— МОРСКАЯ ГЕОЛОГИЯ =

УДК 551.435.3

ШТОРМОВЫЕ ДЕФОРМАЦИИ БЕРЕГОВОГО СКЛОНА С ПОДВОДНЫМИ ВАЛАМИ © 2019 г. И.О. Леонтьев

Институт океанологии им. П.П. Ширшова РАН, Москва, Россия e-mail: igor.leontiev@gmail.com

> Поступила в редакцию 01.03.2017 г. После доработки 07.03.2017 г.

Показано, что поведение системы подводных валов во время шторма может быть описано в рамках модели, допускающей, что валы перемещаются в сторону моря с приблизительно одинаковой средней скоростью, а глубины над ними увеличиваются в соответствии с локальными уклонами дна. Анализ баланса взвешенных наносов над вершиной вала приводит к выражению скорости его движения, которое демонстрирует очень сильную зависимость от отношения высоты волн к глубине над гребнем вала. При использовании эмпирического критерия активности вала предложенная модель позволяет определить смещение валов за время шторма и предсказать пост-штормовой профиль дна. Сравнение с опубликованными данными натурных наблюдений приводит к выводу о том, что расчетные и наблюдаемые штормовые деформации берегов с подводными валами в основном согласуются друг с другом.

Ключевые слова: система подводных валов, транспорт наносов, штормовые деформации дна, сценарий шторма, эффективная высота волн.

DOI: https://doi.org/10.31857/S 0030-157459125-132

введение

Системы подводных валов, включающие более одного элемента, широко распространены на сравнительно пологих песчаных берегах морей, крупных озер и водохранилищ. Они развиваются при наличии достаточных запасов песка на дне, когда средний уклон дна в пределах активной части профиля составляет 0.01–0.015.

При средних уклонах более 0.02 подводный склон чаще всего характеризуется одним валом в зоне обрушения волн, либо валообразные структуры выражены слабо, и профиль описывается более или менее монотонной кривой. Штормовые изменения профилей подобного типа активно изучались в лабораторных и натурных условиях [13, 14, 20], и к настоящему времени создан целый ряд математических моделей, позволяющих с большей или меньшей достоверностью предсказать деформации дна при заданном волнении [2, 6, 14, 15, 18].

В условиях мультиваловых систем изменения рельефа дна определяются перемещениями валов, которые, с одной стороны, связаны с текущей волновой обстановкой, а с другой — контролируются долговременными циклами развития. Механизмы формирования подобных систем и их поведение в различных масштабах времени служили предметом многочисленных исследований, результаты которых обобщены, например, в работах [4, 6, 16, 19].

В связи с рассматриваемой проблемой штормовых деформаций наибольший интерес представляют подвижки валов на масштабах времени, сравнимых с длительностью отдельных штормов. Как установлено наблюдениями, при достаточно сильном волнении подводные валы смещаются в сторону моря, а при меньшей волновой активности они движутся к берегу, что контролируется отношением высоты волн H к глубине над вершиной вала h_c , H_c/h_c . По результатам [11], внешний (более удаленный от берега) вал системы во время шторма перемещается от берега при условии

$$H_{rm}/h_c>0.4,$$
 (1)

где H_{mns} — среднеквадратичная высота волн. Данное условие подразумевает обрушение значительной доли волн, проходящих над валом. При значениях H_{mns}/h_c около 0.3 отмечается движение

вала к берегу, а при меньших H_{ms}/h_c его активность прекращается. Внутренний вал перемещается в море при значениях $H_{ms}/h_c > 0.5$, которые, однако, практически всегда достигаются, если выполнено условие (1) для внешнего вала.

Для предсказания изменений рельефа требуется знать скорость движения вала и расстояние, на которое он может переместиться при данном шторме. В настоящей работе предлагается модель для оценки динамических характеристик валов, позволяющая подойти к прогнозу штормовых деформаций береговых склонов с подводными валами. Расчеты сравниваются с опубликованными данными наблюдений в условиях мультиваловых систем с различными параметрами.

СКОРОСТЬ СМЕЩЕНИЯ ВАЛА ВО ВРЕМЯ ШТОРМА

Согласно теории автора [3], равновесие подводного вала определяется балансом горизонтального и вертикального потоков взвешенных наносов, первый из которых обусловлен противотечением в прибойной зоне, а второй - осаждением облака взвеси, переносимого бором, возникающим после обрушения волн. При увеличении высоты волн в процессе развития шторма область потенциального равновесия смещается в сторону моря, поскольку зона обрушения волн сдвигается в сторону больших глубин (из положения 1 в положение 2, как показано на рис. 1). Тогда действие несбалансированного расхода наносов над вершиной вала q приводит к выносу материала на морской склон, что вызывает смещение вала из положения 1 в положение 2 (рис. 1).

За время Δt выносится объем песка $q_c \Delta t$, который распределяется по высоте вала Z_{bar} и вызывает его выдвижение в море на расстояние Δl . Источником материала служит обращенный к берегу склон вала, который отступает на ту же величину. Таким образом, расстояние Δl определяется равенством объемов $q_c \Delta t = Z_{bar} \Delta l$, а скорость смещения вала $v_{bar} = \Delta l / \Delta t$ выражается соотношением

$$v_{bar} = q_c / Z_{bar}. (2)$$

Расход наносов q можно представить как

$$q_c = h_A U_A \overline{c}_A ,$$

(3)

где U_c и \overline{c}_c – скорость противотечения и усредненная по глубине концентрация взвеси над вершиной вала. Последняя выражается через объем взвешенных частиц на единицу площади дна Ω как $\overline{c}_c = \Omega/h_c$. Объем, в свою очередь, связан с массой соотношением m = $\rho_c(1-\sigma) \Omega$, где ρ_c – плотность твердых частиц, $\sigma-$ пористость песчаного грунта, откуда следует

$$\overline{c}_c = m/[\rho_{g}h_c(1-\sigma)].$$
(4)

Согласно теории Бэгнольда [10], на поддержание во взвешенном состоянии определенного веса твердых частиц P тратится некоторая часть ε_s мощности волнового потока $\overline{\tau}u$, теряемой при донном трении:

$$Pw_g = \varepsilon_s \overline{\tau u}$$
 ИЛИ $\frac{\rho_g - \rho}{\rho_g} mgw_g = \frac{\varepsilon_s}{2} \rho f(\vec{\phi})$

Здесь w_g — скорость осаждения (гидравлическая крупность) твердых частиц. $\tau = (1/2)f\rho|u|u$ — донное касательное напряжение, ρ — плотность воды, g — ускорение силы тяжести, f — коэффициент трения, u — орбитальная скорость у дна, горизонтальная черта означает осреднение за период волн. В случае синусоидальных волн имеем

$$\overline{|u|^3} = \frac{4}{3\pi} u_m^3$$
, $u_m = \frac{1}{2} \frac{H}{h} \sqrt{gh}$, (6)

где выражение амплитуды орбитальной скорости записано для условий мелкой воды.

С учетом соотношений (4), (5) и (6) величина определяется как

$$\overline{c}_{c} = \frac{\varepsilon_{s}}{12\pi} \frac{f}{(s-1)(1-\sigma)} \frac{\sqrt{gh_{c}}}{w_{g}} \left(\frac{H_{c}}{h_{c}}\right)^{3}$$
(7)

где $s = \rho_s / \rho$. Что касается скорости противотечения U_s , то в приближении малых волн на мелкой воде она выражается соотношением [2]:

$$U_c = -\frac{1}{8} \left(\frac{H_c}{h_c}\right)^2 \sqrt{gh_c} \quad , \tag{8}$$

где знак минус соответствует течению от берега в море.

Подставив (7) и (8) в (3), найдем расход наносов над вершиной вала q_c , а затем определим из (2) скорость смещения вала. В итоге получим

$$v_{bar} = -b_0 \frac{h_c}{Z_{bar}} \frac{gh_c}{w_g} \left(\frac{H_c}{h_c}\right)^3, b_0 = \frac{\varepsilon_s}{96\pi} \frac{f}{(s-1)(1(9))}$$

Как видно, скорость вала очень чувствительна к изменениям относительной высоты волн H_c/h_c . Если v_{bar} измеряется в м/ч, то при стандартных значениях ε_s =0.02, f=0.02, s=2.65, σ =0.4 безразмерная константа b_0 в (9) близка к 0.005.

Скорость движения вала, к слову, не постоянна во времени и должна замедляться по мере его приближения к новому равновесному положению. Учесть эти изменения в рамках примененного подхода невозможно, и в дальнейшем будем рассматривать величину v_{bar} как характеристику, усредненную за время данного шторма.

ОПРЕДЕЛЕНИЕ ПОСТШТОРМОВОГО ПРОФИЛЯ

Из опубликованных данных наблюдений, речь о которых ниже, следует, что поведение внешнего и внутреннего валов системы во время шторма имеет в какой-то мере согласованный характер. Если внешний вал смещается в сторону моря, то же происходит и с внутренним валом, причем больших различий в пройденных ими расстояниях не отмечается.

Исходя из этого, допустимо принять упрощенную модель, в соответствии с которой внешний и внутренний валы во время шторма движутся в сторону моря с одинаковой средней скоростью v_{bar} . Последняя определяется зависимостью (9), где в качестве параметра относительной высоты используется величина H_{rms}/H_s , относящаяся к внешнему валу, а критерием начала движения служит условие (1).

Штормовой цикл включает фазы развития, максимума и затухания, характеризуемые изменениями во времени высоты волн на входе в береговую зону (рис. 2). Перемещение вала, определяемое зависимостью (9), возможно лишь в тот период времени t_{Σ} , когда высота волн превышает некоторое минимальное значение H_{min} , обеспечивающее выполнение условия (1). Вне интервала времени t_{Σ} валы могут сохранять стабильность или смещаться к берегу. Однако при пониженной волновой активности возможные изменения едва ли существенны, и полное смещение валов Δ_{bar} за время шторма можно приближенно оценить как

$$\Delta_{bar} = v_{bar} t_{\Sigma}.$$
 (10)

Под величиной v_{bar} будем понимать скорость, которая отвечает некоторой «эффективной» высоте волн H_e , учитывающей временную структуру шторма [7]:

$$H_{e} = H_{max} - (H_{max} - H_{min})(t_{d}/t_{\Sigma})^{0.7}.$$
 (11)

Здесь H_{max} — максимальная высота волн в пике шторма, а $t_d = t_{dl} + t_{d2} + ... + t_{dn}$ — суммарная продолжительность фаз затухания волнения (рис. 2). Если затухание происходит быстро, то $t_d/t_{\Sigma} \rightarrow 0$ и $H_e \rightarrow H_{max}$, а при длительном затухании $t_d/t_{\Sigma} \rightarrow 1$ и $H_e \rightarrow H_{max}$, высота H_e , таким образом, характеризует масштаб штормовых воздействий и потенциальных морфологических изменений берегового склона [7]. Под величинами H_{e^2} , H_{min} и H_{max} подразумеваются значительные высоты H_s (средние из трети наиболее высоких волн в системе, имеющие обеспеченность около 13%), которые обычно используются в практике.

Рис. 1. Схема смещения подводного вала во время шторма: l и 2- последовательные положения вала и зоны обрушения волн, h_c и q_c – глубина и расход наносов над вершиной вала, Z_{bar} – высота вала, Δl – расстояние, на которое перемещается вал.

Рис. 2. Схема штормового цикла: H_{max} – максимальная высота волн в пике шторма, H_e – «эффективная» высота, и H_{min} – минимальная (пороговая) высота и суммарная продолжительность движения валов при данном шторме,

 t_{d1} и $t_{d2}^{}-$ длительности фаз затухания волнения.

Оценка минимальной высоты волн Н_{тіп}, при которой начинается движение валов в сторону моря, основывается на расчетах параметра H_{ms}/h_s для внешнего вала при различных значениях высот волн на входе. В данной работе для этого используются модели автора [5, 8]. На рис. 3 показан пример расчетных распределений высот волн H_s и величин H_{ms}/h по профилю берегового склона с подводными валами при разных исходных высотах на глубокой воде - 1.5, 2.0 и 2.5 м. За основу взят профиль в пункте Эгмонд на побережье Голландии [17]. Как видно, H_{me}/h над внешним валом начинает превышать 0.4 (т.е. удовлетворять условию (1) при высоте *H* равной 2 м, и именно это значение должно приниматься в качестве Н_{тіп}. Заметим, что над внутренним валом при этом $H_{ms}/h > 0.5$, и в соответствии с упомянутым ранее результатом [11] он также должен смещаться в море.

Поскольку валы перемещаются по наклонному дну, то при сдвиге в сторону моря глубины над ними увеличиваются. Увеличение глубин Δh оценивается как $\Delta h = \beta |\Delta_{bar}|$, где β — уклон дна в районе данного вала. Для внешнего вала уклон определяется по разности глубин в начале профиля h_0 и в расположенной впереди вала ложбине h_{11} : $\beta_1 = (h_0 - h_{11})/l_1$, где l_1 — расстояние между соответствующими точками, что поясняет нижний график на рис. 3. Уклоны в районе внутренних валов рассчитываются по разности глубин h_{11} и h_{22} в примыкающих ложбинах с учетом расстояния между ними l_2 , т.е. $\beta_2 = (h_{11} - h_{22})/l_2$ (рис. 3).

ДАННЫЕ ДЛЯ ВЕРИФИКАЦИИ МОДЕЛИ

Проверка модели должна опираться на данные наблюдений, включающих промеры берегового профиля с подводными валами до и после шторма, а также регистрацию сценария шторма (изменений его параметров во времени). Далеко не все опубликованные материалы такого рода обладают нужными качествами. В итоге проведенного анализа были отобраны 5 серий данных, относящихся к приливным и неприливным берегам в различных географических регионах.

В таблице приведены основные параметры штормов, зарегистрированных в период наблюдений, включая значения высот волн (H_{min} , H_{max} и H_e), общую продолжительность (t_{Σ}) и длительность затухания (t_d) волнения. Указаны также средняя высота штормового нагона η , характерный размер частиц песка d_g и номера активных валов в системе N_{bar} , где номер I соответствует наиболее удаленному от берега валу. Примеры 1 и 5 относятся к неприливным бассейнам, а в остальных случаях амплитуда прилива колебалась в пределах 0.5–1 м. На рис. 4 показаны сценарии зарегистрированных штормов (имеются в виду изменения во времени значительных высот волн H_s в открытом море) и отмечены минимальные высоты H_{min} , при которых должно было начинаться перемещение валов в сторону моря. Значения H_{min} изменялись в пределах от 1.25 до 2.0 м. Максимальные высоты волн достигали 4–5 м, а длительность штормов составляла от нескольких суток до одной недели.

N⁰	Район	<i>d</i> _g , мм	Период наблюд.	η, м	<u> </u>	$\frac{t_{\Sigma}}{t_{d}}, M$	<i>Н</i> _е , м	$N_{\scriptscriptstyle bar}$	<i>v_{bar}</i> , м/ч	Δ _{<i>bai</i>} , м
1	Любятово, Балт. море [1]	0.2	11–21.10. 1976	0.5	3.6 1.5	$\frac{76}{37}$	2.33	III, IV	-0.230	-17.5
2	Дак, Атлант. океан [14]	0.16	07–15.12. 1982	0.5	$\frac{3.6}{1.5}$	$\frac{50}{30}$	2.60	I, II	-0.948	-47.4
3	Скаллинген, Сев. море [9]	0.2	16-21.10. 1995	0.5	$\frac{3.6}{1.5}$	$\frac{60}{33}$	1.41	II	-0.185	-11.1
4	Эгмонд, Сев. море [17]	0.2	18-31.10. 1998	0.7	$\frac{3.6}{1.5}$	<u>150</u> 66	3.22	I, II	-0.164	-24.6
5	Берли Бич, Оз. Гурон [12]	0.2	18-28.10. 2001	0.3	$\frac{3.6}{1.5}$	$\frac{71}{38}$	2.19	I, II	-0.213	-15.1

Таблица. Районы наблюдений, характеристики штормов и расчетные параметры перемещения подводных валов

Рис. 4. Сценарии штормов, зарегистрированных в ходе наблюдений. Номера графиков те же, что в таблице.

В примере 1 средние высоты волн, указанные в приложении к сборнику [1], пересчитывались в значительные *H*_s на основе распределения Рэлея (переходный коэффициент 1.6).

На рис. 5 представлены профили дна с подводными валами, зафиксированные до и после шторма, а также профили, рассчитанные на основе рассмотренной модели. Номера подводных валов, отмеченные римскими цифрами, возрастают в сторону берега.

В примере 1 (Любятово) на береговом склоне наблюдаются 4 вала, из которых только 2 внутренних вала (3 и 4) были активны в период наблюдений. В остальных примерах системы включают по меньшей мере 2 вала. В случае 3 присутствовал также вал в полосе прилива (intertidal bar), поведение которого не поддается описанию в рамках рассматриваемой модели.

СРАВНЕНИЕ РАСЧЕТОВ С ДАННЫМИ НАБЛЮДЕНИЙ

Прежде всего, отметим, что все расчеты теоретических профилей, основанные на формуле (9), оказалось возможным выполнить с одним и тем же значением коэффициента $b_0=0.004$. Последнее, кстати, довольно близко к приведенной ранее оценке 0.005, основанной на стандартных значениях входящих в формулу констант. Отсутствие необходимости калибровать формулу в каждом отдельном случае означает, что зависимость (9) учитывает достаточный набор факторов, контролирующих поведение валов во время шторма, и это, в свою очередь, упрощает практическое использование модели.

Расчетные скорости v_{bar} и расстояния Δ_{bar} , на которые должны были сместиться валы за время шторма, указаны в последних колонках таблицы. В большинстве случаев скорость v_{bar} колеблется в интервале от 0.16 до 0.23 м/ч, а сдвиг валов характеризуется величинами от 11 до 25 м. Только в примере 2 скорость превышает 0.9 м/ч, а смещение валов приближается к 50 м. Наблюдаемые смещения валов, как видно на рис. 5, в общем не сильно отличаются от расчетных оценок.

Рис. 5. Сравнение профилей дна, измеренных до и после шторма (1 и 2 соответственно) и рассчитанных по предложенной модели (3). Подводные валы отмечены римскими цифрами. Номера профилей и валов те же, что в таблице.

При более детальном сравнении данных, представленных на рис. 5, можно обнаружить, что внутренние валы немного отстают от внешних, и это приводит к менее контрастным изменениям рельефа, чем следует из расчетов. Предсказанный размыв дна за счет смещения межваловых ложбин в ряде случаев оказывается больше действительного. Максимальные штормовые деформации дна, зафиксированные при наблюдениях, близки к 1.5 м, тогда как расчеты дают величину около 2 м. Таким образом, размыв дна предсказывается с некоторым запасом, что с инженерной точки зрения не является большим недостатком.

В целом наблюдаемые и расчетные тенденции изменения морфологии дна согласуются друг с другом. Заметных отличий в характере перемещений подводных валов в условиях приливных и неприливных берегов не отмечается.

ЗАКЛЮЧЕНИЕ

Один из главных выводов проведенного исследования заключается в том, что, несмотря на кажущуюся непредсказуемость, поведение мультиваловой системы во время шторма может быть описано в рамках сравнительно простой детерминистической модели. Она основывается на допущении о том, что внешний и внутренний валы перемещаются в сторону моря с приблизительно одинаковой скоростью, и при этом глубины над ними увеличиваются в соответствии с локальными уклонами дна.

Смещение валов трактуется как результат дисбаланса потоков взвешенных наносов при усилении волнения во время шторма. Из полученной формулы (9) следует, что скорость смещения v_{bar} связана с параметрами вала и крупностью наносов, но сильнее всего зависит от отношения высоты волн к глубине над гребнем вала H_c/h_c .

В качестве условия начала движения принят эмпирический критерий. С его учетом на базе волновых расчетов оцениваются пороговое значение высоты штормовых волн и суммарное время t_{Σ} , в течение которого возможно перемещение валов при данном шторме. Скорость v_{bar} рассчитывается по «эффективной» высоте волн, учитывающей временную структуру шторма, а полное смещение валов определяется произведением $v_{bar}t_{\Sigma}$. Описанный алгоритм позволяет предсказать постштормовой профиль и оценить потенциальные изменения морфологии дна. Верификация модели, осуществленная на основе опубликованных материалов наблюдений, приводит к выводу о том, что наблюдаемые и расчетные штормовые деформации дна в основном согласуются друг с другом. При этом заметных отличий в динамике подводных валов в условиях приливных и неприливных берегов не обнаруживается.

В периоды между штормами подводные валы перемещаются к берегу, стремясь занять равновесное положение, соответствующее условиям пониженной волновой активности. Этот процесс не может быть описан в рамках рассмотренной модели и требует дальнейшего исследования.

В заключение обратим внимание на тот факт, что в условиях мультиваловых систем положение уреза воды почти не меняется в результате штормового воздействия, каким бы сильным оно не было. В то же время на профилях, не обладающих системой подводных валов, смещение береговой линии за шторм может достигать первых десятков метров. В этом различии наглядно проявляется роль валов как демпфирующего механизма, защищающего пляж от размыва.

Источник финансирования. Работа выполнена при финансовой поддержке РФФИ (проекты № 15-05-08239, № 16-05-00364А и № 16-55-76002 ЭРА_а).

СПИСОК ЛИТЕРАТУРЫ

- 1. Гижевски Е., Мельчарски А., Николов Х. и др. Строение и кратковременная изменчивость подводного берегового склона // Береговые процессы бесприливного моря (Любятово-76). Гданьск: Ин-т водного строительства Польской академии наук, 1978. С. 337–350.
- 2. Леонтьев И.О. Прибрежная динамика: волны, течения, потоки наносов. М.: ГЕОС, 2001. 272 с.
- 3. Леонтьев И.О. О механизме формирования подводного вала на песчаном береговом склоне // Океанология. 2009. Т. 49. № 2. С. 304-312.
- 4. *Леонтьев И.О.* Подводные валы на песчаных берегах // Океанология. 2011. Т. 51. № 1. С. 146-152.
- 5. *Леонтьев И.О.* Упрощенный метод расчета нерегулярных волн в береговой зоне // Океанология. 2011. Т. 51. № 2. С. 370–375.
- 6. Леонтьев И.О. Морфодинамические процессы в береговой зоне моря. Saarbrücken: LAP LAMBERT Academic Publishing. 2014. 251 с.
- 7. Леонтьев И.О. Моделирование берегового про-

филя, сформированного штормовым циклом // Океанология. 2018. Т. 58. №6. С. 973-981.

- 8. Леонтьев И.О., Рябчук Д.В., Сергеев А.Ю. Моделирование штормовых деформаций песчаного берега (на примере восточной части Финского залива) // Океанология. 2015. Т. 55. № 1. С. 147–158.
- 9. Aagaard T., Nielsen J., Greenwood B. Suspended sediment transport and nearshore bar formation on a shallow intermediate-state beach // Marine Geology. 1998. V. 148. P. 203–225.
- 10. *Bagnold R.A.* Mechanics of marine sedimentation // The Sea. V. 3. N. Y.: J. Wiley, 1963. P. 507–528.
- Houser C., Greenwood B. Profile response of a lacustrine multiple barred nearshore to a sequence of storm events // Geomorphology. 2005. V. 69. P. 118–137.
- 12. *Houser C., Greenwood B.* Hydrodynamics and sediment transport within the inner surf zone of a lacustrine multiple-barred nearshore // Marine Geology. 2005. V. 218. P. 37–63.
- Inman D.L., Elwany H.S., Jenkins S.A. Shorerise and bar-berm profiles on ocean beaches // J. of Geophys. Res. 1993. V. 98. № C10. P. 18181–18199.
- Larson M., Kraus N.C. SBEACH: numerical model for simulating storm-induced beach change. Tech. Rep. CERC-89-9. 1989. US Army Eng. Waterw. Exp. Station. Coastal Eng. Res. Center.
- Roelvink D., Reniers A., van Dongeren A. et al. Modelling storm impacts on beaches, dunes and barrier islands // Coastal Engineering. 2009. V. 56. P. 1133–1152.
- Ruessink B.G., Terwindt J.H.J. The behavior of nearshore bars on the time scale of years: a conceptual model // Marine Geol. 2000. V. 163. P. 289-302.
- 17. Van Rijn L.C., Walstra D.J.R., Grasmeier B. et al. The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and season using process-based profile models // Coastal. Engineering. 2003. V. 47. P. 295–327.
- Van Rijn L.C., Tonnon P.K., Walstra D.J.R. Numerical modeling of erosion and accretion of plane sloping beaches at different scales // Coastal Engineering. 2011. V. 58. P. 637–655.
- 19. Wijnberg K.M., Kroon A. Barred beaches // Geomorphology. 2002. V. 48. P. 103–120.
- Wise A., Smith S.J., Larson M. SBEACH: numerical model for simulating storm-induced beach change. Tech. Rep. CERC-89-9. Report 4: Cross-shore transport under random waves and model validation with supertank and field data. US Army Corps of Engineers. 1996.

Storm-Induced Deformations of Barred Beach Slope © 2019 I. O. Leont'yev

Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia e-mail: igor.leontiev@gmail.com

Received March 1, 2017 After revision March 7, 2017

It is shown that behavior of the multiple-bar system during a storm can be described in frameworks of the model assuming that bars move toward the sea with almost the same mean speed, while the over-bar depths increase in accordance with the local bed slope. Analysis of suspended-sediment balance over the bar crest leads to expression for the bar movement speed, which demonstrates very strong dependence on ratio of wave height to the over-bar depth. Using empirical criterion of bar activity the model suggested is capable assess the bar displacement during a storm action and predict the post-storm bed profile. Comparison with the published field data leads to conclusion that the computed and observed storm-induced deformations of barred beach slopes are in satisfactorily agreement.

Keywords: longshore sand bar system, sediment transport, storm-induced bed changes, storm scenario, effective wave height.