Consecutive formation of the functions of high-, low-density and very-low-density lipoproteins during phylogenesis. Unique algorithm of the effects of lipid-lowering drugs


Cite item

Full Text

Abstract

During phylogenesis, all fatty acids (FA) were initially transported to cells by apoА-I high-density lipoproteins (HDL) in polar lipids. Later, active cellular uptake of saturated, monoenoic and unsaturated FA occurred via triglycerides (TG) in low-density lipoproteins (LDL). Active uptake of polyenoic FA (PUFA) required the following: а) PUFA re-esterified from polar phospholipids into nonpolar cholesteryl polyesters (poly-CLE), b) a novel protein, cholesteryl ester transfer protein (CETP), initiated poly-CLE transformation from HDL to LDL. CETP formed blood HDL-CETP-LDL complexes in which poly-CLE spontaneously came from polar lipids of TG in HDL to nonpolar TG in LDL. Then ligand LDLs formed and the cells actively absorbed PUFA via apoB-100 endocytosis. Some animal species (rats, mice, dogs) developed a spontaneous CETP-minus mutation followed by population death from atherosclerosis. However, there was another active CETP-independent uptake formed during phylogenesis; the cells internalized poly-CLE in HDL. Since apoА-I had no domain-ligand, another apoE/A-I ligand formed; the cells began synthesizing apoЕ/А-I receptors. In cells of rabbits and primates absorbed cells PUFA consecutively: HDL→LDL→apoВ-100 endocytosis; those of rats and dogs did HDL directly: HDL→апоЕ/А-I endocytosis. In the rabbits, CETP was high, apoE in HDL was low, and the animals were sensitive to exogenous hypercholesterolemia. In the rats, CETP was low and ApoE in HDL was high, and the animals were resistant to hypercholesterolemia. Reduced bioavailability of PUFA during their consecutive cellular uptake and development of intercellular PUFA deficiency are fundamental to the pathogenesis of atherosclerosis.

References

  1. Antonopoulos AS, Margaritis M, Lee R, Channon K, Antoniades C. Statins as anti-inflammatory agents in atherogenesis: molecular mechanisms and lessons from the recent clinical trials. Curr Pharmceut Des. 2012;18:1519-1530.
  2. Титов В.Н. Филогенетическая теория становления болезни, теория патологии, патогенез «метаболических пандемий» и роль клинической биохимии. Клиническая лабораторная диагностика. 2012;10:5-13.
  3. Boden WE, Sidhu MS, Toth PP. The therapeutic role of niacin in dyslipidemia management. J Cardiovasc Pharmacol Ther. 2014; 19(2):141-158.
  4. Zhang LH, Kamanna VS, Ganji SH. Xiong XM, Kashyap ML. Niacin increases HDL biogenesis by enhancing DR4-dependent transcription of ABCA1 and lipidation of apolipoprotein A-I in HepG2 cells. J Lipid Res. 2012;53:941-950.
  5. Lopez-Miranda J, Williams C, Lairon D. Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism. Br J Nutr. 2007;98:458-473.
  6. Tonkin A, Byrnes A. Treatment of dyslipidemia. Reports. 2014;6:17-27.
  7. Титов В.Н. Инсулин: инициирование пула инсулинзависимых клеток, направленный перенос триглицеридов и повышение кинетических параметров окисления жирных кислот. Клиническая лабораторная диагностика. 2014;4:27-38.
  8. Титов В.Н., Амелюшкина В.А., Рожкова Т.А. Конформация апоВ-100 в филогенетически и функционально разных липопротеинах низкой и очень низкой плотности. Алгоритм формирования фенотипов гиперлипопротеинемии. Клиническая лабораторная диагностика. 2014;1:27-38.
  9. Titov VN. Phylogenetically theory of general pathology, nutritive disturbance is the basis of metabolic syndrome pathogenesis, overeating syndrome. Leptin and adiponectin role. Eur J Med. 2013;1(1):48-60.
  10. Титов В.Н. Биологическая функция трофологии (питания) и патогенез метаблического синдрома — физиологичного переедания. Филогенетическая теория общей патологии, лептин и адипонектин. Патологическая физиология и экспериментальная терапия. 2014;2:68-79.
  11. Титов В.Н. Филогенетическая теория общей патологии. Патогенез «метаболических пандемий». Сахарный диабет. М.: ИНФРА-М; 2014:222.
  12. Titov VN. Statins-induced inhibition of cholesterol synthesis in liver and very low density lipoproteins. Statins, fatty acids and insulin resistance. Pathogenesis. 2013;11(1):18-26.
  13. Whayne T.F. Problems and possible solutions for therapy with statins. Int J Angiol. 2013;22:75-82.
  14. Igbal J, Hussain MM. Intestinal lipid absorption. Am J Physiol. Endocrinol Metab. 2009;296(6):E1183-E1194.
  15. Tarig SM, Sidhu MS, Toth PP, Boden WE. HDL hypothesis: where do we stand now? Curr Atherodcler Rep. 2014;16(4): 398-406.
  16. Titov VN, Lisitsyn DM. Plasma content of cholesterol and glycerol alcohols depends on the number of fatty acid double bonds in lipoprotein lipid pool. Bull Exp Biol Med. 2006;142(5):577-580.
  17. Wang S, Matthan NR, Wu D, Reed DB, Bapat P, Yin X, Grammas P, Shen CL, Lichtenstein AH. Lipid content in hepatic and gonadal adipose tissue parallel aortic cholesterol accumulation in mice fed diets with different omega-6 PUFA to EPA plus DHA ratios. Clin Nutr. 2014;33(2):260-266. doi: 10.1016/j.clnu.2013.04.009.
  18. Olivier M, Tanck MW, Out R. Villard EF, Lammers B, Bouchareychas L, Frisdal E, Superville A, Van Berkel T, Kastelein JJ, Eck MV, Jukema JW, Chapman MJ, Dallinga-Thie GM, Guerin M, Le Goff W. Human ATP-binding cassette G1 controls macrophage lipoprotein lipase bioavailability and promotes foam cell formation. Arterioscler Thromb Biol Vasc. 2012;32:2223-2231. doi: 10.1161/atvbaha.111.243519.
  19. Barter PJ, Brewer HB, Chapman MJ, Hennekens CH, Rader DJ, Tall AR. Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler Thromb VascBiol. 2003;23:160-167.
  20. Hussain MM, Shi J, Dreizen P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res. 2005;44:22-32.
  21. Tenenbaum A, Fisman EZ. Balanced pan-PPAR activator bezafibrate in combination with statin: comprehensive lipids control and diabetes prevention? Cardiovasc Diabetol. 2012;11:140-149.
  22. Knowies CJ, Dionne M, Cebova M, Pinz IM. Palmitate-Induced Translocation of Caveolin-3 and Endothelial Nitric Oxide Synthase in Cardiomyocytes. Online J Biol Sci. 2011;11(2):27-36.
  23. Cho H, Wu M, Zhang L, Thompson R, Nath A, Chan C. Signaling dynamics of palmitate-induced ER stress responses mediated by ATF4 in HepG2 cells. BMC Syst Biol. 2013;7:9-22. doi: 10.1186/1752-0509-7-9.
  24. Lauring B, Taggart AK, Tata JR, Dunbar R, Caro L, Cheng K, Chin J, Colletti SL, Cote J, Khalilieh S, Liu J, Luo WL, Maclean AA, Peterson LB, Polis AB, Sirah W, Wu TJ, Liu X, Jin L, Wu K, Boatman PD, Semple G, Behan DP, Connolly DT, Lai E, Wagner JA, Wright SD, Cuffie C, Mitchel YB, Rader DJ, Paolini JF, Waters MG, Plump A. Niacin lipid efficacy is independent of both the niacin receptor GPR109A and free fatty acid suppression. Sci Transl Med. 2012;4(148):148ra115. doi: 10.1126/scitranslmed.3003877.
  25. Ganji SH, Kukes GD, Lambrecht N, Kashyap ML, Kamanna VS. Therapeutic role of niacin in the prevention and regression of hepatic steatosis in rat model of nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol. 2014;306(4):G320-G327. doi: 10.1152/ajpgi.00181.2013.
  26. Szapary PO, Rader DJ. Pharmacological management of high triglycerides and low high-density lipoprotein cholesterol. Curr Opin Pharmacol. 2001;1:113-120.
  27. Backes JM, Gibson CA, Howard PA. Optimal lipid modification: the rationale for combination therapy. Vasc Health Risk Manag. 2005;1:317-331.
  28. Le Goff W, Guerin M, Chapman MJ. Pharmacological modulation of cholesteryl ester transfer protein, a new therapeutic target in atherogenic dyslipidemia. Pharmacol Ther. 2004;101:17-38.
  29. Hernandez M, Wright SD, Cai TQ. Critical role of cholesterol ester transfer protein in nicotinic acid-mediated HDL elevation in mice. Biochem Biophys Res Commun. 2007;355:1075-1080.
  30. Jin FY, Kamanna VS, Kashyap ML. Niacin decreases removal of high-density lipoprotein apolipoprotein A-I but not cholesterol ester by Hep G2 cells. Implication for reverse cholesterol transport. Arterioscler Thromb Vasc Biol. 1997;17:2020-2028.
  31. Knowles HI, Poole RT, Workman P, Harris AL. Niacin induces PPARgamma expression and transcriptional activation in macrophages via HM74 and HM74a-mediated induction of prostaglandin synthesis pathways. Biochem Pharmacol. 2006;71:646-656.
  32. Atkories K, Schultz G, Jakobs KH. Regulation of adenylate cyclase activity in hamster adipocytes. Inhibition by prostaglandins, alpha-adrenergic agonists and nicotinic acid. Arch Pharmacol. 1980;312:167-173.
  33. Tunaru S, Kero J, Schaub A, Wufka C, Blaukat A, Pfeffer K, Offermanns S. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat Med. 2003;9 352-355.
  34. Рекомендации ЕОК/ЕОА по лечению дислипидемий. Рациональная фармакотерапия в кардиологии. 2012;1:1-62.
  35. Bodor ET, Offermanns S. Nicotinic acid: an old drug with a promising future. Br J Pharmacol. 2008;153:S68-S75.
  36. Kamanna VS, Kashyap ML. Mechanism of action of niacin. Am J Cardiol. 2008;101:20B-26B.
  37. Lamon-Fava S, Diffenderfer MR, Barrett PH, Buchsbaum A, Nyaku M, Horvath KV, Asztalos BF, Otokozawa S, Ai M, Matthan NR, Lichtenstein AH, Dolnikowski GG, Schaefer EJ. Extended-release niacin alters the metabolism of plasma apolipoprotein (Apo) A-I and ApoB-containing lipoproteins. Arterioscler Thromb VascBiol. 2008;28:1672-1678. doi: 10.1161/atvbaha.108.164541.
  38. Palani A, Rao AU, Chen X, Huang X, Su J, Tang H, Huang Y, Qin J, Xiao D, Degrado S, Sofolarides M, Zhu X, Liu Z, McKittrick B, Zhou W, Aslanian R, Greenlee WJ, Senior M, Cheewatrakoolpong B, Zhang H, Farley C, Cook J, Kurowski S, Li Q, van Heek M, Wang G, Hsieh Y, Li F, Greenfeder S, Chintala M. Discovery of SCH 900271, a Potent Nicotinic Acid Receptor Agonist for the Treatment of Dyslipidemia. ACS Med Chem Lett. 2012;3:63-68. doi: 10.1021/ml200243g.
  39. Whayne TF. Nicotinic acid: current status in lipid management and cardiovascular disease prevention. Angiology. 2014;65(7):557-559.
  40. Song WL, Stubbe J, Ricciotti E, Alamuddin N, Ibrahim S, Crichton I, Prempeh M, Lawson JA, Wilensky RL, Rasmussen LM, Puré E, FitzGerald GA. Niacin and biosynthesis of PGD by platelet COX-1 in mice and humans. J Clin Invest. 2012;122(4): 1459-1468. doi: 10.1172/jci59262.
  41. Mohammadpour AH, Akhlaghi F. Future of cholesteryl ester transfer protein (CETP) inhibitors: a pharmacological perspective. Clin Pharmacol. 2013;52(8):615-626.
  42. Jons DG, Duffy J, Fisher T. On- and off-target pharmacology of torcetrapib: current understanding and implications for the structure activity relationships (SAR), discovery and development of cholesteryl ester-transfer protein (CETP) inhibitors. Drugs. 2012;72(4):491-507.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies