Immunomodifying effects of macrolides: areas of possible clinical use in pulmonology


Cite item

Full Text

Abstract

The review is devoted to non-antibacterial effects of macrolides in patients with respiratory diseases: bronchial asthma, bronchoectasis, chronic obstructive pulmonary disease, chronic rhinosinusitis, mucoviscidosis, diffuse bronchiolithiasis, severe flu, posttransplantation obliterating bronchiositis. The discussion covers mechanisms of an immunomodulating action of macrolides. Current data base on non-antibacterial effects of macrolides is analysed.

About the authors

Aleksandr Igorevich Sinopal'nikov

Email: aisyn@list.ru

A I Sinopalnikov

Russian Academy of Advanced Medical Training, Moscow

Russian Academy of Advanced Medical Training, Moscow

References

  1. Kudoh S., Kimura H. Clinical effect of low-dose long-term administration of macrolides on diffuse panbronchiolitis. Nihon Kyobu Shikkan Gakkai Zasshi 1984; 22 (Suppl.): 254.
  2. Rubin B. K. Immunomodulatory properties of macrolides: overview and historical perspective. Am. J. Med. 2004; 117(Suppl. 9A): 2S-4S.
  3. Kanoh S., Rubin B. K. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin. Microbiol. Rev. 2010; 23: 590-615.
  4. Rubin B. K., Druce H., Ramirez O. E. et al. Effect of clarithromycin on nasal mucus properties in healthy subjects and in patients with purulent rhinitis. Am. J. Respir. Crit. Care Med. 1997; 155: 2018-2023.
  5. Tamaoki J., Takeyama K., Tagaya E. et al. Effect of clarithromycin on sputum production and its rheological properties in chronic respiratory tract infections. Antimicrob. Agents Chemother. 1995; 39: 1688-1690.
  6. Kondo M., Kanoh J., Tamaoki H. et al. Erythromycin inhibits ATP-induced intracellular calcium responses in bovine tracheal epithelial cells. Am. J. Respir. Cell. Mol. Biol. 1998; 19: 799-804.
  7. Tamaoki J., Isono K., Sakai N. et al. Erythromycin inhibits Cl secretion across canine tracheal epithelial cells. Eur. Respir. J. 1992; 5: 234-238.
  8. Oishi K., Sonoda F., Kobayashi S. et al. Role of interleukin-8 (IL-8) and inhibitory effect on IL-8 release in the airway of patients with chronic airway diseases. Infect. and Immun. 1994; 62: 4145-4152.
  9. Culiç O., Erakoviç V. Anti-inflammatory effects of macrolide antibiotics. Eur. J. Pharmacol. 2001; 429: 209-229.
  10. Kawasaki S., Takizawa H., Ohtoshi T. et al. Roxithromycin inhibits cytokine production by and neutrophil attachment to human bronchial epithelial cells in vitro. Antimicrob. Agents Chemother. 1998; 42: 1499-1502.
  11. Kadota J., Sakito O., Kohno S. et al. A mechanism of erythromycin treatment in patients with diffuse panbronchiolitis. Am. Rev. Respir. Dis. 1993; 147: 153-159.
  12. Azuma A., Furuta T., Enomoto T. et al. Preventive effect of erythromycin on experimental bleomycin-induced acute lung injury in rats. Thorax 1998; 53: 186-189.
  13. Ianaro A., lalenti A., Maffia P. et al. Anti-inflammatory activity of macrolide antibiotics. J. Pharmacol. Exp. Ther. 2000; 292: 156-163.
  14. Gorrini M., Lupi A., Viglio S. et al. Inhibition of neutrophil elastase by erythromycin and flurythromycin, two macrolide antibiotics. Am. J. Respir. Cell. Mol. Biol. 2001; 25: 492-499.
  15. Simpson J. L., Powell H., Boyle M. J. et al. Clarithromycin targets neutrophilic airway inflammation in refractory asthma. Am. Respir. Crit. Care Med. 2008; 177: 148-155.
  16. Oda H., Kadota J., Kohna S. et al. Leukotriene B4 in brochoalveolar lavage fluid of patients with diffuse panbronchiolitis. Chest 1994; 108: 116-122.
  17. Takizawa H., Desaki M., Ohtoshi T. et al. Erythromycin and clarithromycin attenuate cytokine-induced endotelin-1 expression in human bronchial epithelial cells. Eur. Respir. J. 1998; 12: 57-63.
  18. Anderson R., Theron A. J., Feldman C. Membrane-stabilizing, anti-inflammatory interactions of macrolides with human neutrophils. Inflammation 1996; 20: 693-705.
  19. Aoshiba K., Nagai A., Konno K. Erythromycin shortens neutrophil survival by accelerating apoptosis. Antimicrob. Agents Chemother. 1995; 39: 872-877.
  20. Hodge S., Hodge G., Brozyna S. et al. Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar macrophages. Eur. Respir. J. 2006; 28: 486-495.
  21. Hirakata Y., Kaku M., Tomono K. et al. Efficacy of erythromycin lactobionate for treating Pseudomonas aeruginosa bacteremia in mice. Antimicrob. Agents Chemother. 1992; 36: 1198- 1203.
  22. Baumann U., Fischer J. J., Gudowius P. et al. Buccal adherence of Pseudomonas aeruginosa in patients with cystic fibrosis under long-term therapy with azithromycin. Infection 2001; 29: 7-11.
  23. Kawamura-Sato K., Iinuma T., Hasegawa T. et al. Effect of subinhibitory concentrations of macrolides on expression of flagellin in Pseudomonas aeruginosa and Proteus mirabilis. Antimicrob, Agents Chemother. 2000; 44: 2869-2872.
  24. Equi A. C., Davies J. C., Painter H. et al. Exploring the mechanisms of macrolides in cystic fibrosis. Respir. Med. 2006; 100: 687-697.
  25. Kita E., Sawaki M., Oku D. et al. Suppression of virulence factors of Pseudomonas aeruginosa by erythromycin. J. Antimicrob. Chemother. 1991; 27: 273-284.
  26. Molinari G., Guzman C. A., Pesce A. et al. Inhibition of Pseudomonas aeruginosa virulence factors by subinhibitory concentrations of azithromycin and other macrolide antibiotics. J. Antimicrob. Chemother. 1993; 31: 681-688.
  27. Nguyen D., Emond M. J., Mayer-Hamblett N. et al. Clinical response to azithromycin in cystic fibrosis correlates with in vitro effects on Pseudomonas aeruginosa phenotypes. Pediatr. Pulmonol. 2007; 42: 533-541.
  28. Kobayashi H., Kobayashi O., Kawai S. Pathogenesis and clinical manifestations of chronic colonization by Pseudomona aeruginosa and its biofilms in the airway tract. J. Infect. Chemother. 2009; 15: 125-142.
  29. Ichimiya T., Takeoka K., Hiramatsu К. et al. The influence of azihromycin on the biofilm formation on Pseudomonas aeruginosa in vitro. Chemotherapy 1996; 42: 186-191.
  30. Kobayashi H. Biofilm disease: its clinical manifestation and therapeutis possibilities of macrolides. Am. J. Med. 1995; 99(Suppl. 6A): 26S-30S.
  31. Грузина В. Д. Коммуникативные сигналы бактерий. Антибиотики и химиотер. 2003; 48(10): 32-39.
  32. Nalca Y., Jansch L., Bredenbruch F. et al. Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa РАО1: a global approach. Antimicrob Agents Chemother. 2006; 50: 1680-1688.
  33. Niven A. S., Argyros G. Alternate treatments in asthma. Chest 2003; 123: 1254-1265.
  34. Evans D. J., Cullinan P., Geddes D. M. et al. Troleandomycin as an oral corticosteroid sparing agent in stable asthma. Cochrane Database Syst. Rev. 2003; 3.
  35. Kostadima E., Tsiodras S., Alexopoulos E. K. et al. Clarithromycin reduces the severity of bronchial hyperresponsiveness in patients with asthma. Eur. Respir. J. 2004; 23: 714-717.
  36. Richeldi L., Ferrara G., Fabri L. et al. Macrolides for chronic asthma. Cochrane Database Syst. Rev. 2005; 4.
  37. Johnston S. L., Martin R. J. Chlamydophila pneumoniae and Mycoplasma pneumoniae. A role in asthma pathogenesis. Am. J. Respir. Crit. Care Med. 2005; 172: 1078-1089.
  38. Von Hertzen L. Role of persistent infection in the control and severity of asthma: focus on Chlamydia pneumoniae. Eur. Respir. J. 2002; 19: 546-556.
  39. Белоцерковская Ю. Г., Казаков С. П., Синопальников А. И. Бронхиальная астма, ассоциированная с Chlamydophila pneumoniae-инфекцией. Клин. микробиол. и антимикроб. химиотер. 2007; 9: 233-243.
  40. Piacentini G. L., Peroni D. G., Bodini A. et al. Azithromycin reduces bronchial hyperresponsivenessand neutrophilic airway inflammation in asthmatic children: a preliminary report. Allergy Asthma Proc. 2007; 28: 194-198.
  41. Simpson J. L., Powell H., Boyle M. J. et al. Clarithromycin targets neutrophilic airway inflammation in refractory asthma. Am. J. Respir. Crit. Care Med. 2008; 177: 148-155.
  42. Martinez F. J., Curtis J. L., Albert R. Role of macrolide therapy in chronic obstructive pulmonary disease. Intern. J. COPD 2008; 3: 331-350.
  43. Wilson R., Kubin R., Ballin I. et al. Five day moxifloxacin therapy compared with 7 day clarithromycin therapy for the treatment of acute exacerbations of chronic bronchitis. J. Antimicrob. Chemother. 1999; 44: 501-513.
  44. Suzuki T., Yanai M., Yamaya M. et al. Erythromycin and common cold in COPD. Chest 2001; 120: 730-733.
  45. Gomez J., Baňos V., Simarro E. et al. Estudio prospective у comparative (1994-1998) sobre la influencia del tratamiento corto profilactico con azitromicina en pacientes con EPOC evolucionada. Rev. Esp. Quimioter. 2000; 13: 379-383.
  46. Yamaya M., Azuma A., Tanaka H. et al. Inhibitory effects of macrolide antibiotics on exacerbations and hospitalization in chronic obstructive pulmonary disease in Japan: a retrospective multicenter analysis. J. Am. Geriatr. Soc. 2008; 56: 1358- 1360.
  47. Seemungal Т. А., Wilkinson T. M., Hurst J. R. et al. Long-term erythromycin therapy is associated with decreased chronic obstructive pulmonary disease exacerbations. Am. J. Respir. Crit. Care Med. 2008; 178: 1139-1147.
  48. Kikuchi T., Suzaki H., Aoki A. et al. Clinical effect of long-term low dose erythromycin therapy for chronic sinusitis. Pract. Otol. (Kyoto) 1991; 84: 41-47.
  49. Hatipoglu U., Rubinstein I. Treatment of chronic rhinosinusitis with low - dose, leng-term macrolide antibiotics: an evolving paradogma. Curr. Allergy Asthma 2005; 5: 491-494.
  50. Hashiba M., Baba S. Efficacy of long-term administration of clarithromycin in the treatment of intractable chronic sinusitis. Acta Otolaryngol. 1996; 525 (Suppl.): 73-78.
  51. Ichimura K., Shimazaki Y., Ishibashi T. et al. Effect of new macrolide roxithromycin upon nasal polyps associated with chronic sinusitis. Auris Nasus Larynx 1996; 23: 48-56.
  52. Suzuki H., Shimomura A., Ikeda K. et al. Inhibitory effect of macrolides on interleukin-8 secretion from cultured human naal epithelial cells. Laryngoscope 1997; 107: 1661-1666.
  53. Wallwork В., Coman W., Mackay-Sim A. et al. A double-blind, randomiszed, placebo-controlled trial of macrolide in the treatment of chronic rhinosinusitis. Laryngoscope 2006; 116: 189-193.
  54. Everard M. L., Sly P., Brenan S. et al. Macrolide antibiotics in diffuse panbronchiolitis and cystic fibrosis. Eur. Respir. J. 1997; 10: 2926.
  55. Wolter J., Seeney S., Bell S. et al. Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomized trial. Thorax 2002; 57: 212-216.
  56. Saiman L., Marshall В. С., Mayer-Hamblett N. et al. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. J. A. M. A. 2003; 290: 1749-1756.
  57. Southern K. W., Barker P. M., Solis A. Macrolide antibiotics for cystic fibrosis. Cochrane Database Syst. Rev. 2004: CD002203.
  58. Clement A., Tamalet A., Leroux E. et al. Long term effects azithromycin in patients with cystic fibrosis: a double blind, placebo controlled trial. Thorax 2006; 61: 895-902.
  59. Cigana C., Assael B. M., Melotti P. Azithromycin selectively reduces tumor necrosis factor alpha levels in cystic fibrosis airway epithelial cells. Antimicrob. Agents Chemother 2007; 51: 975-981.
  60. Scheid P., Kempster L., Griesenbach U. et al. Inflammation in cystic fibrosis airways: relationship to increased bacterial adherence. Eur. Respir. J. 2001; 17: 27-35.
  61. Legssyer R., Huaux F., Lebaq J. et al. Azithromycin reduces spontaneous and induced inflammation in ΔF508 cystic fibrosis mice. Respir. Res. 2006; 7: 134.
  62. Angrill J., Agusti C., Celis C. et al. Bronchial inflammation and colonization in patients with clinically stable bronchiectasis. Am. J. Respir. Crit. Care Med. 2001; 164: 1628-1632.
  63. Cymbala A. A., Edmonds L. C., Bauer M. A. et al. The disease modifying effects of twice-weekly oral azithromycin in patients with bronchiectasis. Treat. Respir. Med. 2005; 4: 117- 122.
  64. Tagay E., Tamaoki J., Kondo M. et al. Effect of short course of clarithromycin therapy on sputum production in patients with chronic airway hypersecretion. Chest 2002; 122: 213-218.
  65. Wang H., Ma S. The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome. Am. J. Emerg. Med. 2008; 26: 711-715.
  66. Sato K., Suga M., Akaike T. et al. Therapeutic effect of erythromycin on influenza virus-induced lung injuri in mice. Am. J. Respir. Crit. Care Med. 1998; 157: 853-857.
  67. Karlstrom A., Boyd K. L., English В. K. et al. Treatment with protein synthesis inhibitors improves outcomes of secondary bacterial pneumonia after influenza. J. Infect. Dis. 2009; 199: 311-319.
  68. Mandell L. A., Wunderink R. G., Antonio A. et al. Infectious Diseases Society of America / American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin. Infect. Dis. 2007; 44 (Suppl. 2): S27-S72.
  69. Lim W. S., Baudouin S. V., George R. C. et al. British Thoracic Society guidelines for the management of community acquired pneumonia in adults: update 2009. Thorax 2009; 64 (Suppl. III):iiil-iii55.
  70. Чучалин А. Г., Синопальников А. И., Козлов Р. С. и др. Внебольничная пневмония у взрослых. Практические рекомендации по диагностике, лечению и профилактике. Клин. микробиол. и антимикроб. химиотер. 2010; 12(3): 186-226.
  71. Baddour L. M., Yu V. L., Klugman K. P. et al. Combination antibiotic therapy lowers mortality among severely ill patients with pneumococcal bacteremia. Am. J. Respir. Crit. Care Med. 2004; 170: 440-444.
  72. Bròwn R. B., Iannini P., Gross P. et al. Impact of initial antibiotic choice on clinical outcomes in community-acquired pneumonia: analysis of a hospital claims-made database. Chest 2003; 123: 1503-1511.
  73. Garcia Vazquez E., Mensa J., Martinez J. A. et al. Lower mortality among patients with community-acquired pneumonia treated with macrolide plus beta-lactam agent versus a beta-lactam agent alone. Eur. J. Clin. Microbiol. Infect. Dis. 2005; 24: 190-195.
  74. Martinez J. A., Horcajada J. P., Almela M. et al. Addition of a macrolide to a beta-lactam-based empirical antibiotic regimen is associated with lower in-hospital mortality for patients with bacteremic pneumococcal pneumonia. Clin. Infect. Dis. 2003; 36: 389-395.
  75. Tessmer A., Welte T., Martus P. et al. Impact of intravenous beta-lactam/macrolide versus beta-lactam monotherapy on mortality in hospitalized patients with community-acquired pneumonia J. Antimicrob. Chemother. 2009; 63: 1025-1033.
  76. Lin E., Stanek R. J., Mufson M. A. Lack of synergy of erythromycin combined with penicillin or cefotaxime against Streptococcus pneumoniae in vitro. Antimicrob Agents Chemother. 2003; 47: 1151-1153.
  77. Johansen H. K., Jensen T. G., Dessau R. B. et al. Antagonism between penicillin and erythromycin against Streptococcus pneumoniae in vitro and in vivo. J. Antimicrob. Chemother. 2000; 46: 973-980.
  78. Anderson R., Steel H. C., Cockeran R. et al. Comparison of the effects of macrolides, amoxicillin, cefriaxone, doxycycline, tobramycin and fluoroquinolones, on the production of pneumolysin by Streptococcus pneumoniae in vitro. J. Antimicrob. Chemother. 2007; 60: 1155-1158.
  79. Ivetic Tcalcevic V., Bosnjak B., Hrvacic B. et al. Anti-inflammatory activity of azithromycin attenuates the effects of lipopolysaccharide administraion in mice. Eur. J. Pharmacol. 2006; 539: 131-138.
  80. Giamarellos-Bourboulis E. J., Adamis T., Laoutaris G. et al. Effect of clarithromycin in patients with sepsis and ventilator-associated pneumonia. Clin. Infect. Dis. 2008; 46: 1157-1164.
  81. Restrepo M. I., Mortensen E. M., Waterer G. W. et al. Impact of macrolide therapy on mortality for patients with severe sepsis due to pneumonia. Eur. Respir. J. 2009; 33: 153-159.
  82. Gerhardt S. G., McDyer J. F., Girgis R. E. et al. Maintenance azithromycin therapy for bronchiolitis obliterans syndrome: results of a pilot study. Am. J. Respir. Crit. Care Med. 2003; 168: 121-125.
  83. Khalid M., Al Saghir A., Saleemi S. et al. Azithromycin in bronchiolitis obliterans complicating bone marrow transplantation: a preliminary study. Eur. Respir. J. 2005; 25: 490-493.
  84. Verleden G. M., Dupont L. J. Azithromycin therapy for patients with bronchiolitis obliterans syndrome after lung transplantation. Transplantation 2004; 77: 1465-1467.
  85. Yates B., Murphy D. M., Forrest I. A. et al. Azithromycin reverses airflow obstruction in established bronchiolitis obliterans syndrom. Am. J. Respir. Crit. Care Med. 2005; 172: 772- 775.
  86. Verleden G. M., Vanaudenaerde B. M., Dupont L. J. et al. Azithromycin reduces neutrophilia and interleukin-8 in patients with bronchiolitis obliterans syndrome. Am. J. Respir. Crit. Care Med. 2006; 174: 566-570.
  87. Tenson T., Lovmar M., Ehrenberg M. The mechanism of action of macrolides, loncosamides and streptogramin В reveals the nascent peptide exit path in the ribosome. J. Mol. Biol. 2003; 30: 1005-1014.
  88. Tazumi A., Maeda Y., Goldsmith C. E. et al. Molecular characterization of macrolide resistance determinants [erm(B) and mef(a)] in Streptococcus pneumoniae and viridians group streptococci (VGS) isolated from adult patients with cystic fibrosis (CF). J. Antimicrob. Chemother. 2009; 64: 501-506.
  89. Zhanel G. G., Dueck M., Hoban D. J. et al. Review of macrolides and ketolides: focus on respiratory tract infections. Drugs 2001; 61: 443-498.
  90. Malhotra-Kumar S., Lammens C., Coenen S. et al. Effect of azithromycin and clarithromycin therapy on pharyhgeal carriage of macrolide-resistant streptococci in healthy volunteers: a randomized, double-blind, placebo-controlled study. Lancet 2007; 369: 482-490.
  91. Phaff S. J., Tiddens H. A., Verbrugh H. A. et al. Macrolide resistance of Staphylococcus aureus and Haemophilus spp. associated with long-term azithromycin use in cystic fibrosis. J. Antimicrob. Chemother. 2006; 57: 741-746.
  92. Tramper-Stranders G. A., Wolfs T. F., Fleer A. et al. Maintenance azithromycin treatment in pediatric patients with cystic fibrosis: long-term outcomes related to macrolide resistance and pulmonary function. Pediatr. Infect. Dis. 2007; 26: 8-12.
  93. Levy I., Grisaru-Soen G., Lerner-Geva L. et al. Multicenter cross-sectional study of nontuberculous mycobacterial infections among cystic fibrosis patients. Israel Emerg. Infect. Dis. 2008; 14:378-384.
  94. Katoda J., Mukae H., Ishii H. et al. Long-term efficacy and safety of clarithromycin treatment in patients with diffuse panbronchiolitis. Respir. Med. 2003; 97: 844-850.
  95. Katoda J., Mukae H., Mizunoe S. et al. Long-term macrolide antibiotic therapy in the treatment of chronic small airway disease clinically mimicking diffuse panbronchiolitis. Intern. Med. 2005; 44: 200-206.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2011 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies