The influence of coronary stenting with rapamycin-eluting stents on the number of circulating CD4+CD25high+regulatory T-cells

Abstract

Aim. To investigate the effects of coronary stenting with rapamycin-eluting stents on parameters of cell immunity.
Methods. 26 patients (group 1) with stable coronary heart disease and angiographically proved coronary stenosis underwent stenting with rapamycin-eluting stents. The control group (group 2) consisted of 6 patients: 4 patients underwent diagnostic coronaroangiography, 1 patient got a bare metal stent and in 1 patient angioplasty was unsuccessful. Blood samples were obtained before and 1 month after the intervention. The quantity of activated (CD4+CD25low+) and regulatory (CD4+CD25high+) T cells was measured by direct immunofluorescence and flow cytometry. Plasma concentration of IL-10 was determined by ELISA.
Results. In group 1 the percentages of CD4+CD25high+ regulatory T-cells increased significantly one month after stenting, while in group 2 no difference in regulatory T-cell levels before and after the intervention was observed. No changes in total number of leukocytes, relative levels of lymphocytes, CD4+ T-cells, activated CD4+CD25+low T-cells and IL-10 plasma concentration before and after the procedure were detected in both groups.
Conclusion. Rapamycin-eluting stent implantation is associated with a significant increase of circulating CD4+CD25high+ regulatory T-cell level.

References

  1. Serruys P. W., de Jaegere P., Kiemeneij F. et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N. Engl. J. Med. 1994; 331 (8): 489-495.
  2. Fischrnan D. L., Leon M. B., Baim D. S. et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery sisease. Circulation 1995; 92 (9): 2480-2487.
  3. Popma J. J., Leon M. B., Moses J. W. et al. for the SIRIUS Investigators. Quantitative assessment of angiographic restenosis after sirolimus-eluting stent implantation in native coronary arteries. Circulation 2004; 110: 3773-3780.
  4. Colombo A., Drzewiecki J. et al. Randomized study to assess the effectiveness of slow- and moderate-release polymer-based paclitaxel-eluting stents for coronary artery lesions. Circulation 2003; 108: 788.
  5. Marx S. O., Jayaraman T., Go L. O., Marks A. R. Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells. Circ. Res. 1995; 76: 412-417.
  6. Klugherz B. D., Llanos G., Lieuallen W. et al. Twenty-eight-day efficacy and phamacokinetics of the sirolimus-eluting stent. Coron Artery Dis. 2002; 13 (3): 183-188.
  7. Suzuki T., Kopia Gr. et al. Stent-based delivery of sirolimus reduces neointimal formation in a porcine coronary model. Circulation 2001; 104: 1188-1193.
  8. Sardella G., De Luca L., Di Roma A. et al. Comparison between sirolimus- and paclitaxel-eluting stent in T-cell subsets redistribution. Am. J. Cardiol. 2006; 97 (4): 494-498.
  9. Fehérvari Z., Sakaguchi S. CD4+ Tregs and immune control. J. Clin. Invest. 2004; 114 (9): 1209-1217.
  10. Cools N., Ponsaerts P., Van Tendeloo V. F., Berneman Z. N. Regulatory T cells and human disease. Clin. Dev. Immunol. 2007; 2007:89195.
  11. Ярилин А. А. Естественные регуляторные Т-клетки. Рос. мед. журн. 2007; 1; 43-48.
  12. Baan C. C., van der Mast B. J. et al. Differential effect of calcineurin inhibitors, anti-CD25 antibodies and rapamycin on the induction of FOXP3 in human T cells. Transplantation 2005; 80 (1): 110-117.
  13. Coenen J. J., Koenen H. J. et al. Rapamycin, and not cyclosporin A, preserves the highly suppressive CD27+ subset of human CD4+CD25+ regulatory T cells. Blood 2006; 107 (3): 1018-1023.
  14. Duggleby R. C., Shaw T. N. et al. CD27 expression discriminates between regulatory and non-regulatory cells after expansion of human peripheral blood CD4+ CD25+ cells. Immunology 2007; 121 (1): 129-139.
  15. Battaglia M., Stabilini A. et al. Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J. Immunol. 2006; 177 (12): 8338-8347.
  16. Strauss L., Wniteside T. L. et al. Selective survival of naturally occurring human CD4+CD25+Foxp3+ regulatory T cells cultured with rapamycin. J. Immunol. 2007; 178 (1): 320-329.
  17. Korczak-Kowalska G., Wierzbicki P., Bocian K. et al. The influence of immuosuppressive therapy on the development of CD4+CD25+ T cells after renal transplantation. Transplant. Proc. 2007; 39 (9): 2721-2723.
  18. Basu S., Golovina T. et al. Cutting edge: Foxp3-mediated induction of pirn 2 allows human T regulatory cells to preferentially expand in rapamycin. J. Immunol. 2008; 180 (9): 5794- 5798.
  19. van Oosterwijk M. F., Juwana H. et al. CD27-CD70 interactions sensitise naive CD4+ T cells for IL-12-induced Thl cell development. Int. Immunol. 2007; 19 (6): 713-718.
  20. Hintzen R. Q., de Jong R. et al. Regulation of CD27 expression on subsets of mature T-lymphocytes. J. Immunol. 1993; 151 (5): 2426-2435.
  21. Vignali D. A., Collison L. W., Workman C. J. How regulatory cess work. Nat. Rev. Immunol. 2008; 8: 523-532.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2009 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies