索引源数据

Структура и физико-механические характеристики дисперсной системы пористого поливинилформаля

Dublin Core PKP源数据项目 这个文档的源数据
1. 标题 文档的标题 Структура и физико-механические характеристики дисперсной системы пористого поливинилформаля
2. 创建者 作者姓名,工作单位,国家 В. Ломовской; Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии имени А.Н. Фрумкина РАН; 俄罗斯联邦
2. 创建者 作者姓名,工作单位,国家 Н. Абатурова; Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии имени А.Н. Фрумкина РАН; 俄罗斯联邦
2. 创建者 作者姓名,工作单位,国家 A. Акимова; Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии имени А.Н. Фрумкина РАН; 俄罗斯联邦
2. 创建者 作者姓名,工作单位,国家 Н. Ломовская; Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии имени А.Н. Фрумкина РАН; 俄罗斯联邦
2. 创建者 作者姓名,工作单位,国家 И. Симонов-Емельянов; Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии имени А.Н. Фрумкина РАН; 俄罗斯联邦
2. 创建者 作者姓名,工作单位,国家 В. Котенев; Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии имени А.Н. Фрумкина РАН; 俄罗斯联邦
2. 创建者 作者姓名,工作单位,国家 О. Хлебникова; Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии имени А.Н. Фрумкина РАН; 俄罗斯联邦
3. 主题 学科
3. 主题 关键词 пористый поливинилформаль; дисперсно-наполненные пластические массы
4. 描述 摘要

Пористый поливинилформаль – один из наиболее перспективных полимерных материалов, используемых в качестве фильтров и сорбентов жидкостей.

5. 出版商 组织机构,地点 The Russian Academy of Sciences
6. 合作者 主管
7. 日期 (YYYY-MM-DD) 02.03.2025
8. 类型 现状与流派 同行评议的文章
8. 类型 类型 来源文章
9. 格式 文件格式
10. 识别码 环球资源指标 https://journals.eco-vector.com/0044-1856/article/view/683174
10. 识别码 Digital Object Identifier (DOI) 10.31857/S0044185625010087
10. 识别码 eLIBRARY Document Number (EDN) LDEHBH
11. 期刊/会议标题 ; 卷., 期. (年) Zaŝita metallov; 卷 61, 编号 1 (2025)
12. 语言 English=en ru
13. 关系 补充文件 Fig. 1. Condensation structure of polyvinyl formal (PPVF) synthesized from polyvinyl alcohol (PVA 16/1 GOST 10779-78) with a molecular weight of MW = 4.74 × 104 and a degree of hydrolysis of . The content of acetate groups was 2.0%. Various degrees of magnification. (724KB)
Fig. 2. Schematic representation of the process of formation of condensation structures: 1 – PPVF nuclei; 2 – aqueous solution of PVA; (a) – nuclei of the new PPVF phase and formation of globules in a non-solvent medium; (b) – increase in the size of globules and their coalescence. (154KB)
Fig. 3. Dependence of the degree of substitution of functional groups of the polymer on the value of at different values ​​of the parameter: (1) – 1.00; (2) – 1.25; (3) – 2.00; (4) – 3.00; (5) – 6.00; (6) – ∞. (81KB)
Fig. 4. Dependence of the degree of acetalization on the duration of interaction of an aqueous solution of PVA with formaldehyde at different initial concentrations of PVA, g-eq/l: (1) – 0.98; (2) – 1.77; (3) – 1.97; (4) – 2.41; = 2.62 mol/l; = 2.52 mol/l; The solid line corresponds to = 0.98 g-eq/l, the dotted line to = 2.41 g-eq/l. (50KB)
Fig. 5. Dependence of the degree of acetalization on the duration of interaction with formaldehyde at different initial concentrations of aldehyde (mol/l): (1) – 1.00; (2) – 2.00, (3) – 2.62; (4) – 3.30; = 1.83 g-eq/l; = 2.52 mol/l; . (67KB)
Fig. 6. Dependence of the degree of acetalization on the duration of interaction with formaldehyde at different acid concentrations (mol/l): (1) – 2.00; (2) – 2.52; (3) – 2.80; (4) – 3.50; = 1.83 g-eq/l; = 2.62 mol/l; . (68KB)
Fig. 7. Dependence of the degree of acetalization on the duration of interaction with formaldehyde at different temperatures T˚C: (1) – 40; (2) – 45; (3) – 50; (4) – 55. = 1.83 g-eq/l; = 2.62 mol/l; = 2.52 mol/l. (67KB)
Fig. 8. Changes in the structure of PVA depending on the time of acetalization of an aqueous solution of PVA: (a) – 24 h; (b) – 48 h; (c) – 120 h [4]. (552KB)
Fig. 9. State diagrams of polymer – water systems: (1) – PVA, (2; 2') – PVF (αp = 0.30), (3) – PVF (αp = 0.69), (4) – PVF (αp = 0.76), (5) – PVF (αp = 0.79), (6) – PVF (αp = 0.82), (7) – PVF (αp = 0.86); Tf is the flow temperature of the PVA – water system, the curve separates the region of the viscous flow state of solutions from the region of the highly elastic state. (141KB)
Fig. 10. Distribution of associates by size in 4 vol.% aqueous solutions of PVA with different MW: (1) – 2.2 × 104; (2) – 8.1 × 104. (92KB)
Fig. 11. Isothermal concentration dependence of the foaming ratio – (a) of aqueous solutions of PVA of different: (1) – 2.2 × 104; (2) – 5.5 × 104; (3) – 6.8 × 104; (4) – 8.1 × 104 and on the molecular weight – (b) at a concentration of 12 vol.%. (113KB)
Fig. 12. Dependence of the foaming factor β of aqueous PVA solutions with a concentration of 4 vol.% of the molecular weight at different foaming temperatures, С: 1 – 10, 2 – 20, 3 – 25, 4 – 30, 5 – 40 and 6 – 60 (a) and on the foaming temperature at different MW: 1 – 22000, 2 – 55000, 3 – 68000, 4 – 81000 (b). (168KB)
Fig. 13. Kinetic dependence of the stability coefficient of a two-phase heterogeneous foam-like system of an aqueous solution of C = 4 vol.% PVA of different MW: (1) – 2.2 × 104; (2) – 5.5 × 104; (3) – 6.8 × 104; (4) – 8.1 × 104. (91KB)
Fig. 14. Kinetic dependence of the foam stability coefficient on time at different concentrations of an aqueous PVA solution C = vol.%: (a) 1 – 4 vol.%, 2 – 8 vol.%, 3 – 16 vol.%, 4 – 20 vol.%; (b) – concentration dependence of the foaming factor for an aqueous PVA solution with MW = 6.8 × 104. (120KB)
Fig. 15. Kinetic dependences of the stability coefficient of foams obtained from aqueous solutions of PVA (MW = 6.8 × 104): (a) – PVA = 4 vol.%; (b) – PVA = 8 vol.% with MW = 6.8 × 104 – (1) at different surfactant contents: Surfactants (vol.%): 0 – (1); 0.5 – (2), 1.0 – (3) and 2.0 – (4). (158KB)
Fig. 16. Dependence of the average pore diameter of the foamed PVA dispersion – (1) and the specific surface area – (2), obtained from an aqueous PVA solution on the molecular weight – (a) and on the concentration of aqueous PVA solutions with MW = 6.8 × 104 – (b). (145KB)
Fig. 17. Rheological dependences η = f of an aqueous solution (PVS = 4 vol.%) PVA MW = 2.2 × 10–4 and frequency dependences of the shear stress τij = f at different temperatures T: 20°C – (a); 30°C – (b); 40°C – (c); 60°C – (d). (747KB)
Fig. 18. Rheological dependences η = f of an aqueous solution (PVS = 4 vol.%) PVA MW = 8.1  10–4 and frequency dependences of the shear stress τij = f at different temperatures: 20C – (a); 30C – (b); 40C – (c); 60C – (d). (652KB)
Fig. 19. Temperature dependence of the maximum viscosity value of an aqueous solution of PVA (PVS = 4 vol.%) 1. MW – 22000, 2. MW – 81000. (44KB)
Fig. 20. Temperature dependence of the size of structural particles in aqueous solutions of PVA (the region of the metastable state of PVA = 4 vol.%) of different molecular weights: 1 – MW = 2.2 × 104; 2 – MW = 8.1 × 104. (125KB)
Fig. 21 (19KB)
Fig. 22 (67KB)
14. 范围 地理位置、年代时期、调查样本(性别、年纪等等)
15. 权力 版权及权限 版权所有 © Russian Academy of Sciences, 2025