Arterial hypertension in metabolic syndrome: Pathophysiological aspects


Cite item

Full Text

Abstract

Arterial hypertension (AH) is one of the basic components of metabolic syndrome that is caused by four factors: autonomic sympathetic dysfunction; activation of the hypothalamic-pituitary-adrenal axis; that of the renin-angiotensin-aldosterone system; and endothelial dysfunction (ED). AH is a slowly progressive hemodynamic disease, the natural course of which is characterized by not only elevated blood pressure (BP), but also by left ventricular hypertrophy, arterial remodeling, and a progressive increase in total peripheral resistance. ED and arterial remodeling play a key role in the pathogenesis of AH in metabolic syndrome. Remodeling of resistant arteries raises peripheral resistance and stabilizes BP and that of large arteries increases their stiffness and a reflected wave, resulting in increased pulse BP, systolic BP, and enhanced left ventricular hypertrophy. Insulin resistance and hyperinsulinemia increase the activity of the renin-angiotensin-aldosterone system and, by enhancing the expression of angiotensinogen, angiotensin II and its type 1 receptors, favors the development of AH, proinflammation, atherosclerosis, and congestive heart failure. Hyperleptinemia, which, by stimulating the activity of the sympathetic nervous system, elevates BP, plays a certain role in the development of AH in metabolic syndrome and obesity.

Full Text

Патофизиологические аспекты артериальной гипертонии при метаболическом синдроме. - Аннотация. Артериальная гипертония (АГ) - один из основных компонентов метаболического синдрома, развитие которого обусловлено четырьмя факторами: автономной дисфункцией симпатической части вегетативной нервной системы (С-ВНС), активацией гипоталамо-питуитрино-адреналовой и ренин-ангиотензин-альдостероновой систем, а также дисфункцией эндотелия (ДЭ). АГ - медленно прогрессирующее гемодинамическое заболевание, естественное течение которого характеризуется не только повышением артериального давления (АД), но также развитием гипертрофии левого желудочка (ГЛЖ), ремоделированием артерий и прогрессивным повышением общего периферического сопротивления. В патогенезе АГ при метаболическом синдроме ключевая роль принадлежит ДЭ и ремоделированию артерий. Ремоделирование резистивных артерий увеличивает периферическое сопротивление и стабилизирует АД, а ремоделирование крупнокалиберных артерий повышает жесткость артерий и увеличивает отраженную волну, в результате чего повышается пульсовое АД, систолическое АД и усиливается ГЛЖ. Инсулинорезистентность и гиперинсулинемия повышают активность ренин-ангиотензин-альдостероновой системы и, усиливая экспрессию ангиотензиногена, ангиотензина II и его рецепторов 1-го типа (АТ1-рецепторов), способствуют развитию АГ, провоспаления, атеросклероза и застойной сердечной недостаточности. В развитии АГ при метаболическом синдроме и ожирении определенную роль играет гиперлептинемия, которая стимулируя активность С-ВНС, повышает АД.
×

References

  1. Reaven G.M. Banting lecture 1988, Role of insulin resistance in human disease. Diabetes 1988; 37: 1595-607.
  2. Wolk R., Somers V. Sleep and the metabolic syndrome. Exp Physiol 2006; 92: 67-78.
  3. Yanai H., Tomono Y., Ito K. et al. The underlying mechanisms for development of hypertension in the metabolic syndrome. Nutr J 2008; 17 (7): 10.
  4. Herman J.P., Cullinan W.E. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 1997; 20: 78-84.
  5. Iton H., Kazuwa N. Vascular stress response and endothelial vasoactive factors for vascular remodeling. Diabetes Res Clin Pract 1999; 45: 83-88.
  6. Pittas A.G., Joseph N.A., Greenberg A.S. Adipocytokines and insulin resistance. J Clin Endocrinol Metab 2004; 89: 447-452.
  7. Prior J.O., Quiñones M.J., Hernandez-Pampaloni M. et al. Coronary circulatory dysfunction in insulin resistance, impaired glucose tolerance, and type 2 diabetes mellitus. Circulation 2005;111: 2291-2298.
  8. Vaccarino V., Bremner J. Stress response and the metabolic syndrome. Cardiology 2005; 11: 2-11.
  9. Reaven G., Lithell H., Landsberg L. Hypertension and associated metabolic abnormalities - the role of insulin resistance and the sympathoadrenal system. N Engl J Med 1996; 334: 374-381.
  10. Rasmond R. Role of stress in the pathogenesis of the metabolic syndrome. Psychoneuroendocrinology 2005; 30: 1-10.
  11. Henry J.P., Grim C.E. Psychosocial mechanisms of primary hypertension. J Hypertens 1990; 8: 783-793.
  12. Selye H. The stress of life. New York: McGraw-Hill 1975.
  13. Brunner E.J., Marmot M.G., Nanchahal K. et al. Social inequality in coronary risk: central obesity and the metabolic syndrome. Evidence from the Whitehall II study. Diabetologia 1997; 40: 1341-1349.
  14. Brunner E.J., Hemingway H., Walker B.R. et al. Adrenocortical, autonomic, and inflammatory causes of the metabolic syndrome: nested case-control study. Circulation 2002; 106: 2659-2665.
  15. Kaplan G.A., Keil J.E. Socio-economic factors and cardiovascular disease: a review of the literature. Circulation 1993; 88: 1973-1998.
  16. Bairey Merz C.N., Dwyer J., Nordstrom C.K. et al. Psychosocial stress and cardiovascular disease: Рathophysiological links. Behav Med 2002; 27: 141-147.
  17. Chandola T., Brunner E., Marmot M. Chronic stress at work at the metabolic syndrome; prospective study. BJM 2006; 332: 521-525.
  18. Nilsson P.H., Roost M., Engstrom G. et al. Incidence of diabetes in middle-aged men is related to sleep disturbances. Diabetes Care 2004; 27: 2464-2469.
  19. Sarkar R., Meinberg E.G., Stanley J.C. et al. Nitric oxide reversibly inhibits the migration of cultured vascular sooth muscle cells. Circ Res 1996; 78: 225-230.
  20. Marketou M., Vardas P. Stem cells and hypertension: Another challenge for the future? Hellenic J Cardiol 2011; 52: 289-292.
  21. Kong D., Melo L.G., Gnecchi M. et al. Cytokin-unduce mobilization of circulating endothelial progenitor cells enhances repair of injured arteries. Circulation 2004; 110: 2034-2046.
  22. Leone A.M., Weinheimer C.J., Kelly D.P. et al. A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci USA 1999; 96: 7473-7478.
  23. Mogenson C.E. Hypertension and diabetes. Lippincott Williams&Wilkins 2002.
  24. Schindler C. The metabolic syndrome as an endocrine disease: is there an effective pharmacotherapeutic strategy optimally targeting the pathogenesis? Therapeutic Advances in Cardiovascular Disease 2007; 1: 2-7.
  25. Prasad A., Quyumi A. Renin-Angiotensin System and Angiotensin Receptor Blockers in the Metabolic Syndrome. Circulation 2004; 110: 1507-1512.
  26. Fortuno A., Jose G., Moreno M. et al. Oxidative stress and vascular remodeling. Exp Physiol 1997; 6: 305-311.
  27. Sesso H.D., Burning J.E., Rifai N. et al. C-reactive protein and the risk of developing hypertension. JAMA 2003; 290: 2945-2951.
  28. Johanne T. Genetic determinants of C-reactive protein levels in metabolic syndrome: a role for the adrenergic system? Hypertension 2007; 25: 281-283.
  29. Otoshi K., Yamasaki Y., Gorgorawa S. et al. Association of -786T-C mutation of endothelial nitric oxide synthesis gene with insulin resistance. Diabetologia 2002; 45: 1594-1601.
  30. Marks V. The metabolic syndrome. Nurs Stand 2003; 49: 37-44.
  31. Frisbee J.C. Skeletal and Cardiac Muscle Blood Flow. Enhanced arteriolar α-adrenergic constriction impairs dilator responses and skeletal muscle perfusion in obese Zucker rats. J Appl Physiol 2004; 97: 764-772.
  32. Баклаваджян О.Г. Висцеро-соматические афферентные системы гипоталамуса. Л: Наука 1985.
  33. Шевченко О.П., Праскурничий Е.А., Шевченко А.О. Метаболический синдром. М: Реафарм 2004.
  34. Sundstrom J. Left ventricular hypertrophy and the insulin resistance syndrome. Acta Universitatis Upsaliensis 2001; 992: 68.
  35. Cooper R.S., Simmons B.E., Castanar A. et al. Left ventricular hypertrophy is associated with worse survival independent of ventricular function and number of coronary arteries severely narrowed. Am J Cardiol 1990; 65: 441-446.
  36. Гургенян С.В., Бабаян А.С. Гемодинамические механизмы повышения артериального давления в периоде становления и стабилизации гипертонической болезни. Cor et vasa 1982; 24: 100-102.
  37. Гургенян С.В., Микаелян Е.С., Арутюнян Э.А. и др. Гемодинамические и нейрогуморальные механизмы пограничной гипертонии. Кровообращение 1988; 3: 33-35.
  38. Julius S. Effect of sympathetic overactivity on cardiovascular prognosis in hypertension. Eur Heart J 1998; 19 (Suppl F): F14-18.
  39. Grassi G., Arenare1 F., Pieruzzi1 F. et al. Sympathetic activation in сardiovascular and renal disease. J Nephrol 2009; 22: 190-195.
  40. Muscelli E., Natali A., Bianchi S. et al. Effect of insulin on renal sodium and uric acid handling in essential hypertension. Am J Hypertens 1996; 9: 746-752.
  41. Cornier M.A., Dabelea D., Hernandez T.L. et al. The Metabolic Syndrome Endocr Rev 2008; 29: 777-822.
  42. Folkow B. Physiological aspects of primary hypertension. Physiol Rev 1982; 62: 347-504.
  43. Lever A.F. Slow pressure mechanisms in hypertension: A role for hypertrophy of resistance vessels. J Hypertension 1986; 4: 515.
  44. Folkow B. The "structural factor" in hypertension with special emphasis on the hypertrophic adaptation of the systemic resistance vessels. Hypertension 2001; 19: 184-200.
  45. O'Rourke M.F. Principles and definitions of arterial stiffness, wave reflections and pulse pressure amplification. In: Safar M.E., O'Rourke M.F. (editors), Arterial stiffness in hypertension. Handbook of Hypertension. Elsevier 2006; 23: 3-19.
  46. Ammiri F., Virdis A., Neves M. et al. Endothelium-Restricted Overexpression of Human Endothelin-1 Causes Vascular Remodeling and Endothelial Dysfunction. Circulation 2004; 110: 2233-2240.
  47. Matrougui K., Schiavi P., Guez D., Henrion D. High sodium intake decreases pressure-induced (miogenic) tone and flow induced dilation in resistance arteries from hypertensive rat. Hypertension 1998; 32: 176-179.
  48. Lehoux S., Tedqui A. Signal transduction of mechanical stress in vascular wall. Hypertension 1998; 32: 338-345.
  49. Mayet J., Hugness A. Cardiac and vascular pathophysiology in hypertension. Hear 2003; 89: 1104-1109.
  50. Aribas S., Hillier C., González C. et al. Cellular aspects of vascular remodeling in hypertension revealed by confocal microscopy. Hypertension 1997; 30: 1455-1464.
  51. Tiret L., Regard B., Visvikis S. et al. Evidence, from combined segregation and linkage analysis that a variant of the angiotensin converting enzyme, (ACE) gene controls plasma ACE. Am J Hum Genet 1992; 51: 197-205.
  52. Clarcson T.B., Prichard R.W., Morgan T.M. et al. Remodeling of coronary arteries in human and non human primates. JAMA 1994; 227 (4): 289-294.
  53. Kumar V., Abbas A.K., Fausto N. Pathologic Basis of disease. 7th ed. New York: Barnes & Noble 2004.
  54. McFarlane R. Hypertension in the diabetic patient. A guide to management. London: Current Medical Literature Ltd. 2001.
  55. Whaley-Connell A., Johnson M.S., Sowers J.R. Aldosterone: Role in the cardiometabolic syndrome and resistant hypertension. Prog Cardiovasc Dis 2010; 52: 401-409.
  56. Šabovič M., Mavri A. Leptin and obesity - neuroendocrine, metabolic and aterogenic effects of leptin. Zdrav Vestin 2003; 72: 19-23.
  57. Henriksen J., Holst J., Moler S. et al. Elevated circulating leptin levels in arterial hypertension: relationship to arteriovenous overlow and extraction of leptin. Clinical Science 2000; 99: 527-534.
  58. Leyva F., Godstland I., Hate M. et al. Hyperleptenemia as a component of metabolic syndrome of cardiovascular risk. Arteroscler Thromb Vasc Biol 1998; 18: 928-933.
  59. Marks J.B. The Insulin Resistance Syndrome. Am Diab Ass 1996; 1.
  60. Boundy V.A., Cincotta A.H. Hypothalamic adrenergic receptor changes in the metabolic syndrome of genetically obese (ob/ob) mice. Am J Physiol Regul Integr Comp Physiol 2000; 279: R505-R14.
  61. Papadia F., Marinari G.M., Camerini G. et al. Leptin and insulin action in severely obese women. Obes Surg 2003; 13: 241-244.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies