—— **ХИМИЯ МОРЯ**

УДК 550.47:556.54

УГЛЕВОДОРОДЫ НА ГРАНИЦЕ ВОДА—АТМОСФЕРА В БАРЕНЦЕВОМ И КАРСКОМ МОРЯХ

© 2023 г. И. А. Немировская^{1, *}, А. В. Храмцова^{1, **}

¹Институт океанологии им. П.П. Ширшова РАН, Москва, Россия
*e-mail: nemir44@mail.ru

**e-mail: asya-medvedeva95_16@mail.ru
Поступила в редакцию 28.09.2022 г.
После доработки 06.10.2022 г.
Принята к публикации 16.12.2022 г.

Определены концентрации и состав углеводородов (УВ, алифатических — АУВ и полициклических ароматических углеводородов — ПАУ) в Баренцевом и Карском морях (80-й и 83-й рейсы НИС "Академик Мстислав Келдыш", август 2020 г. и июнь 2021 г. соответственно) в поверхностном микрослое (ПМС), толщиной около 300 мкм, в тающих льдах и в поверхностных водах. Концентрирование УВ в ПМС происходит во взвеси. В Баренцевом море содержание АУВ во взвеси были ниже (31—96, в среднем 68 мкг/л) по сравнению с Карским (197—1051, в среднем 669 мкг/л), где исследования проводили в раннелетний сезон. Концентрации АУВ в ПМС во взвеси Карского моря были в 3.6 раз выше, чем в растворенной форме (127—217, в среднем 187 мкг/л), а по сравнению с взвесью поверхностных вод — почти в 15 раза выше. Аккумулирование органических соединений происходит также во льдах, но в меньшей степени, чем в ПМС. Состав алканов в ПМС и тающих льдах свидетельствует в основном о незначительном влиянии автохтонных процессов на образование УВ. Содержание ПАУ во взвеси также были выше в среднем в 4.8 раз, чем в растворенной форме. В составе ПАУ, согласно маркерам, прослеживалось влияние продуктов сгорания судового топлива.

Ключевые слова: поверхностный микрослой, тающий лед, Баренцево море, Карское море, алифатические углеводороды, полиароматические углеводороды, алканы, растворенная и взвешенные формы

DOI: 10.31857/S0030157423020107, EDN: NQJJVT

На акватории Баренцева и Карского морей в настоящее время ведется активная хозяйственная деятельность, связанная, прежде всего с нефте- и газоразведочными работами и их добычей, рыбным промыслом, транспортным и военным судоходством [1]. Нефтегазовые ресурсы этих морей составляют доминирующую часть (88%) извлекаемых углеводородных ресурсов арктического шельфа, которые оцениваются в 100 млрд т нефтяного эквивалента [8].

Освоение месторождений арктического шельфа приводит к тому, что география транспортировки сырой нефти и нефтепродуктов, в последние годы интенсивно расширяется [1]. Поэтому расположение основных терминалов совпадает с "горячими точками" с повышенными концентрациями УВ [5], так как 0.03% транспортируемой танкерами нефти и нефтепродуктов теряется по различным причинам [2, 20]. Антропосфера, где распространяются загрязняющие вещества, тесно связана с другими внешними сферами: атмо-, крио-, гидро-, седименто- и биосферой [14]. Это обусловлено не только источниками поступления загрязняющих веществ, но и их трансфор-

мацией и распределением по различным формам миграции [5, 20, 23, 29]. Поэтому актуальность изучения поведения углеводородов (УВ) в Баренцевом и Карском морях не вызывает сомнений.

В Арктике серьезные локальные загрязнения могут при определенных условиях приобретать региональный и даже циркумполярный характер [5]. Согласно данным со спутников в прибрежных акваториях нефтяные пленки встречаются довольно часто [24]. По имеющимся оценкам на морские перевозки нефти приходится в среднем 37% от суммарного поступления УВ в Мировой океан [23, 29].

Геохимическая барьерная зона атмосферавода — поверхностный микрослой (ПМС), толщиной около 300 мкм, привлекает внимание исследователей прежде потому, что здесь наблюдается резкое сгущение физических, химических и биологических свойств и здесь происходит аккумулирование загрязняющих веществ [12, 15, 34]. ПМС играет важную роль в современных флуктуациях климата, так как является межфазной зоной [12, 34], которая может существенно влиять

на энергомассообмен между океаном и атмосферой. Несмотря на то, что существование ПМС было известно давно, этот слой оставался в отдельной исследовательской нише, в первую очередь потому, что считалось, что он не существует в типичных океанических условиях [12, 33]. Недавние исследования показывают, что ПМС в значительной степени покрывает океан [34], что подчеркивает его глобальную значимость.

Кроме того органические соединения концентрируются во льдах, особенно на границе лед—вода [30]. В этом слое происходит наиболее значительное развитие диатомовых водорослей — ключевого биотопа морской экосистемы в высоких широтах [27].

С целью определения изменчивости в содержании и составе УВ (АУВ и ПАУ) в растворенной и взвешенной формах проведено их исследование в ПМС, льдах и поверхностных водах в Баренцевом и Карском морях (80-й и 83-й рейсы НИС "Академик Мстислав Келдыш", соответственно август 2020 г. и июнь 2021 г.). Эти исследования необходимы для понимания изменений, происходящих в арктических экосистемах не только под влиянием текущих климатических процессов, но и при увеличении антропогенной деятельности.

МЕТОЛЫ ИССЛЕДОВАНИЯ

Пробы ПМС отбирали с бака судна специальным экраном из нержавеющей стали, рекомендованным МОК/ВМО на станциях [22]. Этим же экраном были отобраны отдельные пробы льда. Кроме того пробы льда отбирали с трапа судна или с кормы специальной сетью. Для предотвращения загрязнения верхний слой льда снимали ножом из нержавеющей стали. Поверхностную воду отбирали при приближении судна к станции ведром.

Фильтрацию взвеси для определения ее массовой концентрации (мг/л) проводили в судовой лаборатории стандартным методом под вакуумом 400 мбар через мембранные ядерные фильтры (Ø пор 0.45 мкм, Ø фильтра 47 мм, производства ОИЯИ, г. Дубна). Каждую пробу одновременно фильтровали через три параллельных фильтра. Затем фильтры промывали дистиллированной водой и высушивали в чашках Петри при 55°С. Концентрацию взвеси определяли в лабораторных условиях взвешиванием фильтров с точностью до ±0.01 мг.

Для определения концентрации УВ взвесь фильтровали под вакуумом 200 мбар через стекловолокнистые фильтры GF/F фирмы Whatman, предварительно прокаленные при 450°С, (Ø фильтра 47 мм, эффективный размер пор 0.7 мкм).

Все органические растворители имели квалификацию о.с.ч. Метиленхлоридом экстрагировали суммарную фракцию органических соединений (липиды) из проб взвеси и расплавленных проб льда в ультразвуковой ванне, а из проб воды — специальной мешалкой в 5 л бутылях. Далее пробу концентрировали упариванием в роторном испарителе и переносили в бюксы для дальнейших анализов.

Отдельные углеводородные фракции выделяли гексаном методом колоночной хроматографии на силикагеле. Концентрацию липидов (до колоночной хроматографии на силикагеле) и АУВ (после колоночной хроматографии на силикагеле) определяли методом ИК-спектроскопии [9] на приборе IRAffinity-1 Shimadzu, Япония. В качестве стандарта использовали смесь (по объему): 37.5% изооктана, 37.5% гексадекана и 25% бензола (ГСО 7822-2000). Чувствительность метода — 3 мкг/мл экстракта [16].

Состав алканов определяли методом капиллярной газовой хроматографии (колонка длиной 30 м, жидкая фаза ZB-5) на хроматографе Intersmat GC 121-2, оснащенном пламенно-ионизационным детектором при программировании температуры от 100 до 320°C со скоростью 8°/мин.

Суммарную концентрацию ПАУ (после колоночной хроматографии) определяли методом флуориметрии на приборе "Trilogy" США, относительно стандарта нефтепродукта в гексане (ГСО 7950). Состав ПАУ определяли методом высокоэффективной жидкостной хроматографии на хроматографе "LC-20 Prominence" (Shimadzu, Япония); колонка — "Envirosep PP", при температуре термостата 40°C в градиентном режиме (от 50% до 90% объемной доли ацетонитрила в воде); скорость потока элюента — 1 см^3 /мин. При этом использовали флуоресцентный детектор "RF-20A" с программируемыми длинами волн поглощения и возбуждения. Расчет проводили с помощью программного обеспечения "LC Solution". Калибровали прибор при помощи индивидуальных ПАУ и их смесей производства фирмы "Supelco" (Merck, Германия). В результате были идентифицированы приоритетные полиарены, рекомендованные при изучении загрязненности морских объектов EPA (Environmental Pollution Agency) [28]: H-нафталин, 1-Ме $HA\Phi - 1$ -метилнафталин, 2-МеНАФ – 2-метилнафталин, АЦН– аценафтен, ФЛР – флуорен, ФЕН – фенантрен, АНТР – антрацен, ФЛ – флуорантен, ПР – пирен, БаН – бенз(а)антрацен, ХР – хризен, БеП – бенз(е)пирен, Бб Φ Л — бенз(b) ϕ луорантен, Бк Φ Л — бенз(k) ϕ луорантен, БП - бенз(а)пирен, ДБаhА - дибенз(a,h)антрацен, БПЛ – бенз(g,h,i)перилен, ИНД — индено[1,2,3-c,d]пирен.

Липиды, мкг/л Станция Горизонт АУВ, мкг/л % АУВ от липидов ПАУ*, нг/л ПМС 264 96 36 367 6840 53 Поверхн. 15 8 114 6841 ПМС 211 89 42 562 44 29 66 546 Поверхн. 351 м 27 13 48 121 6860 112 25 22 89 Поверхн. Лед-1 178 24 14 189 Лед-1** 61 20 33 89 Лел-2 308 58 19 132 Лед-2** 54 21 39 100 6868 ПМС 219 76 35 240 Поверхн. 37 9 24 122 6869 ПМС 138 46 33 325 Поверхн. 50 20 40 102 27 6873 ПМС 116 31 444 30 92 Поверхн. 46 14

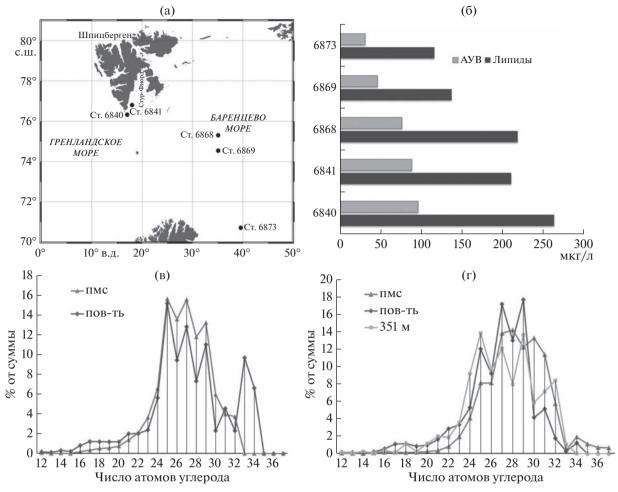
Таблица 1. Содержание органических соединений во взвеси в ПМС, во льдах и поверхностных водах Баренцева моря

Состав взвеси определяли на сканирующем электронном микроскопе VEGA-3sem, фирмы TESCAN, Чехия.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В Баренцевом море в августе 2020 г. в ПМС концентрации липидов ($116-264~{\rm MKr/л}$) и АУВ ($31-96~{\rm MKr/л}$) во взвеси были значительно выше, чем в поверхностном слое ($15-112~{\rm MKr/л}$ для липидов и $8-29~{\rm MKr/л}$ для АУВ, табл. 1).

Концентрирование гидрофобных АУВ в ПМС по сравнению с поверхностными водами должно происходить в большей степени, чем более полярных липидов (рис. 1). Действительно на станциях 6858, 6869 и 6870 коэффициент обогащения в ПМС для AYB был выше (1.7-8.4), чем для липидов (1.3-5.9). Однако в районе сипов, в Стурфиорде, где происходит высачивание УВ из осадочной толщи (станции 6840 и 6841 [10, 31]), эта закономерность нарушалась. Аккумулирование липидов в ПМС по сравнению с поверхностными водами здесь выше (4.8 и 18.9), чем АУВ (1.7 и 12). В составе алканов на этих станциях доминировали высокомолекулярные гомологи: отношение низко- к высокомолекулярным алканам – L/H (рассчитывается как $\sum (C_{9-24})/\sum (C_{25-35})$) колебалось в интервале 0.1-0.3 (табл. 2). На ст. 6841 была установлена наиболее низкая величина СРІ (отношение суммы нечетных алканов к сумме четных в высокомолекулярной области) в ПМС -1.02), а в поверхностных водах -1.29.


В составе алканов в низкомолекулярной области их распределение плавное (рис. 1в, г), а величины отношения C_{17}/C_{25} низкое -0.02-0.17, с более высокими значениями в поверхностных водах (табл. 2).

Содержание ПАУ в ПМС изменялось от 240 до $562 \, \text{нг/л}$ и также было выше, чем в поверхностных водах на этих станциях $89-546 \, \text{нг/л}$.

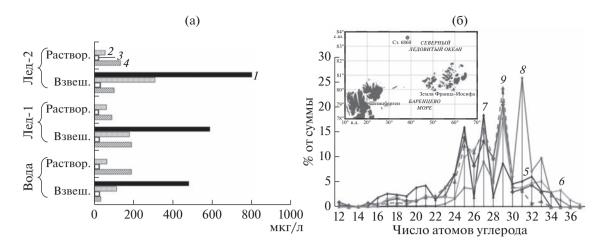
В 2-х пробах льда отобранных на ст. 6860 (первая проба отобрана треугольным экраном с бака судна, вторая - с трапа), также происходило концентрирование всех соединений по сравнению с поверхностной водой, особенно во второй пробе, где содержание взвеси между льдом и водой различалось в 1.7 раз, а содержание АУВ — более, чем в 2.8 раза. Концентрация липидов во взвеси составила 308 мкг/л, а в подледной воде -112 мкг/л (табл. 1). При этом содержание АУВ и липидов в растворенной форме было близким во льдах и в подледной воде. Здесь так же, как в ПМС в составе алканов доминировали высокомолекулярные гомологи (отношение L/H - 0.04 и 0.45), при пологом их распределении в низкомолекулярной области. Тем не менее, отношение C_{17}/C_{25} было повышено (0.16-0.17) по сравнению с ПМС, что может свидетельствовать о большем влиянии автохтонных процессов на формирование УВ во

^{*} Определены флуоресцентным методом.

^{**} Растворенная форма, остальное все во взвеси.

Рис. 1. Расположение станций в Баренцевом море (a), распределение концентраций липидов и АУВ (мкг/л) во взвеси в ПМС (б) и состав алканов на станциях 6840 (в) и 6841 (г).

льдах. Концентрации ПАУ во льдах оказались довольно низкими: 89-100 нг/л (табл. 1).


В Карском море в ПМС содержание АУВ изменялось во взвеси в интервале 197-1051 мкг/л (табл. 3), в среднем 669 мкг/л (стандартное отклонение — $\sigma = 251$), с максимумом у оконечности Н. Земли в желобе Святой Анны (рис. 3). Концентрации АУВ в ПМС в растворенной форме были значительно ниже: 127-217 мкг/л (табл. 3), в среднем 187 ($\sigma = 54$) мкг/л. Обусловлено это повышенной концентрацией самой взвеси в ПМС, где ее содержание в среднем составило 1.89 мг/л, и было в 6 раз выше, чем в поверхностном слое — в среднем 0.33 мг/л.

В поверхностных водах содержание AУВ во взвеси изменялось в интервале 15-120, в среднем 44 ($\sigma=33$) мкг/л. Столь высокая средняя концентрация возникла из-за аномального содержания AУВ на ст. 7021 (рис. 3 г). В большинстве проб содержание AУВ колебалось в интервале 20-30 мкг/л и было сопоставимо с данными, полученными во время паводка 2019 г., где средние концентрации

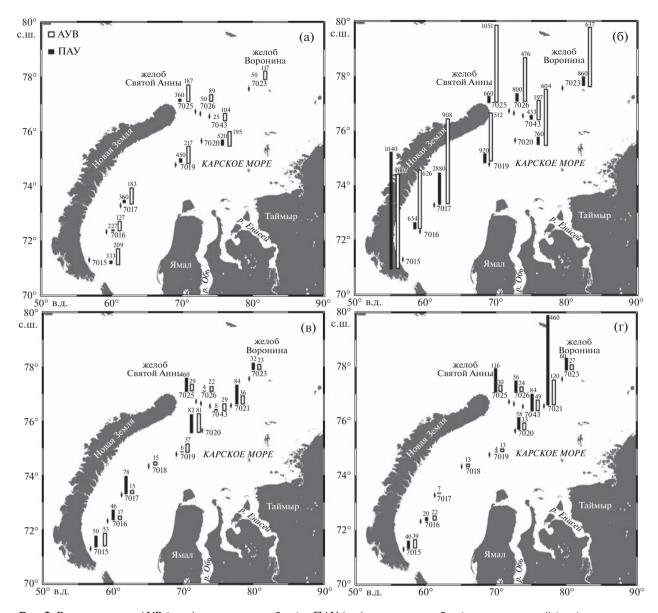
увеличивались от открытых районов Карского моря к Обской губе в среднем в интервале 20-59 мкг/л [18]. В растворенной форме содержание АУВ изменялось от 13 до 39 мкг/л (табл. 3), в среднем 22 ($\sigma=13$) мкг/л, и незначительно отличалось от их содержания во взвеси поверхностных вод.

На ст. 7021 вместо ПМС был отобран лед, а на ст. 7023 были отобраны разные формы льда: небольшие куски льда — треугольным экраном для отбора ПМС с бака судна (лед-1), лед толщиной до 0.5 м сетью с кормы судна (лед-2, лед-3), ведром с трапа — "шуга", рыхлый лед, смешанный с водой ("ледяная каша") между большими кусками льда.

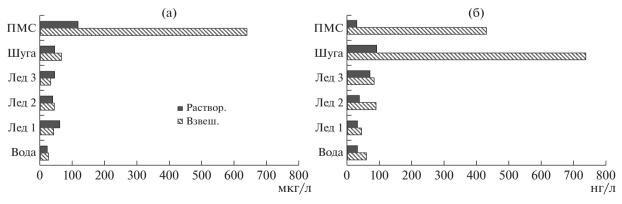
Оказалось, что в большей степени аккумулирование УВ происходит в шуге, особенно для ПАУ (рис. 4). Вода при волнении на поверхности, размягчая лед, оказывает на его структуру двойное действие: увеличивает число каналов и капилляров во льду, а также расширяет их диаметр, что интенсифицирует процессы обмена между водой и льдом. В частности для ПАУ, определен-

Рис. 2. Распределение взвеси (I), липидов (2); АУВ (3); ПАУ (4, нг/л); между льдом и подледной водой в растворенной и взвешенной формах (a) и состав алканов (b) на ст. 6860: лед-1, взвеш. (b); лед-1, раствор. (b); лед-2, взвеш. (b); поверхность, взвеш. (b). На вставке расположение ст. 6860 в Баренцевом море.

Таблица 2. Распределение маркеров в составе алканов в ПМС, льдах и поверхностных водах


Станция	Форма	Горизонт -	АУВ	УВ Маркеры состава алканов							
			мкг/л	C ₁₇ /C ₂₅	L/H	Paq	CPI	Ki	i-C ₁₉ /i-C ₂₀		
Баренцево море, август 2020 г.											
6840	Взвеш.	ПМС	96	0.02	0.20	0.53	1.19	1.48	0.40		
	»	Поверхн.	8	0.08	0.24	0.53	1.52	1.82	0.42		
6841	»	ПМС	89	0.02	0.10	0.43	1.02	1.91	0.43		
	»	Поверхн.	29	0.09	0.26	0.40	1.29	1.11	0.47		
6868	»	ПМС	76	0.01	0.10	0.33	1.11	2.02	0.57		
6860	»	П 1	24	0.10	0.30	0.40	1.62	2.76	0.64		
	Раствор.	Лед-1	20	0.16	0.18	0.36	1.72	1.59	0.29		
	Раствор.	п 2	21	0.06	0.04	0.09	2.67	1.62	0.22		
	Взвеш.	Лед-2	58	0.17	0.45	0.59	1.86	2.12	0.41		
Карское море, июнь 2021 г.											
7020	Раствор.	ПМС	195	0.09	0.22	0.20	1.69	0.22	0.20		
	Взвеш.	TIME	604	0.07	0.29	0.36	1.34	0.23	0.19		
	Раствор.	Поверхн.	33	0.17	0.36	0.36	1.05	0.18	0.13		
	Взвеш.	поверхн.	81	0.10	0.23	0.29	1.26	0.44	0.04		
7021	Раствор.	Лед	28	0.15	0.57	0.40	1.53	0.88	0.01		
	Взвеш.	лед	53	0.07	0.23	0.22	2.16	0.30	0.06		
	Раствор.	П	36	0.04	0.11	0.20	1.91	0.22	0.19		
	Взвеш.	Поверхн.	120	0.06	0.22	0.37	1.17	0.24	0.14		
7026	Раствор.	ПМС	89	0.22	1.25	0.61	1.12	0.12	0.45		
	Взвеш.	TIME	476	0.17	0.68	0.43	1.08	1.31	0.19		
	Раствор.	Попомить	22	0.16	0.94	0.40	1.13	0.09	0.47		
	Взвеш.	Поверхн.	24	0.31	1.18	0.53	1.47	0.80	0.23		

Примечание. (L/H - Σ (C₁₀₋₂₄)/ Σ (C₂₅₋₃₅); Paq - (C₂₃ + C₂₅)/(C₂₃ + C₂₅ + C₂₉ + C₃₁); CPI - Σ (нечет)/ Σ (чет); K_i - (i-C₁₉ + C₂₀)/(C₁₇ + C₁₈).


Таблица 3 Содержание органических соединений в различных формах в ПМС, льдах и поверхностных водах Карского моря

Станция	Горизонт	Форма			Взвесь, мг/л	АУВ, мкг/мг взвеси	ПАУ**, нг/л
7015	ПМС	Раствор.	209	333			
		Взвеш.	1007	1040	1.91	527	545
	Поверх.	Раствор.	39	40			_
		Взвеш.	53	50	0.30	177	167
7016	ПМС	Раствор.	127	227			
		Взвеш.	626	655	2.24	279	210
	Поверх.	Раствор.	17	46			
		Взвеш.	22	20	0.37	59	82
7017	ПМС	Раствор.	184	360			
	_	Взвеш.	908	1440	2.74	331	525
	Поверх.	Раствор.	7	<4			
		Взвеш.	15	78	0.35	42	23
7018	Поверх.	Раствор.	13	<4			
		Взвеш.	15	<4	0.41	50	_
7019	ПМС	Раствор.	217	450			
	_	Взвеш.	512	920	2.65	193	652
	Поверх.	Раствор.	13	<4			
		Взвеш.	37	6	0.30	123	20
7020	ПМС	Раствор.	195	520			
		Взвеш.	604	760	0.97	623	374
	Поверх.	Раствор.	33	58			
		Взвеш.	81	82	0.46	176	178
7021	Поверх.	Раствор.	36	84			
		Взвеш.	120	460	0.24	502	62
	Лед	Раствор.	28	80			
		Взвеш.	53	96	2.09	26	46
7023	ПМС	Раствор.	117	50			
		Взвеш.	637	860	2.36	270	622
	Поверх.	Раствор.	23	32			
		Взвеш.	27	60	0.50	53	94
	Лед-1***	Раствор.	43	44			
		Взвеш.	61	32	2.65	23	17
	Лед-2	Раствор.	39	38			
		Взвеш.	44	90	2.90	15	31
	Лед-3	Раствор.	46	72			
		Взвеш.	34	84	5.01	7	17
	Шуга	Раствор.	45	74			
		Взвеш.	66	92	2.71	24	34
7025	ПМС	Раствор.	187	360			
		Взвеш.	1051	660	1.15	913	574
	Поверх.	Раствор.	29	60			
		Взвеш.	30	116	0.24	126	41
7026	ПМС	Раствор.	89	50			
		Взвеш.	476	800	1.00	476	292
	Поверх.	Раствор.	22	<4			
		Взвеш.	24	56	0.17	143	94
7043	ПМС	Раствор.	104	25			
		Взвеш.	197	433	2.00	98	297
	Поверх.	Раствор.	30	8			
		Взвеш.	48	84	0.31	156	82

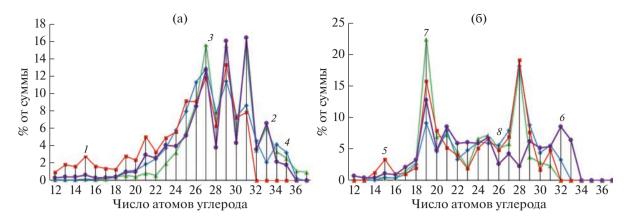

^{*} определены методом флуориметрии; ** определены методом ВЭЖХ; ***Лед-1 — отобран с бака треугольным экраном; лед-2 и лед-3 — специальной сетью; шуга — с трапа судна.

Рис. 3. Распределение АУВ (мкг/л, светлые столбцы) и ПАУ (нг/л, черные столбцы) в растворенной (a, b) и взвешенной (b, r) формах в ПМС (a, b) и в поверхностных водах (b, r) в Карском море.

Рис. 4. Распределение АУВ (а) и ПАУ (б) в растворенной форме и во взвеси в ПМС, разных формах льда и подледной воде на ст. 7023, Карское море.

Рис. 5. Состав алканов на станциях 7021 (а) и 7026 (б): 1, 2—лед в растворенной и взвешенной формах; 3, 4— поверхностная вода в растворенной и взвешенной формах; 5, 6— ПМС в растворенной и взвешенной формах; 7, 8— поверхностная вода в растворенной и взвешенной формах.

ных флуоресцентным методом, концентрации в шуге и поверхностных водах различались в растворенной форме в 11 раз (табл. 3).

Содержание ПАУ в пробах льда, отобранных треугольным экраном и сетью с кормы судна, оказались близкими (табл. 3) и значительно были ниже, чем в ПМС (последнее также может свидетельствовать об отсутствии загрязняющих веществ при отборе пробы с кормы судна сетью). Близкие результаты были получены в пробе льда, отобранной на ст. 7021 треугольным экраном с бака судна (табл. 3). Содержание ПАУ во льду в растворенной форме и в подледной воде было практически равным, однако во взвеси их концентрации в среднем в 4.8 раз были выше, чем в растворенной форме.

Состав алканов в большинстве изученных пробах льда был однотипным (рис. 5а), и был близок к распределению гомологов в тающих льдах Баренцева моря (рис. 2). Отношение L/H в основном было < 1 (табл. 2). Доминировали высокомолекулярные гомологи. Минимальное зна-

чение этого параметра 0.11 установлено в растворенной форме в поверхностных водах на ст. 7021. В этой пробе также минимальное значение отношения $C_{17}/C_{25} - 0.04$, Paq $-(C_{23} + C_{25})/(C_{23} + C_{25} + C_{29} + C_{31}) - 0.20$, довольно низкая величина коэффициента изопреноидности $Ki - (i-C_{19} + C_{20})/$ $(C_{17} + C_{18}) - 0.22$ и повышенная величина СРІ в высокомолекулярной области — 1.91. Все это может указывать на слабые автохтонные процессы в поверхностном слое вод в этом районе. Исключение установлено на ст. 7026, где состав алканов резко отличался от их состава на других станциях (рис. 5б). Здесь наблюдалось бимодальное распределение гомологов: в низкомолекулярной области доминировали $H-C_{15}-C_{19}$, а в высокомолекулярной — $H-C_{28}$, относительное содержание которого колебалось от 2.3 до 19.1% от суммы н-алканов. Отношение L/H > 1.

Содержание ПАУ в отдельных пробах, полученных методом ВЭЖХ -1-103 нг/л (табл. 4), ниже, по сравнению с данными метода флуориметрии 4-1040 нг/л, который определяет все флу-

Таблица 4. Концентрации органических соединений на некоторых станциях и распределение маркеров в составе ПАУ (метод ВЭЖХ)

Станция, Форма	Объект	АУВ , мкг/л	ΣПАУ, нг/л	ΣΗΑΦ/ ΣΠΑΥ, %	ФЛТ/ ПР	ΣНАФ/ ФЕН	(ПР + ФЛТ)/ (ФЕН + XP)		$\Sigma 2-3$ кол./ $\Sigma 5-6$ кол.	ФЛТ/ (ФЛТ + ПР)
7015, взвеш.	ПМС	1007	103	1.9	0.67	0.21	6.18	0	0.131	0.40
7017, взвеш.	ПМС	908	26	7.8	1.45	1.00	7.00	0	0.184	0.59
7023, взвеш.	ПМС	637	18	1.1	1.37	0.07	4.13	483	0.211	0.58
7023, раствор.	Лед-3	62	1	10.5	1.44	0.31	1.29	0	0.835	0.59
7023, взвеш.	Шуга	66	4	5.0	2.03	0.14	1.43	933	0.698	0.67
7025, раствор.	ПМС	1051	7	5.4	1.08	0.44	4.55	21.3	0.246	0.52
7025, взвеш.	ПМС	187	21	9.6	1.06	0.57	3.58	0	0.376	0.51

Примечание: Σ НАФ — сумма нафталина, 1-метилнафталина и 2-метилнафталина, ФЛТ — флуорантен, ПР — пирен, XP — хризен, ФЕН —фенантрен, AHTP — антрацен.

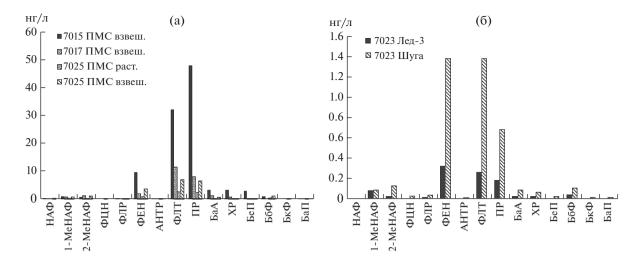
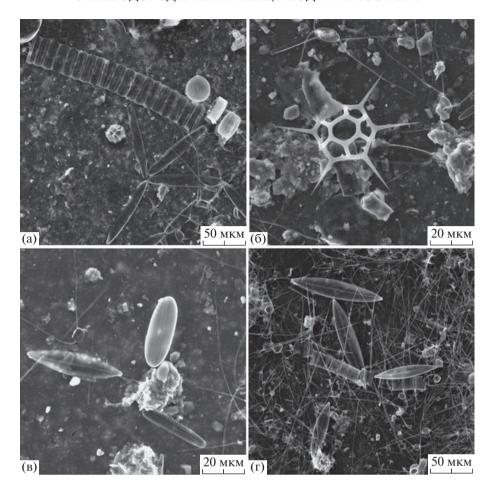


Рис. 6. Состав ПАУ, определенный в отдельных пробах методом ВЭЖХ.

оресцирующие соединения, и таким образом мы заведомо получаем завышенные концентрации.

В составе ПАУ доминировали фенантрен, флуорантен и пирен (рис. 6). Фенантрен и флуорантен наиболее устойчивые полиарены, которые распространены в природных объектах [21, 23, 35]. Увеличение доли пирена происходит в ПМС во взвеси на ст. 7015, наиболее приближенной к Карским воротам.


Таким образом, необходимо отметить, что ПМС, существующий на границе атмосферы и гидросферы и занимающий 70% земной поверхности [13], обладает свойствами, отличающими его от поверхностных вод. Кроме того ПМС выступает в качестве своеобразного фильтра, предохраняющего водную толщу от поступления органических загрязняющих веществ в форме пленочных нефтепродуктов и из атмосферы. Однако ПМС в условиях сильного ветра и волнения разрушается, превращаясь из непрерывной квазидвумерной структуры в объемные дисперсии типа морской пены и воздушно-капельной дисперсии [12], поэтому этот слой отбирают при волнении меньше трех баллов.

Антропогенные загрязнения и прежде всего нефтяные, накапливаются вблизи морской поверхности, и могут влиять на энергомассообмен между океаном и атмосферой [7, 15]. Считалось, что органические соединения деградируют в этом слое в большей степени по сравнению с поверхностными водами [7]. Здесь формируется особое сообщество микроорганизмов — нейстон. Тем не менее, состав алканов в основном, как в Баренцевом (рис. 2) так и в Карском морях (рис. 4), свидетельствовал о незначительных автохтонных процессах в этом слое. Исключение представляет состав алканов в ПМС на ст. 7026 во фронтальной зоне Карского моря в районе желоба Св. Анны.

Здесь алканы указывают на влияние как гомологов фитопланктона ($H-C_{15}-C_{19}$), так и микробиальных процессов ($H-C_{28}$) [32]. Ранее в этом районе, в зоне температурно-соленостного фронта содержание АУВ увеличивалось в растворенной форме в 4 (до 40 мкг/л), а во взвешенной в 11 раз (80 мкг/л) по сравнению с близлежащими станциями и было соизмеримо с величиной ПДК для нефтяных УВ (50 мкг/л). Рост концентраций здесь обусловлен естественными природными процессами, так как происходил в области высоких градиентов температуры между арктическими водами и водами, опресненными материковым стоком, и маркировался также высокими градиентами концентраций хлорофилла, растворенного ОВ и взвеси [6, 17]. При этом было отмечено, что положение фронтальных зон значительно меняется от года к году и предположительно связано с влиянием интенсивных ветровых событий.

Просмотр проб фильтрационной взвеси под электронным сканирующим микроскопом показал (рис. 7), что агрегаты из ПМС были более крупными по сравнению с поверхностными водами, достигая 300—400 мкм, а иногда даже более. Связано это с тем, что ПМС обогащен микропланктоном, бактериями, тонкими обломками минералов и скелетами планктона.

Увеличение концентраций АУВ в ПМС происходит в основном за счет механического концентрирования здесь взвеси. Если бы в этом слое интенсивно развивался нейстон, то в низкомолекулярной области наблюдались бы пики $H-C_{17}$ — основного гомолога при автохтонном образовании алканов. Однако плавное распределение алканов в низкомолекулярной области может указывать на слабые автохтонные процессы в ПМС.

Рис. 7. Снимки фильтрационной взвеси: (а) - ст. 7019, ПМС, (б) - ст. 7023, шуга, (в) - ст. 7023, лед-1, (г) - ст. 7023, поверхностная вода.

Такой же состав алканов наблюдался и во льдах. При этом распределение алканов в ПМС и льдах Баренцева и Карского моря были близки. Последнее свидетельствовало так же о том, что при сходе сезонного льда, вопреки существующему мнению [4, 11], роль автохтонных процессов в ПМС, льдах и поверхностных водах незначительна.

В тающем льду концентрирование изучаемых соединений происходит в меньшей степени, чем в ПМС. Содержание АУВ и липидов в растворенной форме практически не изменялось во льдах и в подледной воде.

Примечательно, что на ст. 6841 в Стур-фиорде содержание ПАУ в ПМС и поверхностных водах было близким: 562 и 546 нг/л и значительно выше, чем в придонном горизонте — 121 нг/г (табл. 1). При потоке из поверхностных вод в ПМС видимо не происходит разложение более устойчивых по сравнению с АУВ полиаренов.

Необходимо отметить, что как в природных, так и антропогенных процессах образуются практически все полиарены [21, 23]. Однако, при сго-

рании топлива происходит преимущественное образование высокомолекулярных ПАУ (пирена, флуорантантена, бензпирена и др.). В низкотемпературных процессах образования сырых нефтей доминируют низкомолекулярные полиарены: метилированные гомологи нафталина, фенантрена и др. [21, 23, 35]. Поэтому для определения их генезиса используют соотношения индивидуальных полиаренов — молекулярные маркеры (табл. 4). Влияние пиролитических процессов определяют величины отношений $\Phi \Pi T/\Pi P$ (<1), $\Phi \Pi T/(\Pi P +$ + ФЛТ) < 0.5 и $\Sigma 2-3$ кольчатых/ $\Sigma 5-6$ кольчатых (<1). Наиболее низкие значения этих отношений установлены во взвеси из ПМС на ст. 7015 в наиболее судоходном районе – Карские ворота. Это предположение подтверждает также низкие концентрации нафталинов (1.1-10.5% от $\Sigma\Pi AY$) на этой станции, а также повышенные в ПМС концентрации АУВ (1007 мкг/л) и ПАУ (1040 нг/л).

Более высокие значения отношения $\Sigma 2-3$ кольчатых/ $\Sigma 5-6$ кольчатых во льдах (0.698—0.835) по сравнению с ПМС и поверхностными водами могут указывать на избирательную сорбцию ПАУ

льдами. Однако необходимо учитывать, что из-за разной устойчивости индивидуальных ПАУ, их состав изменяется со временем по сравнению с существующим в источниках эмиссии [16, 21].

В эстуарных зонах субмикронные фракции содержат в основном легкие полиарены [26]. На внешней границе шельфа происходит некоторое обогащение коллоидной фракции соединениями большей массы, связанное с перераспределением из водной фазы в процессе флоккуляции. Скорее всего, субмикронная фракция унаследована от растворенной фазы, так как в этих формах доминировали, как правило, нафталин (наиболее растворимый) и флуорантен (наиболее стабильный) из идентифицированных незамещенных полиаренов (рис. 6). В отдельных случаях к доминирующим соединениям можно отнести хризен. В материале седиментационных ловушек также установлено относительное обогащение взвеси (и особенно фекальных пеллет) низкомолекулярными ПАУ (фенантреном, флуорантеном, пиреном), по сравнению с подстилающими осадками [25]. Предполагается селективный переход легких полиаренов из растворенной формы во взвесь путем сорбции и соосаждения или биоаккумуляции и биоосаждения. К минорным компонентам в составе ПАУ воды и фильтрационной взвеси относятся высокомолекулярные полиарены, обладающие меньшей растворимостью и меньшим содержанием в источниках эмиссии. Основным носителем доминантных ПАУ является фракция >1.2 мкм, так как концентрации ПАУ в этой фракции были на порядок выше, чем в субмикронных [26].

Необходимо отметить, что кроме УВ, в ПМС наблюдали повышенные концентрации минерального фосфора, органического углерода и более высокие содержания взвешенных веществ и др. соединений по сравнению с нижележащими слоями воды [19]. Была выявлена прямая зависимость между численностью бактерий в ПМС и взвеси, а также между общей численностью бактерий нейстона и планктона в подповерхностном слое в летний период [3].

выводы

В ПМС, который существует на границе атмосфера—вода происходит аккумулирование УВ. Степень их концентрирования зависит не только от сформированности ПМС и гидрофобных свойств органических соединений, но и от геохимической обстановки района. Поэтому в районе флюидных потоков в Стур-фиорде в Баренцевом море степень концентрирования липидов выше, чем АУВ.

Аккумулирование гидрофобных АУВ и ПАУ в ПМС происходит во взвешенной форме. В Кар-

ском море концентрации АУВ во взвеси были почти в 4 раза выше по сравнению с растворенной формой (соответственно в среднем 669 и 187 мкг/л), а Π AУ — в 2.3 раза выше (соответственно 851 и 375 нг/л), что определяется в основном концентрациями самой взвеси, которые были выше в среднем в 7 раз, по сравнению с поверхностными водами (в среднем 2.33 и 0.33 мг/л соответственно).

На содержание УВ в ПМС оказывает влияние сезон исследования. Поэтому концентрации АУВ в позднеледниковый период в Карском море (до $1051~\rm mkr/n$, в среднем $669~\rm mkr/n$) были, выше, чем в летнюю межень в Баренцевом море (до $96~\rm mkr/n$, в среднем $68~\rm mkr/n$).

В тающем льду концентрирование АУВ как в Баренцевом (25–58 мкг/л), так и в Карском морях (28–66 мкг/л) происходит в меньшей степени, чем в ПМС. Последнее отличает тающий лед от растущего, где содержание АУВ во льдах было значительно выше, чем в подледной воде [30].

Состав алканов в ПМС и во льдах был близким. Во всех пробах наблюдалось плавное распределение гомологов в низкомолекулярной области и доминирование высокомолекулярных соединений. Это может свидетельствовать о слабых автохтонных процессах как в ПМС, так и в тающих сезонных льдах.

В составе ПАУ доминировали фенантрен, флуорантен и пирен, и по соотношению основных маркеров можно заключить, что их формирование происходит под влиянием продуктов сгорания судового топлива. Поэтому доля пирена возрастала в районе наиболее приближенном к Карским воротам.

Благодарность: Авторы благодарят В.Ю. Калгина, В.А. Чернова и Н.А. Беляева за помощь в отборе проб ПМС и льда, И.В. Суханову за интерпретацию данных по составу взвеси, полученной с помощью электронной микроскопии.

Финансирование: Экспедиция выполнена в рамках государственного задания Минобрнауки России (№ FMWE-2021-0006), обработка проб, обобщение материалов и подготовка к публикации при финансовой поддержке РНФ (проект № 19-17-00234- Π).

СПИСОК ЛИТЕРАТУРЫ

- 1. Бамбуляк А., Францен Б. Транспортировка нефти из российской части Баренцева региона по состоянию на январь 2009 года. Тромсе: Акваплан-Нива, 2009. 97 с.
- 2. Воробьев В.Л., Акимов В.А., Соколов Ю.И. Предупреждение и ликвидация аварийных разливов нефти и нефтепродуктов. М.: МЧС России, 2005. 368 с.
- 3. Галачьянц А.Д., Белькова Н.Л., Суханова Е.В. и др. Численность бактерионейстона и физико-химические особенности поверхностного микрослоя

- озера Байкал // Поволж. экол. журн. 2018. № 4. С. 379—390.
- 4. *Гершанович Д.Е. Елизаров А.А.*, *Сапожников В.В.* Биопродуктивность океана. М.: ВО "Агропромиздат", 1990. 236 с.
- Диагностический анализ состояния окружающей среды арктической зоны Российской Федерации (расширенное резюме). М.: Научн. мир, 2011. 124 с.
- 6. Завьялов П.О., Ижицкий А.С., Осадчиев А.А. и др. Структура термохалинных и био-оптических полей на поверхности Карского моря в сентябре 2011 г. // Океанология. Т. 55. № 4. С. 514—525.
- 7. *Израэль Ю.А., Цыбань А.В.* Антропогенная экология океана. М.: Флинта, Наука, 2009. 532 с.
- 8. *Каминский В.Д., Супруненко О.И., Смирнов А.Н. и др.* Современное ресурсное состояние и перспективы освоения минерально-сырьевой базы шельфовой области российской Арктики // Разведка и охрана недр. 2016. № 9. С. 136—142
- Качество морских вод по гидрохимическим показателям. Ежегодник 2020. / Под ред. Коршенко А.Н. М.: Наука, 2021. 230 с.
- Клювиткин А.А., Политова Н.В., Новигатский А.Н. и др. Исследования европейской Арктики в 80-м рейсе научно-исследовательского судна "Академик Мстислав Келдыш" // Океанология. 2021. Т. 61. № 1. С. 156-158.
- 11. *Лапин С.А*. Гидрологическая характеристика Обской губы в летне-осенний период // Океанология. 2011. Т. 51. № 6. С. 984—993.
- 12. *Лапшин В.Б.*, *Рагулин И.Г*. О поверхностном натяжении морской воды // Метеорология и гидрология. 1990. № 11. С. 83—85.
- 13. *Лапшин В.Б.*, *Рагулин И.Г.* Скорость газообмена океана с атмосферой в Сев. Атлантике по данным СВЧ радиометрии с ИСЗ "Космос-1602" // Океанология. 1989. № 4. С. 597—598.
- Лисицын А.П. Современные представления об осадкообразовании в океанах и морях. Океан как природный самописец взаимодействия геосфер Земли // Мировой океан. Т. 2. М.: Научный мир, 2014. С. 331–571.
- Немировская И.А. Углеводороды в океане (снеглед-вода-взвесь-донные осадки) М.: Научный мир, 2004. 328 с.
- 16. *Немировская И.А.* Нефть в океане (загрязнение и природные потоки). М.: Научный мир, 2013. 432 с.
- 17. *Немировская И.А.* Изменчивость концентраций и состава углеводородов во фронтальных зонах Карского моря // Океанология. 2015. Т. 55. № 4. С. 497—507.
- 18. *Немировская И.А.*, *Флинт М.В.* Особенности поведения органических соединений в воде и донных осадках в Карском море во время схода сезонного льда // Океанология. 2022. Т. 62. № 1. С. 64–74.
- Парфенова В.В. Разнообразие и физиолого-биохимические свойства гетеротрофных бактерий, выделенных из нейстона озера Байкал // Микробиология. 2016. Т. 85. № 5. С. 568—579.
- Патин С.А. Нефтяные разливы и их воздействие на морскую среду и биоресурсы. М.: ВНИРО, 2008. 507 с.

- 21. Ровинский Ф.Я., Теплицкая Т.А., Алексеева Т.А. Фоновый мониторинг полициклических ароматических углеводородов. Л.: Гидрометеоиздат, 1988. 224 с.
- 22. Справочники и руководства. МОК/ВМО. № 15. Париж: Юнеско, 1985. 12 с.
- 23. AMAP. Sources, Inputs and Concentrations of Petroleum Hydrocarbons, Polycyclic Aromatic Hydrocarbons, and other Contaminants Related to Oil and Gas Activities in the Arctic, Chapter 4 / Assessment 2007: Oil and Gas Activities in the Arctic – Effects and Potential Effects. V. 2. Oslo: AMAP, 2007.
- 24. *Ivanov A.Y., Ivonin D.V., Terleeva N.V. et al.* Oil spills in the Barents Sea: The results of multiyear monitoring with synthetic aperture radar // Marine Pollution Bulletin. 2022. V. 179. P. 113677. https://doi.org/10.1016/j.marpolbul.2022.113677
- 25. Lipiatou E., Marty J.C., Saliot A. Sediment trap fluxes of polycyclic aromatic hydrocarbons in the Mediterranean Sea // Marine Chemistry. 1993. V. 44. P. 43–54.
- Lipiatou E., Saliot A. Hydrocarbon contamination of the Rhone delta and western Mediterranean // Marine Pollution Bulletin. 1991. V. 22. P. 297–304.
- Melnikov I.A. Antarctic Sea Ice Ecosystems: A Comparative Analysis. In Arctic and Antarctic; Nauka: Mocow, Russia, 2003. V. 36. P. 149–164.
- 28. Monitoring of hazardous substances in the White Sea and Pechora Sea: harmonisation with OSPAR's Coordinated Environmental Monitoring Programme (CEMP) Tromsø: Akvaplan-niva. 2011. 71 p.
- NAS (National Academy of Sciences). Oil in the Sea III: Inputs, Fates, and Effects. Washington, D.C.: The National Academies Press, 2003. 265 p.
- 30. Nemirovskaya I.A., Shevchenko V.P. Organic compounds and suspended particulate matter in snow of high latitude areas (Arctic and Antarctic) // Atmosphere. 2020. V. 11. № 9. 928 p. https://doi.org/10.3390/atmos11090928
- 31. Nemirovskaya I.A., Khramtsova A.V. Features of the Hydrocarbon Distribution in the Bottom Sediments of the Norwegian and Barents Seas // Fluids 2021, 6, 456. https://doi.org/10.3390/fluids6120456
- 32. *Nishumura M., Baker E.W.* Possible origin of n-alkanes with remarkable even-to-odd predominance in recent marine sediments // Geochim. Cosmochim. Acta. 1986. V. 50. № 2. P. 299–305.
- 33. *Wurl O., Obbard J.P.* A review of pollutants in the seasurface microlayer (SML): a unique habitat for marine organisms // Marine Poll. Bul. 48, 2004, P. 1016–1030. https://doi.org/10.1016/j.marpolbul.2004.03.016
- 34. Wurl O., Ekau W., Landing W.M., Zappa Ch.J. Sea surface microlayer in a changing ocean A perspective // Elem Sci Anth, 5 (31), 2017, P. 1–11. https://doi.org/10.1525/elementa.228
- 35. Yunker M.B., Macdonald R.W., Ross P.S., Sophia C. Johannessen B. Neil D. Alkane and PAH provenance and potential bioavailability in coastal marine sediments subject to a gradient of anthropogenic sources in British Columbia, Canada // Organic Geochemistry. 2015. № 89–90. P. 80–116.

Hydrocarbons at the Water-Atmosphere Border in the Barents and Kara Sea

I. A. Nemirovskaya^{a, #}, A. V. Khramtsova^{a, ##}

^aShirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia [#]e-mail: nemir44@mail.ru ^{##}e-mail: asya-medvedeva95 16@mail.ru

The concentrations and composition of hydrocarbons (HCs), aliphatic (AHCs), and polycyclic aromatic hydrocarbons (PAHs) in the Barents and Kara Seas were determined in the surface microlayer (SML, $300~\mu m$ thick), melting ice, and surface waters. Field material was collected in 80 and 83 cruises of the R/V Akademik Mstislav Keldysh in August 2020 and June 2021, respectively. In SML, HCs occur primarily in suspension. In the Barents Sea, the AHCs content in suspension was lower (31-96, $68~\mu g/l$ on average) compared with the Kara Sea (187-1051, $693~\mu g/L$ on average), where examination was carried out in the early summer season. In the Kara Sea, the AHCs concentrations in the SML were 3.6 times higher than in the dissolved form (89-270, $158~\mu g/L$ on average), while compared to the suspension of surface waters, they were almost 15 times higher. The accumulation of organic compounds also occurs in ice, but to a lesser extent than in SML. From the alkanes composition, the influence of autochthonous processes on HCs generation in melting ice is insignificant. The PAHs contents in suspension were also 4.8 times higher on average than in the dissolved form. An influence of combustion products of ship fuel on the composition of PAHs was traced by markers, which showed that in addition to phenanthrene, in all samples fluoranthene and pyrene dominated.

Keywords: surface microlayer, melting ice, Barents Sea, Kara Sea, aliphatic hydrocarbons, polyaromatic hydrocarbons, alkanes, dissolved and suspended forms