Гетеролигандные координационные полимеры Zn(II) на основе 4-замещенных производных 4,2':6',4"-терпиридина и терефталатов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Координационные полимеры Zn(II) на основе 4-замещенных производных 4,2':6',4"-терпиридина, терефталата (Bdc) и 2-иодтерефталата (2-I-Bdc) – {[Zn3(FurTerPy)2(Bdc)6]} (I), {[Zn(FurTerPy)(2-I-Вdc)}] (II) и {[Zn(PyrrTerPy)2(Вdc)} (III) – получены и охарактеризованы методом рентгеноструктурного анализа.

Об авторах

А. С. Загузин

Институт неорганической химии им. А.В. Николаева СО РАН; Южно-Уральский государственный университет

Email: adonin@niic.nsc.ru
Россия, Новосибирск; Россия, Челябинск

Г. Махмуди

Самарский государственный технический университет; Департамент химии Университета

Email: adonin@niic.nsc.ru
Россия, Самара; Иран, Мераге

Ф. И. Зубков

Российский университет дружбы народов

Email: adonin@niic.nsc.ru
Россия, Москва

М. А. Бондаренко

Институт неорганической химии им. А.В. Николаева СО РАН; Южно-Уральский государственный университет

Email: adonin@niic.nsc.ru
Россия, Новосибирск; Россия, Челябинск

Д. А. Жеребцов

Южно-Уральский государственный университет

Email: adonin@niic.nsc.ru
Россия, Челябинск

К. С. Вальчук

Российский университет дружбы народов

Email: adonin@niic.nsc.ru
Россия, Москва

П. А. Абрамов

Институт неорганической химии им. А.В. Николаева СО РАН

Email: adonin@niic.nsc.ru
Россия, Новосибирск

В. П. Федин

Институт неорганической химии им. А.В. Николаева СО РАН

Email: adonin@niic.nsc.ru
Россия, Новосибирск

С. А. Адонин

Институт неорганической химии им. А.В. Николаева СО РАН; Южно-Уральский государственный университет

Автор, ответственный за переписку.
Email: adonin@niic.nsc.ru
Россия, Новосибирск; Россия, Челябинск

Список литературы

  1. Dubskikh V.A., Lysova A.A., Samsonenko D.G. et al. // J. Struct. Chem. 2022. V. 63. № 2. P. 227. https://doi.org/10.1134/S0022476622020032
  2. Kovalenko K.A., Potapov A.S., Fedin V.P. // Russ. Chem. Rev. 2022. V. 91. № 4. https://doi.org/10.1070/RCR5026
  3. Gorbunova Y.G., Fedin V.P., Blatov V.A. // Russ. Chem. Rev. 2022. V. 91. № 4. https://doi.org/10.1070/RCR5050
  4. Denisov G.L., Primakov P.V., Nelyubina Y.V. // Russ. J. Coord. Chem. 2021. V. 47. № 4. P. 253. https://doi.org/10.1134/S1070328421040011
  5. Melekhova A.A., Novikov A.S., Dubovtsev A.Y. et al. // Inorg. Chim. Acta. 2019. V. 484. P. 69. https://doi.org/10.1016/j.ica.2018.09.024
  6. Primakov P.V., Denisov G.L., Novikov V.V. et al. // Mendeleev Commun. 2022. V. 32. № 1. P. 105. https://doi.org/10.1016/j.mencom.2022.01.034
  7. Rubtsova I.K., Melnikov S.N., Shmelev M.A. et al. // Mendeleev Commun. 2020. V. 30. № 6. P. 722. https://doi.org/10.1016/j.mencom.2020.11.011
  8. Sidorov A.A., Gogoleva N.V., Bazhina E.S. et al. // Pure Appl. Chem. 2020. V. 92. № 7. P. 1093. https://doi.org/10.1515/pac-2019-1212
  9. Kiraev S.R., Nikolaevskii S.A., Kiskin M.A. et al. // Inorg. Chim. Acta. 2018. V. 477. P. 15. https://doi.org/10.1016/J.ICA.2018.02.011
  10. Artem’ev A.V., Fedin V.P. // Russ. J. Org. Chem. 2019. V. 55. № 6. P. 800. https://doi.org/10.1134/S1070428019060101
  11. Vlasenko E.S., Nikovskiy I.A., Nelyubina Y.V. et al. // Mendeleev Commun. 2022. V. 32. № 3. P. 320. https://doi.org/10.1016/j.mencom.2022.05.009
  12. Volodin A.D., Korlyukov A.A., Zorina-Tikhonova E.N. et al. // Chem. Commun. 2018. V. 54. № 98. P. 13861. https://doi.org/10.1039/C8CC07734G
  13. Sapianik A.A., Dudko E.R., Kovalenko K.A. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 12. P. 14768. https://doi.org/10.1021/acsami.1c02812
  14. Bolotov V.A., Kovalenko K.A., Samsonenko D.G. et al. // Inorg. Chem. 2018. V. 57. № 9. P. 5074. https://doi.org/10.1021/acs.inorgchem.8b00138
  15. Li S., Deng L., Wu G. et al. // Russ. J. Gen. Chem. 2022. V. 92. № 8. P. 1574. https://doi.org/10.1134/S1070363222080266
  16. Sapianik A.A., Kovalenko K.A., Samsonenko D.G. et al. // Chem. Commun. 2020. V. 56. № 59. P. 8241. https://doi.org/10.1039/d0cc03227a
  17. Lunev A.M., Belousov Y.A. // Russ. Chem. Bull. 2022. V. 71. № 5. P. 825. https://doi.org/10.1007/s11172-022-3485-3
  18. Cavallo G., Metrangolo P., Milani R. et al. // Chem. Rev. 2016. V. 116. № 4. P. 2478. https://doi.org/10.1021/acs.chemrev.5b00484
  19. Eliseeva A.A., Ivanov D.M., Novikov A.S. et al. // Dalton Trans. 2020. V. 49. № 2. P. 356. https://doi.org/10.1039/c9dt04221k
  20. Eliseeva A.A., Ivanov D.M., Novikov A.S. et al. // Cryst-EngComm. 2019. V. 21. № 4. P. 616. https://doi.org/10.1039/c8ce01851k
  21. Soldatova N.S., Suslonov V.V., Kissler T.Y. et al. // Crystals. 2020. V. 10. № 3. P. 230. https://doi.org/10.3390/cryst10030230
  22. Mikherdov A.S., Kinzhalov M.A., Novikov A.S. et al. // J. Am. Chem. Soc. 2016. V. 138. № 42. P. 14129. https://doi.org/10.1021/jacs.6b09133
  23. Mahmudov K.T., Gurbanov A.V., Aliyeva V.A. et al. // Coord. Chem. Rev. 2020. V. 418.
  24. Kalaj M., Momeni M.R., Bentz K.C. et al. // Chem. Commun. 2019. V. 55. № 24. P. 3481. https://doi.org/10.1039/C9CC00642G
  25. Li B., Dong M.-M., Fan H.-T. et al. // Cryst. Growth Des. 2014. V. 14. № 12. P. 6325. https://doi.org/10.1021/cg501073e
  26. Zaguzin A.S., Mahmoudi G., Sukhikh T.S. et al. // J. Mol. Struct. 2022. V. 1255. № 32459. https://doi.org/10.1016/j.molstruc.2022.132459
  27. Husson J., Guyard L. // Heterocycl. Commun. 2015. V. 21. № 4. P. 199. https://doi.org/10.1515/hc-2015-0058
  28. Constable E.C., Dunphy E.L., Housecroft C.E. et al. // Dalton Trans. 2007. № 38. P. 4323. https://doi.org/10.1039/b709557k
  29. Christine T., Tabey A., Cornilleau T. et al. // Tetrahedron. 2019. V. 75. № 52. https://doi.org/10.1016/j.tet.2019.130765
  30. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  31. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  32. Hübschle C.B., Sheldrick G.M., Dittrich B. // J. Appl. Crystallogr. 2011. V. 44. № 6. P. 1281. https://doi.org/10.1107/S0021889811043202
  33. Spek A.L. // Acta Crystallogr. C. 2015. V. 71. P. 9. https://doi.org/10.1107/S2053229614024929
  34. Cherezova S.V., Barsukova M.O., Samsonenko D.G. et al. // J. Struct. Chem. 2021. V. 62. № 6. P. 897. https://doi.org/10.1134/S0022476621060093
  35. Sapianik A.A., Kiskin M.A., Samsonenko D.G. et al. // Polyhedron. 2018. V. 145. P. 147. https://doi.org/10.1016/J.POLY.2018.02.007
  36. Abasheeva K.D., Demakov P.A., Dybtsev D.N. et al. // J. Struct. Chem. 2022. V. 63. № 8. P. 1349. https://doi.org/10.1134/S0022476622080169
  37. Cheplakova A.M., Gusarov V.S., Samsonenko D.G. et al. // J. Struct. Chem. 2022. V. 63. № 6. P. 895. https://doi.org/10.1134/S0022476622060063
  38. Andreichenko A.A., Burlak P.V., Kovalenko K.A. et al. // J. Struct. Chem. 2022. V. 63. № 3. P. 378. https://doi.org/10.1134/S0022476622030052

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (136KB)
3.

Скачать (550KB)
4.

Скачать (534KB)
5.

Скачать (366KB)

© А.С. Загузин, Г. Махмуди, Ф.И. Зубков, М.А. Бондаренко, Д.А. Жеребцов, К.С. Вальчук, П.А. Абрамов, В.П. Федин, С.А. Адонин, 2023