Allele polymorphism of alkaline, acid soluble phosphatase genes and vitamin D-binding protein in postmenopausal osteoporosis


Cite item

Full Text

Abstract

Aim. To study polymorphism of genes involved in mechanisms regulating metabolism of bone tissue: alkaline (ALPL) and acid (ACPI) phosphatases, vitamin D-bindingprotein (GC); to ascertain associations of their genotypes and alleles with osteoporosis (OP) and mineral density of spinal and femoral bone tissue (BTMD).
Material and methods. Relevant genetic examination was made in 70 females with OP diagnosed by the WHO criteria (1994) aged 60-79years (mean age 71.0 ± 6.2years) and 51 ОP-free females in the same age interval (mean age 69.0 ± 5.6 years). Polymorphic sites of the genes were examined by polymerase chain reaction. Trinucleotide repeat, ARG105GLN polymorphism of restrictive fragment length (PRFL), [GC, TRH420LYS] PRFL were studied for ALPL gene, ACPI gene and GС gene, respectively.
Results. Association was found between frequencies of genotypes SS, 2F and FS, F allele of GC gene with OP as well as between PRFL of the spine, femur and some GC genotypes in OP women. Genes ALPL and ACPI were not associated with OP.
Conclusion. It is suggested that genotypes SS, 2F and FS have marked functional differences in fixation and transport of vitamin D active metabolites involved in metabolism of bone tissue in OP.

References

  1. Melton L. J. Epidemiology of hip fractures: implications of the exponential increase with age. Bone '1996; 18: 1215-1218.
  2. Gueguen R., Jouanny P., Guiltemin F. Segregation analysis and variants components analysis of bone mineral density in health families. J. Bone Miner. Res. 1995; 12: 2017-2022.
  3. Seeman E., Hooper J. L., Bach L. A. et al. Reduced bone mass in daughters of women with osteoporosis. N. Engl. J. Med. 1989; 69: 2656-2671.
  4. Soroko S. В., Barrett-Connor E., Edelstein S. L. Family history of osteoporosis and bone mineral density at the axial skeleton: the Rancho Bernando study. J. Bone Miner. Res. 1996; 9: 761-769.
  5. Procok N. A., Eisman J. A., Hooper J. L. et al. Genetic determinants of bone mass in adults: a twin study. J. Clin. Invest. 1987; 80: 706-710.
  6. Livshits G., Karasik D., Otremski I., Kobyliansky E. Genes play an important role in bone aging. Am. J. Hum. Biol. 1998; 10: 421-438.
  7. Devoto M., Shimoya K., Caminis J. et al. First-stage autosomal genome screen in extended pedigrees suggests genes predisposing to low bone mineral density on chromosomes lp, 2p and 4q. Eur. J. Hum. Genet. 1998; 6: 151-157.
  8. Haussler M. R, Whitfield G. K., Haussler С. A. et al. The nuclear vitamin D receptor: Biological and molecular regulatory properties revealed. J. Bone Miner. Res. 1998; 13: 325-339.
  9. Coppenhaver D., Knappers F., Schidlow D. et al. Serum concentrations of vitamin D-binding progtein (Group-Specific Component) in cystic fibrosis. Hum. Genet. 1981; 4: 339- 403.
  10. Шварц Т. Я. Витамин D. D-гормон и альфакалшидол: молекулярно-биологические и фармакологические аспекты действия. Остеопороз и остеопатии 1998; 3: 2-6.
  11. Martin Т. J., Dempster D. W. Bone structure and cellular activity. In: Stevenson J. C, Lindsay R., eds. Osteoporosis. London: Chapman & Hall Medical; 1998. 1-28.
  12. Calvo M. S., Eyre D. R., Gundberg С. M. Molecular basis and clinical application of biological markers of bone turnover. Endocrine Rev. 1996; 17 (4): 333-363.
  13. Ericson E. F., Brixen K., Charles P. New markers of bone metabolism: clinical use in bone disease. Eur. J. Endocrinol. 1995; 132: 251-263.
  14. Dissing J., Johnsen H. H, Sensabaugh G. F. Human red cell acid phosphatase (ACPI): the amino acid sequence of the two isozymes Bf and Bs encoded by the ACP1*B allele. J. Biol. Chem. 1991; 266: 20619-20625.
  15. Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988; 16: 12-15.
  16. Braun A., Bichlmaier R., Cleve H. Molecular analysis of the gene for the human vitamin-D-binding protein (group-specific component): allelic differences of the common genetic GC types. Hum. Genet. 1992; 89: 401-406.
  17. Brodeur G. Personal communication: Chrmosome 1 STSs. Hum. Mol. Genet. 1993; 2: 401.
  18. Sensabaugh G. F., Lazaruk K. A. A Taq I site identifies the A* allele at the ACPI locus. Ibid. 1079.
  19. Спицын В. А., Титенко Н. В. Субтипы группспецифического компонента сыворотки крови (GC) в норме и при патологии. Генетика 1990; 26 (4): 749-759.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2004 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies