frolov N.A., Fedoseeva K.A., Hansford K.A. et al. Novel phenyl‐based bis‐quaternary ammonium compounds as broad‐spectrum biocides // ChemMedChem. 2021. V. 16. № 19. P. 2954–2959. https://doi.org/10.1002/cmdc.202100284
  26. Thomas B., Duval R.E., Fontanay S. et al. Synthesis and antibacterial evaluation of bis‐thiazolium, bis‐imidazolium, and bis‐triazolium derivatives // ChemMedChem. 2019. V. 14. № 13. P. 1232–1237. https://doi.org/10.1002/cmdc.201900151
  27. Pashirova T.N., Zhil´tsova E.P., Lukashenko S.S. et al. Catalytic properties of polymer-colloid complexes based on polyethyleneimines and mono- and diquaternized 1,4-diazabicyclo[2.2.2]octane derivatives in the hydrolysis of phosphorus acids esters // Russ. Chem. Bull. 2015. V. 64. P. 2879–2884. https://doi.org/10.1007/s11172-015-1242-6
  28. Zhiltsova E.P, Lukashenko S.S., Pashirova T.N. et al. Self-assembling systems based on diquaternized derivatives of 1,4-diazabicyclo[2.2.2]octane // J. Mol. Liq. 2015. V. 210. P. 136–142. https://doi.org/10.1016/j.molliq.2015.01.018
  29. Pashirova T.N., Burilova E.A., Lukashenko S.S. et al. Nontoxic antimicrobial micellar systems based on mono- and dicationic Dabco-surfactants and furazolidone: Structure-solubilization properties relationships // J. Mol. Liq. 2019. V. 296. p. 112062. https://doi.org/10.1016/j.molliq.2019.112062
  30. Zakharova L.Y., Gaysin N.K., Gnezdilov O.I. et al. Micellization of alkylated 1.4-diazabicyclo[2.2.2]octane by nuclear magnetic resonance technique using pulsed gradient of static magnetic field // J. Mol. Liq. 2012. V. 167. P. 89–93. https://doi.org/10.1016/j.molliq.2011.12.015
  31. Voloshina A.D., Sapunova A.S., Kulik N.V. et al. Antimicrobial and cytotoxic effects of ammonium derivatives of diterpenoids steviol and isosteviol // Bioorg. Med. Chem. 2021. V. 32. p. 115974. https://doi.org/10.1016/j.bmc.2020.115974
  32. Rosen M.J., Kunjappu J.T. Surfactants and interfacial phenomena. John Wiley & Sons, Inc. 2012. https://doi.org/10.1002/9781118228920
  33. Song L.D., Rosen M.J. Surface properties, micellization, and premicellar aggregation of gemini surfactants with rigid and flexible spacers // Langmuir. 1996. V. 12. № 5. P. 1149–1153. https://doi.org/10.1021/la950508t
  34. Rosen M.J., Liu L. Surface activity and premicellar aggregation of some novel diquaternary gemini surfactants // J. Am. Oil Chem. Soc. 1996. V. 73. № 7. P. 885–890. https://doi.org/10.1007/BF02517990
  35. Tsubone K., Arakawa Y., Rosen M.J. Structural effects on surface and micellar properties of alkanediyl-α,ω-bis(sodium N-acyl-β-alaninate) gemini surfactants // J. Colloid Interface Sci. 2003. V. 262. № 2. P. 516–524. https://doi.org/10.1016/S0021-9797(03)00078-X
  36. Fisicaro E., Compari C., Biemmi M. et al. Unusual behavior of the aqueous solutions of gemini bispyridinium surfactants: apparent and partial molar enthalpies of the dimethanesulfonates // J. Phys. Chem. B. 2008. V. 112. № 39. P. 12312–12317. https://doi.org/10.1021/jp804271z
  37. Chauhan V., Singh S., Kaur T. Self-assembly and biophysical properties of gemini 3-alkyloxypyridinium amphiphiles with a hydroxyl-substituted spacer // Langmuir. 2015. V. 31. № 10. P. 2956–2966. https://doi.org/10.1021/la5045267
  38. Pashirova T.N., Sapunova A.S., Lukashenko S.S. et al. Synthesis, structure-activity relationship and biological evaluation of tetracationic gemini Dabco-surfactants for transdermal liposomal formulations // Int. J. Pharm. 2020. V. 575. p. 118953. https://doi.org/10.1016/j.ijpharm.2019.118953
  39. Lianos P., Zana R. Fluorescence probe studies of the effect of concentration on the state of aggregation of surfactants in aqueous solution // J. Colloid Interface Sci. 1981. V. 84. № 1. P. 100–107. https://doi.org/10.1016/0021-9797(81)90263-0
  40. Zana R., Binana-Limbele W., Kamenka N. et al. Ethyl(hydroxyethyl)cellulose-cationic surfactant interactions: electrical conductivity, self-diffusion and time-resolved fluorescence quenching investigations // J. Phys. Chem. 1992. V. 96. № 13. P. 5461–5465. https://doi.org/10.1021/j100192a050
  41. Danino D., Talmon Y., Zana R. Alkanediyl-.alpha.,.omega.-bis(dimethylalkylammonium bromide) surfactants (dimeric surfactants). 5. Aggregation and microstructure in aqueous solutions // Langmuir. 1995. V. 11. № 5. P. 1448–1456. https://doi.org/10.1021/la00005a008
  42. Araki M., Fujii S., Lee J.H. et al. Non-dependence of dodecamer structures on alkyl chain length in platonic micelles // Soft. Matter. 2019. V. 15. № 17. P. 3515–3519. https://doi.org/10.1039/C9SM00076C
  43. Fujii S., Yamada S., Matsumoto S. et al. Platonic micelles: Monodisperse micelles with discrete aggregation numbers corresponding to regular polyhedra // Sci. Rep. 2017. V. 7. p. 44494. https://doi.org/10.1038/srep44494
  44. Tishkova E.P., Fedorov S.B., Kudryavtseva L.A. et al. Antimicrobial activity and colloidal properties of N-alkyl-N-(2-oxyethyl)dimethylammonium halides // Pharm. Chem. J. 1989. V. 23. P. 418–422. https://doi.org/10.1007/BF00758296
  45. Balgavý P., Devínsky F. Cut-off effects in biological activities of surfactants // Adv. Colloid Interface Sci. 1996. V. 66. P. 23–63. https://doi.org/10.1016/0001-8686(96)00295-3
  46. Devínsky F., Kopecka-Leitmanová A., Šeršeň F. et al. Cut-off effect in antimicrobial activity and in membrane perturbation efficiency of the homologous series of N,N -dimethylalkylamine oxides // J. Pharm. Pharmacol. 1990. V. 42. № 11. P. 790–794. https://doi.org/10.1111/j.2042-7158.1990.tb07022.x
  47. Pashirova T.N., Lukashenko S.S., Zakharov S.V. et al. Self-assembling systems based on quaternized derivatives of 1,4-diazabicyclo[2.2.2]octane in nutrient broth as antimicrobial agents and carriers for hydrophobic drugs // Colloids Surf. B Biointerfaces. 2015. V. 127. P. 266–273. https://doi.org/10.1016/j.colsurfb.2015.01.044
  48. Zhiltsova E.P., Pashirova T.N., Kashapov R.R. et al. Alkylated 1,4-diazabicyclo[2.2.2]octanes: self-association, catalytic properties, and biological activity // Russ. Chem. Bull. 2012. V. 61. P. 113–120. https://doi.org/10.1007/s11172-012-0016-7
  49. Manaargadoo-Catin M., Ali-Cherif A., Pougnas J.-L. et al. Hemolysis by surfactants – A review // Adv. Colloid Interface Sci. 2016. V. 228. P. 1–16. https://doi.org/10.1016/j.cis.2015.10.011
  50. Gilbert P., Moore L.E. Cationic antiseptics: diversity of action under a common epithet // J. Appl. Microbiol. 2005. V. 99. № 4. P. 703–715. https://doi.org/10.1111/j.1365-2672.2005.02664.x
  51. Jones M.N. Surfactants in membrane solubilisation // Int. J. Pharm. 1999. V. 177. № 2. p. 137–159. https://doi.org/10.1016/S0378-5173(98)00345-7

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Структура дикатионных ПАВ бис-ДАБКО-n, где R = CnH2n+1 c n = 12, 14, 16, 18, 20; R`=C2H4OH.

Скачать (62KB)
3. Рис. 2. Изотермы поверхностного натяжения водных растворов бис-ДАБКО-n, где n = 14 (1), 16 (2), 18 (3), 20 (4), 25°C.

Скачать (123KB)
4. Рис. 3. Зависимости удельной электропроводности водных растворов бис-ДАБКО-n, где n = 14 (1), 16 (2), 18 (3), 20 (4), 25°C.

Скачать (223KB)
5. Рис. 4. Зависимость log ККМ, МИК в отношении Staphylococcus aureus АТСС 209p (Sa) и Candida albicans NCTC885–653 (Ca), HC50 от числа атомов углерода (n) алкильной цепи для бис-ДАБКО-n.

Скачать (127KB)
6. Рис. 5. Изменение поглощения насыщенных водных растворов ОранжОТ в зависимости от концентрации бис-ДАБКО-n, где n = 14 (1), 16 (2), 18 (3), 20 (4), λ = 495 нм; L=1 см; 25°C.

Скачать (112KB)
7. Рис. 6. Спектры флуоресценции пирена в растворах бис-ДАБКО-14 (а) и зависимости отношения интенсивности первого и третьего пиков пирена (I1/I3) в растворах бис-ДАБКО-n, где n = 14 (1), 16 (2), 18 (3), 20 (4) от их концентрации (б), 25°C.

Скачать (222KB)
8. Рис. 7. Зависимость ln (I0/I) в растворах бис-ДАБКО-n, где n = 14 (1), 16 (2), 18 (3), 20 (4), от концентрации ЦПБ при Сбис-Dabco-14 = 0.02 М (1), Сбис-Dabco-16 = 0.005 М (2), Сбис-Dabco-18 = 0.005 М (3), С бис-Dabco-20 = 0.004 М (4), λ = 394 нм.

Скачать (103KB)

© Российская академия наук, 2025