The role of matrix metalloproteinases in pathogenesis of renal disease


Cite item

Full Text

Full Text

Роль матриксных металлопротеиназ в патогенезе заболеваний почек. -
×

About the authors

I N Bobkova

L V Kozlovskaia

O A Li

References

  1. Catania J. М., Chen G., Parrish A. R. Role of matrix metalloproteinases in renal pathophysiologies. Am. J. Physiol. Renal. Physiol. 2007; 292: F905-F911.
  2. Nagase H., Woessner J. F. Matrix metalloproteinases. J. Biol. Chem. 1999; 274 (31): 21491-21494.
  3. Visse R., Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function and biochemistry. Circ. Res. 2003; 92: 827-839.
  4. Gong R., Rifair A., Tolbert E. M. et al. Hepatocyte growth factor modulates matrix metalloproteinases and plasminogen activator/plasmin proteolytic pathways in progressive renal interstitial fibrosis. J. Am. Soc. Nephrol. 2003; 14: 3047-3060.
  5. Douthwaite J. A., Jonson T. S. Effects of transforming growth factor-Β1 on renal extracellular matrix components and their regulating proteins. J. Am. Soc. Nephrol. 1999; 10: 2109-2119.
  6. Gomes D. E., Alonso D. F., Yoshiji H., Thorgeirsson U. P. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Iur. J. Cell. Biol. 1997; 74 (2): 111-122.
  7. Rerolle J. P., Hertig A., Nguyen G. et al. Plasminogen activator inhibitor I is a potential target in renal fibrogenesis. Kidney Int. 2000; 58: 1841-1850.
  8. Eddy A. A. Plasminogen activator inhibitor-1 and the kidney. Am. J. Physiol. Renal Physiol. 2002; 283 (2): F209-F220.
  9. Basile D. P., Frednch K., Weihrauch H. et al. Angiostatin and matrix metalloproteinases expression following ischemic acute renal failure. Am. J. Physiol. Renal Physiol. 2004; 286: F893-F902.
  10. Caron A., Desrosies R R, Langlois S. et al. Ischemia-reperfusion injury stimulates gelatinase expression and activity in kidney glomeruli. Can. J. Physiol. Pharmacol. 2005; 83: 287-300.
  11. Covington M. D., Burghardt R. C., Parrish A. R Ischemia-induced cleavage of cagherins in NRK cells requires MT1-MMP (MMP-14). Am. J. Physiol. Renal Physiol. 2006; 290: F43-F51.
  12. Caron A., Desrosies R. R., Beliveau R. et al. Ischemia injury alters endothelial cell properties of kidney cortex: stimulation of MMP-9. Exp. Cell Res. 2005; 310: 105-116.
  13. Sutton T. A., Kelly К J., Mang H. E. et al. Minocycline reduces renal microvascular leakage in a rat model of ischemic renal injury. Am. J. Physiol. Renal Physiol. 2005; 288: F91-F97.
  14. Krag S., Nyengaard J. R., Wogensen L. Combined effects of moderately elevated blood glucose and locally produced TGF-Β1 on glomerular morphology and renal collagen production. Nephrol. Dial. Transplant. 2007; 22: 2485-2496.
  15. Inada A., Nagai K., Arai H. et al. Establishment of a diabetic mouse model with progressive diabetic nephropathy. Am. J. Pathol. 2005; 167: 327-336.
  16. McLennan S. V., Kelly D. J., Cox A. J. et al. Decreased matrix degradation in diabetic nephropathy: effects of ACE inhibition on the expression and activities of matrix metalloproteinases. Diabetologia 2002; 45: 268-275.
  17. Kanauchi M., Nishioka H., Nakashima Y. et al. Role of tissue inhibitors of metalloproteinase in diabetic nephropathy. Nippon Jinzo Gakkai Shi 1996; 38: 124-128.
  18. Ebihara I., Nakamura T, Shimada N., Koide H. Increased plasma metal loproteinase-9 concentration precede development of microalbuminuria in non-insulin-dependent diabetes mellitus. Am. J. Kidney Dis. 1998; 32: 544-550.
  19. Romanic A. M., Burns-Kurtis C. L., Ao Z. et al. Upregulated expression of human membrane type-5 matrix metal loprotein-ase in kidneys from diabetic patients. Am. J. Physiol. Renal Physiol. 2001; 281: F309-F317.
  20. Ewens К. G., George R. A., Sharma K. et al. Assessment of 115 candidate genes for diabetic nephropathy by transmission/disequilibrium test. Diabetes 2005; 54: 3305-3318.
  21. Bhuvarahamurthy V., Kristiansen G. О., Johansen М. et al. In situ gene expression and localization of MMP1, MMP2, ММР3, MMP9 and their inhibitors TIMP1 and TIMP2 in human renal carcinoma. Oncol. Rep. 2006; 15: 1379-1384.
  22. Kugler A., Hemmerlein В., Thelen P. et al. Expression of metal loproteinase 2 and 9 and their inhibitors in renal cell carcinoma. J. Urol. (Baltimore) 1998; 160: 1914-1918.
  23. Sherief M. H., Low S. H., Miura M. et al. Matrix metalloproteinase activity in urine patients with renal cell carcinoma leads to degradation of extracellular matrix proteins: possible use as screening assay. J. Urol. (Baltimore) 2003; 169: 1530-1534.
  24. Miyake H., Наrа I., Gohji K. et al. Relative expression of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in mouse renal cell carcinoma cells regulates their metastatic potential. Clin. Cancer Res. 1999; 5: 2824-2829.
  25. Hirata H., Okayama N., Naito K. et al. Association of gaplotype of metalloproteinase (MMP)-l and MMP-3 polymorphisms with renal cell carcinoma. Carcinogenesis 2004; 25: 2379-2384.
  26. Marti H. P. Role of matrix metalloproteinases in the progression of renal lesion. Presse Med. 2000; 29: 811-817.
  27. Harendza S., Scheider A., Helmchen U. et al. Extracellular matrix deposition and cell proliferation in a model of chronic glomerulonephritis in the rat. Nephrol. Dial. Transplant. 1999; 14: 2873-2879.
  28. Turk J., Pollock A. S., Lee L. K. et al. Matrix metalloproteinase 2 (gelatinase A) regulates glomerular mesangial cell proliferation and differentiation. J. Am. Soc. Biochem. Mol. Biol. 1996; 271 (25): 15074-15083.
  29. Martin J., Eynstone L., Davies M., Steadman R. Induction of matrix metalloproteinases by glomerular mesangial cells stimulated by proteins of the extracellular matrix. J. Am. Soc. Nephrol. 2001; 12: 88-96.
  30. Lelong В., Legallicierr В., Piedagnel R., Ronco P. M. Do matrix metalloproteinases MMP-2 and MMP-9 (gelatinases) play a role in renal development, physiology and glomerular diseases? Curr. Opin. Nephrol. Hypertens. 2001; 10: 7-12.
  31. Bauvois В., Mothu N., Nguen J. et al. Specific changes in plasma concentrations of matrix metalloproteinases-2 and 9, TIMP-1 andTGF-Bl in patients with distinct types of primary glomerulonephritis. Nephrol. Dial. Transplant. 2007; 22: 1115-1122.
  32. Akiyama K., Shikata K., Sugimoto H. et al. Changes in serum concentrations of matrix metalloproteinases, tissue inhibitor of metalloproteinases and type IV collagen in patients various types of glomerulonephritis. Res. Commun. Mol. Pathol. Pharmacol. 1997; 95: 115-128.
  33. Steinmann N. K., Ziswiller R., Kung M. et al. Inhibition of matrix metalloproteinases attenuates anti-Thy 1.1 nephritis. J. Am. Soc. Nephrol. 1998; 9: 397-407.
  34. Lods N., Ferrari P., Frey F. J. et al. Angiotensin-converting enzyme inhibition but not angiotensin receptor blockade regulates matrix metalloproteinases activity in patients with glomerulonephritis. J. Am. Soc. Nephrol. 2003; 14: 2861-2872.
  35. McMillan J. I., Riordan J. W., Couser W. G. et al. Characterisation of a glomerular epithelial cell matrix metalloproteinase as matrix metalloproteinase-9 with enhanced expression in a model of membranous nephropathy. J. Clin. Invest. 1996; 97: 1094-1101.
  36. Uchio K., Manabe N., Tamura K. et al. Decreased matrix metalloproteinases activity in the kidney of hereditary nephrotic mice (ICGN strain). Nephron 2000; 86: 145-151.
  37. Sanders J.-S. F., Goor H., Hanemaaijer R. et al. Renal expression of matrix metal loproteinases in human ANCA-associated glomerulonephritis. Nephrol. Dial. Transplant. 2004; 19: 1412-1419.
  38. Nakopoulou L., Lazaris A. C., Boletis J. et al. The matrix metalloproteinase-11 protein in various types of glomerulonephritis. Nephrol Dial Transplant 2007; 22: 109-117.
  39. Tashiro K., Koynagi I., Ohara I. et al. Levels of urinary matrix metalloproteinase-9 (MMP-9) and renal injuries in patients with type 2 diabetic nephropathy. J. Clin. Lab. Anal. 2004; 18: 206-210.
  40. Wolf G. Angiotensin II: a pivotal factor in the progression of renal diseases. Nephrol. Dial. Transplant. 1999; 14 (1): 41-44.
  41. Ruiz-Ortega M., Ruperez M., Esteban V. et al. Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol. Dial. Transplant. 2006; 21: 12-20.
  42. Boffa J.-J., Lu J., Placier S. et al. Regression of renal vascular and glomerular fibrosis: the role of angiotensin II receptor antagonism and matrix metalloproteinases. J. Am. Soc. Nephrol. 2003; 14: 1132-1144.
  43. Ma L.-J., Nakamura S., Aldigier J. C. et al. Regression of glomerulosclerosis with high-dose angiotensin inhibition is linked to decreased plasminogen activator inhibitor-1. J. Am. Soc. Nephrol. 2005; 16: 966-976.
  44. Bolbrinker J., Markovic S., Wehland M. et al. Expression and response to angiotensin-converting enzyme inhibition of metalloproteinases 2 and 9 in renal glomerular damage in young transgenic rats with rennin-dependent hypertension. Journal of Pharmacology and Experimentale Therapeutic. 2006; 316: 8-16.
  45. Eddy A. A. Molecular insights into renal interstitial fibrosis. J. Am. Soc. Nephrol. 1996; 7: 2495-2508.
  46. Negri A. L. Prevention of progressive fibrosis in chronic renal diseases: antifibrotic agents. J. Nephrol. 2004; 17: 496-503.
  47. Samuel C. S. Relaxin: antifibrotic properties and effects in models of diseases. Clin. Med. Res. 2005; 4: 241-249.
  48. Danielson L. A., Welford A., Harris A. Relaxin improves renal function and histology in aging Munich Wistar rats. J. Am. Soc. Nephrol. 2006; 17: 1325-1333.
  49. Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int. 2006; 69: 213-217.
  50. Brown P. D., Giavazzi R. Matrix metalloproteinases inhibition: a review of anti-tumor activity. Ann. Oncol. 1995; 6: 967-974.
  51. Wojtovicz-Praga S. M., Dickson R. M., Hawkins M. J. et al. Matrix metalloproteinases inhibitors. Invest. New Drugs 1997; 15: 61-75.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2008 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies