Synthesis and Structure of Iron(II) Complex Compounds with 1-Methyl-2-Pyridine-2-yl-1Н- and 1-Methyl-2-Phenyliminomethyl-1Н-Benzimidazoles and Boron Cluster Anions [BnHn]²⁻ (n = 10, 12)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The paper studies reactions of iron(II) complexation with benzimidazole derivatives L (L1 = C13N3H11, L2 = C15N3H13) in the presence of salts of boron cluster anions [BnHn]2– (n = 10, 12). The obtained complex compounds of the general formula [FeL3][BnHn] are characterized by elemental analysis and IR spectroscopy. The structure of complex [FeL13][B10H10] is determined by single-crystal X-ray diffraction (CCDС № 2432134). The distorted octahedral environment of the Fe atom is formed by the imidazole and pyridine N atoms of three L1 molecules. In the crystal, the [FeL13]2+ complex has a meridional configuration. The Fe–N bond lengths for imidazolium nitrogen atoms are in the range of 1.954(8)–1.980(6) Å, and for pyridine nitrogen atoms 1.977(7)–2.011(8) Å.

Texto integral

Acesso é fechado

Sobre autores

V. Avdeeva

Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: avdeeva.varvara@mail.ru
Rússia, Moscow, 119991

A. Kubasov

Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: avdeeva.varvara@mail.ru
Rússia, Moscow, 119991

S. Nikiforova

Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: avdeeva.varvara@mail.ru
Rússia, Moscow, 119991

O. Belousova

Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: avdeeva.varvara@mail.ru
Rússia, Moscow, 119991

E. Malinina

Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: avdeeva.varvara@mail.ru
Rússia, Moscow, 119991

N. Kuznetsov

Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: avdeeva.varvara@mail.ru
Rússia, Moscow, 119991

Bibliografia

  1. Greenwood N.N., Earnshaw A. Chemistry of the elements. school of chemistry, Butterworth–Heinemann (U.K.): University of Leeds, 1997.
  2. Boron science: new technologies and applications / Ed. Hosmane N.S. CRC Press, 2012.
  3. Boron-based compounds: potential and emerging applications in medicine / Eds. Hey-Hawkins E., Viñas Teixidor C. John Wiley & Sons Ltd., 2018. https://doi.org/10.1002/9781119275602
  4. Zhizhin K.Y., Zhdanov A.P., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2010. V. 55. № 14. P. 2089. https://doi.org/10.1134/S0036023610140019
  5. Sivaev I.B., Prikaznov A.V., Naoufal D. // Collect. Czech. Chem. Commun. 2010. V. 75. P. 1149. https://doi.org/10.1135/cccc2010054
  6. Mahfouz N., Abi Ghaida F., El Hajj F. et al. // ChemistrySelect. 2022. V. 7. Art. e202200770. https://doi.org/10.1002/slct.202200770
  7. Matveev E.Y., Avdeeva V.V., Zhizhin K.Yu. et al. // Inorganics. 2022. V. 10. P. 238. https://doi.org/10.3390/inorganics10120238
  8. Zhang Y., Cai Z., Chen Z. et al. // Chin. J. Struct. Chem. 1982. V. 1. P. 46.
  9. Zhang Y., Chen Z., Cai Z. et al. // Chin. J. Struct. Chem. 1982. V. 2. P. 201.
  10. Avdeeva V.V., Vologzhanina A.V., Goeva L.V. еt al. // Z. Anorg. Allg. Chem. 2014. V. 640. № 11. P. 2149. https://doi.org/10.1002/zaac.201400137
  11. Короленко С.Е., Авдеева В.В., Малинина Е.А. и др. // Коорд. химия. 2020. Т. 46. № 5. С. 259 (Korolenko S.E., Avdeeva V.V., Malinina E. A. et al. // Russ. J. Coord. Chem. 2020. V. 45. No. 5. P. 297). https://doi.org/10.1134/S1070328420050024
  12. Nguyen Duc Van. Thesis: New salt-like dodecahydro-closo-dodecaborates and efforts for the partial hydroxylation of [B12H12]2– anions. Stuttgart: Institut fűr Anorganische Chemie der Universitat, 2009.
  13. Avdeeva V.V., Kubasov A.S., Korolenko S.E. et al. // Polyhedron. 2022. V. 217. P. 115740. https://doi.org/10.1016/j.poly.2022.115740
  14. Sirivardane U., Chu S.S.C., Hosmane N.S. et al. // Acta Crystallogr. 1989. p. 333. https://doi.org/10.1107/S0108270188010716
  15. Nikiforova S.E., Kubasov A.S., Son A.G. et al. // Inorg. Chim. Acta. 2023. V. 557. P. 121654. https://doi.org/10.1016/j.ica.2023.121654
  16. Ivanova A.D., Lavrenova L.G., Korotaev E.V. et al. // Russ. J. Inorg. Chem. 2020. V. 65. P. 1687. https://doi.org/10.1134/S0036023620110078
  17. Lavrenova L.G., Dyukova I.I., Korotaev E.V. et al. // Russ. J. Inorg. Chem. 2020. V. 65. P. 30. https://doi.org/10.1134/S0036023620010106
  18. Ivanova A.D., Lavrenova L.G., Korotaev E.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1158. https://doi.org/10.1134/S0036023622080174
  19. Lavrenova L.G., Shakirova O.G. // Russ. J. Inorg. Chem. 2023. V. 68. P. 690. https://doi.org/10.1134/S0036023623600764
  20. Kravchenko E.A., Gippius A.A., Polyakova I.N. et al. // ZAAC. 2017. V. 643. P. 1939. https://doi.org/10.1002/zaac.201700293
  21. Voloshin Y.Z., Varzatskii O.A., Zhizhin K.Y. et al. // Russ. Chem. Bull. 2006. V. 55. P. 22. https://doi.org/10.1007/s11172-006-0210-6
  22. Авдеева В.В., Вологжанина А.В., Гоева Л.В. и др. // Докл. РАН. 2015. Т. 461. № 6. С. 664 (Avdeeva V.V., Vologzhanina A.V., Goeva L.V. et al. // Dokl. Chem. 2015. V. 461 P. 96). https://doi.org/10.1134/S0012500815040035
  23. Авдеева В.В., Полякова И.Н., Гоева Л.В. и др. // Журн. неорган. химии. 2015. Т. 60. № 7. С. 9019 (Avdeeva V.V., Polyakova I.N., Goeva L.V. et al. // Russ. J. Inorg. Chem. 2015. V. 60. P. 817). https://doi.org/10.1134/S0036023615070037
  24. Miller H.C., Miller N.E., Muetterties E.L. // J. Am. Chem. Soc. 1963. V.85. P. 3885. https://doi.org/10.1021/ja00906a033
  25. Greenwood N.N., Morris J.H. // Proc. Chem. Soc. 1963. № 11. P. 338.
  26. Бурлов А.С., Анцышкина А.С., Садиков Г.Г. и др. // Коорд. химия. 2010. Т. 36. № 12. С. 918 (Russ. J. Coord. Chem. 2010. V. 36. № 12. P. 906). https://doi.org/10.1134/S1070328410120079
  27. SAINT. Madison (WI, USA): Bruker AXS Inc., 2018.
  28. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D.J. // Appl. Crystallogr. 2015. V. 48. № 1. P. 3. https://doi.org/10.1107/S1600576714022985
  29. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  30. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  31. Spackman P.R., Turner M.J., McKinnon J.J. et al. // J. Appl. Crystallogr. 2021. V. 54. P. 1006. https://doi.org/10.1107/S1600576721002910
  32. Keikha M., Pourayoubi M., Tarahhomi A. et al. // Z. Krist. Mater. 2017. V. 232. № 6. P. 453.
  33. Spackman M.A., Jayatilaka D. // CrystEngComm. 2009. V. 11. № 1. P. 19.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1. Coordination of ligands L¹ and L² in metal complexes.

Baixar (133KB)
3. Scheme 2. Schematic structure of the meridional (a) and facet (b) isomers of the [Ni(L¹)₃]²⁺ cation, co-crystallized in the [Ni(L¹)₃][B₁₀H₁₀] complex [23].

Baixar (211KB)
4. Scheme 3. Synthesis of complexes I–IV.

Baixar (113KB)
5. Fig. 1. Structure of the [Fe(C₁₃N₃H₁₁)₃][B₁₀H₁₀] complex according to X-ray diffraction data of single crystals (a), fragment of the crystal packing of the crystal (b).

Baixar (485KB)
6. Fig. 2. The dnorm Hirschfeld surface of the [B₁₀H₁₀]²⁻ anion in structure I (a). 2D unfolding of the Hirschfeld surface of the anion (b) and the boundaries of the H…H (c) and H…C (d) contacts.

Baixar (925KB)

Declaração de direitos autorais © Российская академия наук, 2025