УДК 553.06(553.07)

ЗОЛОТО-СЕРЕБРЯНОЕ ЭПИТЕРМАЛЬНОЕ МЕСТОРОЖДЕНИЕ НИЖНИЙ БИРКАЧАН (ОМОЛОНСКИЙ МАССИВ, СЕВЕРО-ВОСТОК РОССИИ): ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ, МИНЕРАЛОГИЯ РУД, ВОЗРАСТ

© 2023 г. А. Н. Глухов^{*a*, *, В. В. Прийменко^{*a*, **, А. Б. Котов^{*b*, ***, М. И. Фомина^{*a*, ****,} Е. Б. Сальникова^{*b*}, Т. И. Михалицына^{*a*}, Г. О. Ползуненков^{*a*}}}}

^аСеверо-Восточный комплексный научно-исследовательский институт им. Н.А. Шило ДВО РАН, ул. Портовая, 16, Магадан, 685000 Россия

^bИнститут геологии и геохронологии докембрия, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

*e-mail: gluhov 76@list.ru **e-mail: priymenkovladimir@gmail.com ***e-mail: abkotov-spb@mail.ru ****e-mail: mif-74@yandex.ru Поступила в редакцию 13.08.2022 г. После доработки 21.01.2023 г. Принята к публикации 10.04.2023 г.

Изучены геологическое строение, вещественный состав руд и возраст недавно открытого вулканогенного золото-серебряного месторождения Нижний Биркачан. Рудные тела, представленные жилами и жильно-прожилковыми зонами адуляр-карбонат-кварцевого состава, залегают в гранодиорит-порфирах с U–Pb возрастом (ID-TIMS) циркона 335 ± 2 млн лет. Руды убогосульфидные, низкосеребристые (Au/Ag = 1–2), среди рудных минералов преобладает пирит. Минералы Ag представлены блеклыми рудами, сульфидом Ag, самородными золотом и серебром, гесситом. По адуляру из рудной жилы получен 40 Ar/ 39 Ar возраст 169 ± 4 млн лет, который отражает омоложение изотопной аргоновой системы после внедрения дайки неизмененных юрских базитов, секущей рудное тело. Месторождение Нижний Биркачан по своему геологическому строению и составу руд весьма близко другим Au-Ag месторождениям Кедонского вулкано-плутонического пояса, таким как Кубака, Биркачан и было сформировано в возрастном интервале 290–335 млн лет.

Ключевые слова: убогосульфидные, позднепалеозойский, изотопная система, дайки **DOI:** 10.31857/S0203030623700220, **EDN:** WVBFGP

введение

Эпитермальные золото-серебряные месторождения адуляр-серицитового типа широко распространены как на Северо-Востоке Азии, так и в пределах Северной Пацифики в целом. Им посвящен весьма большой массив публикаций. Согласно современным представлениям, они формируются на активных континентальных окраинах [Sillitoe, Hedenquist, 2003] после завершения основного "субдукционного" андезит-дацитового вулканизма и являются продуктом высокотемпературных геотермальных систем, тесно связанных с поздним "кальдерным" кислым вулканизмом [Леонов, Гриб, 2004; Hedenquist, 1987]. Они являются чрезвычайно важными в экономическом отношении, составляя основу минеральносырьевой базы большого количества золотодобывающих предприятий. На Северо-Востоке России эпитермальные золото-серебряные месторождения имеют две наиболее крупные группы. Первая – месторождения Охотско-Чукотского вулканогенного пояса, имеющие позднемеловой возраст [Прийменко и др., 2020, 2022] и относительно равномерно распределенные на всем его 3500 км протяжении. Месторождения второй группы имеют позднепалеозойский возраст [Акинин и др., 2020; Глухов и др., 2021] и сосредоточены в пределах Омолонского массива, ассоциируя с магматическими ассоциациями Кедонского вулкано-плутонического пояса. Из них относительно полно охарактеризованы в литературе месторождения Кубака [Горячев и др., 2017; Котляр, 1997, 2000; Степанов, Шишакова, 1994; Степанов и др., 1991, 1994, 1998; Черняев, Черняева, 2001] и Ольча [Волков и др., 2013; Котляр и др., 1997; Калинин и др., 2002; Савва, 2018; Савва,

Химический	Пределы обнаружения, г/т				
элемент	нижний	верхний			
A	нализ ICP-OES				
Ag	0.5	200			
As	5	10000			
Bi	5	2000			
Co	1	10000			
Cu	1	10000			
Mn	1	20000			
Мо	1	10000			
Ni	1	10000			
Pb	2	10000			
Sb	5	2000			
Zn	1	10000			
А	нализ ICP-FAA	I			
Au	0.001	10			

Таблица 1. Пределы обнаружения химических элементов

Шахтыров, 2001]. Единичные публикации посвящены месторождениям Биркачан [Горячев и др., 2017; Наталенко и др., 2002; Савва, 2018] и Бургали [Волков и др., 2021]. Долгие годы не утихает дискуссия о возрасте золото-серебряных руд, вмещаемых вулканитами КВП: позднепалеозойском [Акинин и др., 2020; Котляр, 2000; Котляр и др., 1997; Степанов и др., 1998; Черняев, Черняева, 2001] или мезозойском [Лейер и др., 1997; Наталенко и др., 2002; Сидоров и др., 2021 и др.]. Ранее нами уже рассматривался вопрос о возрасте и тектонической позиции золото-серебряного оруденения Кедонского пояса [Акинин и др., 2020; Глухов и др., 2021, 2022]. В данной статье мы дополним эти данные новой информацией, полученной авторами при изучении месторожления Нижний Биркачан, открытого и разведанного в 2016-2020 гг. Авторами непосредственно проводились полевые наблюдения, в ходе которых были отобраны пробы и образцы. Всего было изучено 15 образцов, отобранных с поверхности и из керна скважин.

МЕТОДИКА ИССЛЕДОВАНИЙ

Минеральный состав, текстурные, структурные особенности и минеральные парагенезисы изучались под оптическим микроскопом AXIOPLAN ZEIS в отраженном и проходящем свете. Составы минеральных фаз определяли с помощью рентгеновского электронно-зондового микроанализатора Camebax с приставкой INCA (г. Магадан, СВКНИИ ДВО РАН, аналитик О.Т. Соцкая). Нижний предел обнаружения для всех элементов составляет 0.01%. Геохимический состав руд изучался методом оптической спектрометрии с индуктивно-связанной плазмой (ICP-OES) на 40 элементов с растворением навески в царской водке. Содержания золота определялись также методом оптической спектрометрии с индуктивно-связанной плазмой с предварительным пробирным концентрированием (ICP-FAA). Все анализы выполнялись в лаборатории АО "АЛС Чита" (г. Чита). Сведения о пределах обнаружения элементов приведены в табл. 1.

U-Pb геохронологические исследования цирконов (ID-TIMS) выполнялись в ИГГЛ РАН (г. Санкт-Петербург). Выделение циркона для U-Pb геохронологических исследований проводилось по стандартной методике с использованием тяжелых жидкостей. Выбранные кристаллы (или их фрагменты) подвергались многоступенчатому удалению поверхностных загрязнений в спирте, ацетоне и HNO₃. При этом после каждой ступени эти кристаллы промывались особо чистой волой. Химическое разложение ширкона и выделение U и Pb выполнялись по модифицированной методике Т.Е. Кроу [1973]. Изотопные анализы выполнялись на многоколлекторном масс-спектрометре "TRITON TI" как в статическом режиме, так и при помощи счетчика ионов. Для изотопных исследований использовался трассер ²³⁵U-²⁰²Pb. Точность определения U/Pb отношений и содержаний U и Pb составила 0.5%, а холостое загрязнение – 5 пг Рb и 1 пг U. Обработка экспериментальных данных проводилась при помощи программам "PbDAT" и "ISOPLOT" [Ludwig, 2003]. При расчете возрастов использованы общепринятые значения констант распада урана [Stager, Jager, 1978]. Поправки на обычный свинец введены в соответствии с модельными величинами [Stacey, Cramers, 1975]. Все ошибки не превысили уровня 2σ.

Возраст образования адуляра из рудных жил определялся ⁴⁰Ar/³⁹Ar методом в Центре коллективного пользования научным оборудованием для многоэлементных и изотопных исследований СО РАН (ШКП МИИ СО РАН. г. Новосибирск. ⁴⁰Ar/³⁹Ar геохронологические исследования проводились методом ступенчатого прогрева [Травин и др., 2009]. Для оценки надежности ⁴⁰Ar/³⁹Ar датирования принимались следующие критерии: 1) хорошо выраженное плато не менее чем из 3-х ступеней (горизонтальный спектр возрастов) с более чем 50% выделившегося кумулятивного 39 Ar (CKBO < 2.5); 2) конкордантность возрастов плато и изохроны с учетом погрешностей; 4) изохрона пересекает значение отношения ⁴⁰Ar/³⁶Ar близко к 295.5. Расчет и построение графиков для Ar-Ar датирования выполнялись в программе Isoplot [Ludwig, 2003].

ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ

Месторождение Нижний Биркачан вместе с месторождением Биркачан образуют Биркачанское рудное поле (рис. 1). Его пространственное положение контролируется взаимным сопряжением Гурникской, Захаренковской вулкано-тектонических депрессий (далее ВТД) с Нэкучанским глубинным разломом северо-восточного простирания [Горячев, 2017]. Обе ВТД имеют близкие к изометричным очертания, диаметр порядка 30 км и выполнены преимущественно кислыми вулканитами и вулканогенно-осадочными отложениями позднедевонско-раннекаменноугольного возраста, традиционно относимыми к так называемой "кедонской серии" [Терехов, 1979]. Они прорваны многочисленными экструзивными и субвулканическими телами среднего и кислого состава. Сочетание и взаимное наложение этих структур обусловило развитие интенсивной трещиноватости, которая послужила вместилищем для золотосеребряной минерализации и обусловила значительные масштабы оруденения — запасы месторождения Биркачан превышают 60 т золота и 200 т серебра (https://www.polymetalinternational.com/ru/ assets/where-we-operate/omolon-hub/).

Рудные тела месторождения Нижний Биркачан (рис. 2), в отличие от всех других золото-серебряных месторождений Кедонского пояса, вмещаемых вулканитами, локализованы в гранодиорит-порфирах булунского комплекса раннего карбона, слагающими шток площадью 2 км². Они прорваны дайками базальтов (рис. 3) и щелочных габброидов (эссекситов) омолонского комплекса [Акинин и др., 2020]. В гранодиорит-порфирах (рис. 4а, 4в, 5а–5д) фенокристаллы составляют до 35% объема породы, их размер варьирует от 1 до 5-7 мм, они представлены плагиоклазом (15-20%), кварцем (7-10%), калинатровым полевым шпатом (5-8%), темноцветными минералами (до 5%). Плагиоклаз по составу относится к андезину (№ 40-42). Интенсивно пелитизирован, карбонатизирован, местами гематитизирован, что придает вкрапленникам слабую розоватую окраску. Калинатровый полевой шпат нередко окрашен в розоватый цвет за счет оксидов железа. Вкрапленники кварца оскольчатой формы, частично оплавлен и корродирован. Темноцветные минералы (5%) представлены преимущественно биотитом, размер чешуй которого достигает 3 мм. Основная масса породы с плохо выраженной флюидальностью, интенсивно хлоритизирован и карбонатизирована. Часто наблюдаются кубические кристаллы пирита размером до 0.7 мм. Доля новообразованных кварца и мусковита составляет 5%, хлорита и кальцита 10%. Базальты (см. рис. 5д) стекловатые, с неясно выраженной порфировой структурой, основу которой составляют мелкие (1-3 мм) вкрапленники плагиоклаза и пироксена, доля которых не превышает 25%. Они погружены в бурое девитрифицированное стекло. Плагиоклаз по составу отвечает лабрадору № 63. Моноклинный пироксен (авгит) хлоритизирован, часто срастается с эпидотом. Основная масса насыщена микролитами плагиоклаза, пироксена, тонкой вкрапленностью рудных минералов. Эссекситы (см. рис. 4д, 5е) офитовой структуры, сложены плагиоклазом (45%), амфиболом (баркевикит, 20%), пироксеном (Ті-авгит, 15%), оливином (5%). Плагиоклаз образует идиоморфные лейсты размером 1-3 мм. Характерны слабая серпентинизация, развитие минералов боулингит-иддингситового ряда, менее распространены слабая хлоритизация и карбонатизация.

Рудное тело представляет собой изометричных очертаний штокверк размерами 800 × 600 м, образованный совокупностью различно ориентированных прожилков, маломощных (до 0.5 м) жил, гидротермальных брекчий адуляр-карбонат-кварцевого состава. Среди них выделяются отдельные достаточно мощные (2-5 м) и протяженные (50-120 м) жильно-прожилковые зоны сложной линзовидно-сигмоидальной морфологии. Вся минерализация сосредоточена в пределах штока. за пределы интрузии она не выходит. Текстуры руд прожилковая, колломорфно-полосчатая, брекчиевая. Средние содержания золота в рудах 2-5 г/т, серебра 4-10 г/т. Золото-серебряное отношение составляет в среднем 1 : 1-1 : 2. Также наблюдаются повышенные концентрации As и Mo (табл. 2). Геохимический спектр руд (в порядке убывания коэффициента концентрации) Au-As-Ag-Pb-Mo-W-Bi.

МИНЕРАЛОГИЯ РУД

Руды месторождения Нижний Биркачан убогосульфидные (0.5—1%). В них установлены 14 рудных и 8 жильных минералов (табл. 3, рис. 6). Химический состав рудных минералов по результатам микрозондового анализа приведен в табл. 4 и 5.

<u>Кварц</u> представлен двумя генерациями. Кварц-I (преобладает) скрытокристаллический, содержит микровключения рудных минералов. Кварц II среднекристаллический, с размеров кристаллов до 0.15 мм; образует друзы, прожилки и гнезда в кварце-I. В центральной части сложенных кварцем прожилков отлагается <u>кальцит</u>.

Пирит установлен как в жилах и прожилках, так и во вмещающих породах, где его идиоморфные кристаллы замещает амфибол и заполняет каверны и микротрещины. В кварце-I пирит образует ксеноморфные обособления, расположение которых подчеркивает колломорфно-полосчатую текстуру прожилков. В кварце-II пирит встречается в виде микровключений с размером кристаллов 0.001–0.45 мм. Он образует срастания

Рис. 1. Геологическое строение Биркачанского рудного поля (по В.Н. Егорову и др., 2001).

1 — рыхлые четвертичные отложения; 2 — песчаники и аргиллиты карбон-пермского возраста; 3, 4 — кедонская серия (3 — лавы, игнимбриты и туфы риолитов и дацитов, 4 — субвулканические тела риолитов); 5 — интрузии булунского комплекса; 6 — разломы достоверные (*a*) и предполагаемые (*б*); 7 — месторождения (1 — Нижний Биркачан, 2 — Биркачан).

На врезке – тектоническая схема Северо-Востока России [Акинин, 2012]: 1 – Омолонский массив (Om); 2 – палеозойские террейны пассивной континентальной окраины; 3 – триасовые и юрские турбидиты передовой зоны Верхоянского пояса; 4 – пермские и триасовые турбидиты пассивной окраины; 5 – юрско-меловые вулканогенные пояса и осадочные бассейны; 6 – Охотско-Чукотский вуканогенный пояс (альб–кампан); 7 – Корякско-Камчатские вулканогенные пояса (палеоген-четвертичные), перекрывающие юрско-меловые аккреционные офиолитовые комплексы; 8 – Биркачанское рудное поле.

с рутилом, халькопиритом, сульфидом серебра и блеклой рудой; содержит включения блеклой руды, галенита, пирротина, халькопирита, самородного золота, сфалерита и халькопирита. Состав пирита преимущественно стехиометричный, единичный анализ показал примесь As 11.62%. Мелкие обособления пирита частично замещены марказитом.

<u>Сфалерит</u> образует редкие ксеноморфные и идиоморфные обособления размером от 0.01—0.05 мм в кварце и пирите, а также срастается с блеклой рудой, халькопиритом, галенитом и са-

мородным золотом. Окраска его полупрозрачная, со светло-желтыми внутренними рефлексами. Содержит эмульсию халькопирита. Содержания Fe низкие (менее 0.2%).

Халькопирит слагает самостоятельные агрегаты в кварце и пирите, срастания с блеклой рудой, сульфидом серебра, галенитом, сфалеритом и рутилом. Размер его обособлений 0.007–0.25 мм. Единичные зерна халькопирита обрастают лимонитом. Состав халькопирита близок к стехиометричному.

Рис. 2. Геологическая схема месторождения Нижний Биркачан. 1 — гранодиорит-порфиры; 2 — разломы; 3 — контуры рудного штокверка; 4 — наиболее мощные жильно-прожилковые зоны; 5 — пострудные дайки базальтов.

Рис. 3. Рудоносные прожилки (светлые), вмещающие гранодиорит-порфиры (серые) и пострудная дайка базальтов (темно-серая) в керне скважины месторождения Нижний Биркачан.

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ <u>№</u> 4 2023

Рис. 4. Текстуры руд и вмещающих пород месторождения Нижний Биркачан. а, в – гранодиорит-порфиры, б, е – гидротермальные брекчии с обломками гранодиорит-порфиров и колломорфнополосчатых жил; г – колломорфно-полосчатая адуляр-кварцевая жила, д – пострудный эссексит.

<u>Галенит</u> образует единичные включения размером 0.018—0.08 мм в пирите в срастании с халькопиритом и сфалеритом. По химическому составу установлены две его разновидности: селенистая (Se до 2.90 мас. %) и теллуристая (Te до 2.26 мас. %).

<u>Арсенопирит и лёллингит</u> слагают идиоморфные монокристаллы и пространственно ассоциируют с пиритом и халькопиритом. Арсенопирит с размером агрегатов 0.05—0.11 мм пересекает агрегаты лёллингита, изредка он содержит микровключения самородного золота. По химическому составу выделяется две разновидности арсенопирита: мышьяковистый арсенопирит-I и условно стехиометричный арсенопирит-II. В лёллингите отмечается примесь серы до 3.44%.

<u>Блеклая руда</u> образует самостоятельные обособления в кварце, включения в пирите, срастания со

Рис. 5. Взаимоотношения основных породообразующих минералов в рудовмещающих гранодиорит-порфирах (а, б), в гидротермально-измененных гранодиорит-порфирах (в, г), в пострудном базальте (д) и эссексите (е). Обозначения минералов: Q – кварц, Pl – плагиоклаз, Px – пироксен, Bt – биотит, Cl – хлорит, Crb – карбонат, Ms – мусковит, Ep – эпидот, Amf – амфибол, Ol – оливин, Srp – серпентин.

сфалеритом, халькопиритом, пиритом, сульфидом серебра и самородным золотом. Зачастую она сильно корродирована и практически полностью замещена сульфидом серебра. Размер обособлений блеклой руды 0.003–0.18 мм. Химический состав близок к минералам теннантит-тетраэдритового ряда. <u>Гессит</u> образует мелкие (не более 0.005 мм) включения в халькопирите и пирите, где он ассоциирует с галенитом и сфалеритом.

<u>Сульфид серебра</u> образует самостоятельные включения в кварце, а также срастания с блеклой рудой и халькопиритом, замещает блеклую руду и

N⁰						Содержа	ания, г/т					
пробы	Au	Ag	As	Cu	Pb	Zn	Mn	Ni	Со	Sb	Bi	Мо
26528	1.6	0.8	77.0	40.0	8.0	60.0	960.0	4.0	9.0	2.0	<5.0	3.0
26540	0.7	1.5	79.0	28.0	11.0	56.0	755.0	4.0	8.0	<5.0	<5.0	8.0
26540	0.8	0.9	65.0	21.0	6.0	56.0	802.0	2.0	8.0	<5.0	<5.0	4.0
26550	4.2	2.6	103.0	24.0	8.0	59.0	856.5	4.5	8.0	<5.0	<5.0	14.0
26551	2.0	2.2	64.0	21.5	10.5	67.0	932.5	5.0	7.0	1.5	<5.0	7.5
26552	2.9	1.4	45.0	23.0	14.0	66.0	884.0	7.0	10.0	<5.0	<5.0	2.0
26559	1.0	0.7	44.0	21.0	5.0	58.0	934.0	5.0	8.0	<5.0	3.0	2.0
26568	0.6	1.1	132.0	21.0	13.0	49.0	635.0	9.0	9.0	<5.0	4.0	6.0
26569	0.6	1.6	52.0	25.0	9.0	53.0	793.0	8.0	7.0	<5.0	<5.0	4.0
26571	1.8	5.0	61.0	20.0	12.0	52.0	689.0	8.0	8.0	<5.0	<5.0	27.0
26572	25.4	34.7	37.0	30.0	17.0	43.0	649.0	7.0	8.0	<5.0	2.0	166.0
26573	3.0	3.9	52.5	29.0	12.5	53.5	760.5	6.5	8.5	<5.0	1.5	72.5
26578	0.7	10.9	95.0	31.0	15.0	64.0	689.0	9.0	7.0	3.0	<5.0	11.0
26578	0.1	1.6	46.0	32.0	10.0	52.0	757.0	7.0	7.0	<5.0	<5.0	11.0
26653	1.0	0.7	75.0	25.0	14.0	73.0	904.0	9.0	10.0	<5.0	<5.0	7.0

Таблица 2. Геохимическая характеристика руд месторождения Нижний Биркачан

Таблица 3. Минералы руд месторождения Нижний Биркачан

Группы минералов	Главные	Второстепенные	Редко встречающиеся
Жильно-метасомати- ческие	Кварц, адуляр	Карбонат Магнетит	Рутил Эпидот* Гематит
Рудные	Пирит	Сфалерит Халькопирит Марказит Самородное Золото	Галенит Арсенопирит Лёллингит Блеклая руда Науманнит Сульфид серебра Пирротин Гессит Самородное серебро
Гипергенные		Лимонит	Ковеллин

псевдоморфно развивается по самородному серебру. Размер его агрегатов 0.001–0.12 мм.

Изредка встречаются единичные агрегаты <u>нау-</u> <u>маннита</u> размером до 0.14 мм, образующего срастания с пиритом и частично замещенного сульфидом серебра.

Самородное серебро – редкий минерал, встречающийся в кварце и блеклой руде. Размер от 0.001 до 0.12 мм. Низкопробное <u>самородное золо-</u> то встречается в свободном состоянии в микропустотах и микротрещинах в кварце и пирите и в срастании со сфалеритом. Пробность самородного золота варьирует от 409 до 846‰ (см. табл. 5, рис. 7).

В целом, взаимоотношения минералов и их агрегатов позволяют нам сделать вывод о том, что руды месторождения Нижний Биркачан формировались в один этап, в пределах которого выделяются три последовательно сменяющиеся стадии. Первая — пирит-арсенопирит-кварцевая с пирротином и лёллингитом. Вторая — золото-полисульфидно-карбонатная с блеклой рудой, науманнитом, гесситом. Завершающей стадией является серебро-сульфидная ассоциация с марказитом и самородными золотом и серебром.

Рис. 6. Взаимоотношения рудных минералов на месторождении Нижний Биркачан. а – фрагмент кварц-карбонатной жилы; б – отложение мелкокристаллического идиоморфного пирита в породе; в – развитие лимонита по периферии халькопирита; г – срастание арсенопирита и лёллингита; д – псевдоморфное развитие марказита по пириту; е-к – срастания и включения в пирите (е, ж – включения блеклой руды и самородного золота (е), галенита, сфалерита и халькопирита (ж); з-к – срастания с халькопиритом и самородным золотом (з), с самородным золотом (и), с самородным золотом и включениями халькопирита и сфалерита (к)); л-н – самородное золото в свободном состоянии в кварце; о – акантит в ассоциации с самородным серебром. Обозначения минералов: О – кварц. Са – карбонат. Ру – пирит. Мк – марказит. Ару – арсенопирит. Сру – халькопи-

Обозначения минералов: Q – кварц, Ca – карбонат, Ру – пирит, Mk – марказит, Ару – арсенопирит, Сру – халькопирит, Sph – сфалерит, Gn – галенит, Fh – блеклая руда, Ag + Ac – сульфиды серебра, Li – лёллингит, Au – самородное золото, Lim – лимонит.

ВОЗРАСТ РУД И ВМЕЩАЮЩИХ ПОРОД

U-Pb возраст вмещающих пород

Акцессорный циркон в гранодиорит-порфирах представлен идиоморфными и субидиоморф-

ными прозрачными кристаллами светло-коричневого цвета (рис. 8). Габитус изменяется от короткопризматического до длиннопризматического и игольчатого. Размер этих кристаллов составляет 50–150 мкм, коэффициент удлинения 1.5–5.0.

ГЛУХОВ и др.

№ п/п	№ обр.	Весовые концентрации, %							Формульные коэффициенты							Сумма		
Галени	$m - (Pb_1)$	$_{0.02}Fe_{0.12}$) _{1.14} ($Te_{0.02}S$	0.82 0.84	4												
		Pb	(Cu	Fe	Ag	Т	Ĩe –	S	Pb	C	u	Fe	Ag	,	Ге	S	
1	6	84.73	Н	.п.	2.35	н.п.	2.	26	10.66	1.02	н.1	т.	0.11	н.п.	0	.04	0.83	100.00
2	6	85.53	Н	.п.	2.81	н.п.	1.	06	10.60	1.03	0.0	00	0.13	н.п.	0	.02	0.82	100.00
3	6	79.31	2	.47	2.75	3.41	н.	п.	10.73	0.91	0.0	9	0.12	0.08	Н	.п.	0.80	98.67
Селени	стый гал	енит —	- <i>Pb</i> _{1.}	1(Se _{0.0}	S _{0.79})	0.88												
		Pb)	F	le l	S	e	2	S	Р	b]	Fe	S	e	5	5	
4	6	88.3	86	н.	п.	2.0	08	9.	72	1.1	13	Н	.п.	0.	07	0.	80	100.16
5	6	84.3	30	2.	17	2.9	90	9.	93	1.0)3	0	.10	0.	09	0.	78	99.30
Пирит	$-Fe_{0.99}$	S _{2.01}																
			S		A	s		Fe			S		A	s		Fe		
6	2a	5	53.70					46.46			2.00		н.	п.		1.00		100.16
7	26	5	53.63					46.59			2.00		н.	п.		1.00		100.21
8	26	4	45.04		11.	62		43.44			1.80		0.	20		1.00		100.10
9	3	47	54.08					45.93			2.02		н.	п.		0.98		100.00
10	3	43	53.54					46.36			2.00		н.	п.		1.00		99.89
11	3	41	53.69					46.26			2.01		н.	п.		0.99		99.95
12	3	5	52.30					46.61			1.98 н.п.			п.	1.02			98.91
Наума	чнит — (.	Ag _{1.89} Fe	20.12)2	.01(Se _{0.}	$_{64}S_{0.35}$) _{0.99}												
		Ag	Ş	F	Ĩe	S	e	2	5	A	g]	Fe	S	e	5	5	
13	3	72.5	52	2.	31	24.	.77	1.	20	1.8	<u>89</u>	0	.12	0.	88	0.	11	100.81
14	3	75.4	4	2.	61	18.	03	4.	45	1.8	38	0	.13	0.	62	0.	37	100.53
Сфалер	oum – Zn	_{0.95} Fe _{0.0}	$_{04}S_{1.01}$!														
		Fe	;		Z	n		2	5	F	e		Z	Zn		5	5	
15	6	2.14	1		64	.29		32	.43	0.0)4		0.	.97		0.	99	98.86
16	3	2.62	2		63.	.32		33	.64	0.0)5		0.	.94		1.	02	99.59
17	3	3.31	l		63.	.03		33	.00	0.0)6		0.	.94		1.	00	99.33
18	3	6.77	7		59.	.09		34	.49	0.	12		0.	.86		1.0	02	100.35
19	3	11.68	3		51.	99		38	.39	0.	19		0.	.72		1.0	09	102.06
Арсено	пирит I -	– Fe _{1.01}	As _{1.03}	S _{0.96}														
		Fe	;	A	s		S	5		F	e	ŀ	As			S		
20	2a	34.0)4	47.	.88		17.	.81		1.0	01	1.	06		0	.92		99.74
21	2a	34.3	34	47.	.37		18	.31		1.0	01	1.	04		0	.94		100.02
22	3	34.0)8	46.	.65		19	.27		1.0	00	1.	02		0	.98		100.01
23	26	34.4	10	45.	.63		19	.36		1.0	01	1.	00		0	.99		99.39
Арсено	nupum II	$-\overline{Fe_{1.00}}$	$_{0}As_{0.9}$	$_{9}S_{1.00}$														
24	2a	34.4	16	46	.16		19	.62		1.0	00	1.	00		1	.00		100.23
25	26	34.2	25	46	.16		19	.63		1.0	00	1.	00	1.00			100.05	
26	3	34.5	58	45	.31		20	.15		1.0	00	0.	.98		1	.02		100.04

Таблица 4. Химический состав минералов месторождения Нижний Биркачан по результатам микрозондового анализа

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 4 2023

32

№ п/п	№ обр.	E	Весовые кон	центрации,	%	Φο	рмульные	коэффици	енты	Сумма
Лёллин	гит – Fe	$A_{1.01}(As_{1.87}S_{0.87}S_$	12) 1.99			1				1
27	2a	28.51	68.00	3	.44	1.00	1.79	0	.21	99.94
28	2a	28.81	68.14	3	.22	1.01	1.79	0	.20	100.17
29	2a	28.18	67.69	3	.23	1.00	1.80	0	.20	99.11
30	2a	28.21	67.95	3	.18	1.00	1.80	0	.20	99.35
Халько	пирит —	$Cu_{1.02}Fe_{0.97}$	S _{1.99}			•	1	L		
		Cu	Fe		S	Cu	Fe		S	
31	6	34.73	31.44	34	1.47	1.00	1.03	1	.97	100.64
32	6	34.88	30.77	34	1.33	1.01	1.02	1	.97	99.98
33	3	31.82	32.85	35	5.71	0.91	1.07	2	.02	100.38
34	3	34.73	30.30	34	4.82	1.01	1.00	2	.00	99.85
Сульфи	д серебрс	$a - (Ag_{1.54}Fe)$	$C_{0.12}Cu_{0.27})_{1.93}$	S _{1.06}			1	I		ł
		Ag	Fe	Cu	S	Ag	Fe	Cu	S	
35	6	75.63	3.54	6.14	14.68	1.59	0.14	0.22	1.04	100.00
36	6	72.57	2.38	9.38	15.68	1.49	0.09	0.33	1.09	100.00
Гессит	- (Ag _{1.99}	$P_{2.06}Te_{0.95}$								
			Ag		Te	A	Ŋg		Ге	
37	6		64.12		36.22	2.	03	0	.97	100.34
38	6		62.59		35.41	2.	02	0	.97	98.36

Таблица 4. Окончание

Примечание. Аналитик О.Т. Соцкая, Сатеbax, Северо-Восточный ЦКП, г. Магадан, 2022 г.; н.п. – содержание ниже предела обнаружения.

Огранка этих кристаллов определяется сочетанием призм {100}, {110}, и дипирамид {101}, {111}, {211}. Для внутреннего строения циркона характерна тонкая магматическая зональность, в некоторых кристаллах имеются унаследованные ядра. Точки изотопного состава образуют дискордию

33

Рис. 7. Распределение пробности самородного золота в рудах месторождения Нижний Биркачан.

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 4 2023

Таблица 5. Состав самородных золота и серебра на месторождении Нижний Биркачан по данным микрозондового анализа

Моп/п	No official	Весовые коні	Cunoto	
JN≌ 11/11	л⊍ ооразца	Au	Ag	Сумма
1	6	41.41	57.51	98.92
2	3	46.52	51.57	98.09
3	3	46.76	54.39	101.15
4	3	48.38	52.38	100.76
5	3	49.79	49.55	99.33
6	3	49.94	50.86	100.79
7	3	50.25	49.25	99.50
8	3	53.97	45.90	99.86
9	3	54.55	46.45	101.00
10	3	55.13	44.51	99.64
11	3	55.48	43.47	98.96
12	3	55.87	44.33	100.20
13	3	56.68	44.33	101.01
14	5	56.79	41.63	98.42
15	5	57.11	42.49	99.60
16	3	57.78	41.83	99.60
17	3	57.94	43.11	101.05
18	3	58.06	42.78	100.83
19	26	59.28	39.97	99.25
20	26	59.99	40.19	100.18
21	3	60.92	38.90	99.82
22	2a	61.08	37.22	98.30
23	3	61.19	37.87	99.06
24	2a	61.34	37.27	98.61
25	3	61.37	38.45	99.82
26	5	63.79	34.69	98.49
27	3	67.89	32.74	100.63
28	5	70.27	28.60	98.87
29	5	70.33	29.32	99.65
30	5	70.65	28.85	99.50
31	5	71.02	29.06	100.08
32	5	71.02	28.64	99.66

(рис. 9), нижнее пересечение которой с конкордией составляет 338 ± 5 млн лет (СКВО = 0.41), а верхнее пересечение равно 898 ± 320 млн лет. Вместе с тем, точка изотопного состава циркона № 1 располагается на конкордии (см. рис. 9, табл. 6), а его конкордантный возраст составляет 335 ± 2 млн лет (СКВО = 0.93, вероятность = = 0.34). Обе оценки возраста совпадают в пределах погрешностей, следовательно, мы полагаем, что конкордантное значение возраста циркона 335 ± 2 млн лет отвечает возрасту его кристаллизации.

Ar-Ar возраст рудных жил

По пробе адуляра из рудной жилы месторождения Нижний Биркачан (рис. 10) валидного плато не получено (СКВО = 2.2). Однако, учитывая, что неподалеку от места отбора пробы жила и прожилки рассечены пострудной дайкой базальтов (см. рис. 3), с определенной условностью мы можем принять полученный возраст 169.5 ± 4 млн лет как ее возраст. Близкие значения ⁴⁰Ar/³⁹Ar возраста (169 \pm 9 и 179 \pm 8 млн лет) были получены нами по дайке трахибазальтов, рассекающей на месторождении Кубака [Акинин и др., 2020] рудную жилу с 40 Ar/ 39 Ar возрастом адуляра 299 ± ± 3.5 млн лет [Акинин и др., 2020]. Ранее нами также был получен ⁴⁰Ar/³⁹Ar возраст адуляра месторождения Биркачан, который составил 286 ± ± 3.3 млн лет [Глухов и др., 2021].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Охарактеризованные нами геохимические особенности, минералогия возраст руд и вмещающих пород месторождения Нижний Биркачан сближают его с другими золото-серебряными объектами Кедонского пояса Омолонского массива [Волков и др., 2016], такими как Кубака [Акинин и др., 2020; Степанов и др., 1998; Степанов, Шишакова, 1994; Савва, 2018], Биркачан [Наталенко и др., 2002; Савва, 2018; Глухов и др., 2021], Ольча [Волков и др., 2013; Савва, Шахтыров, 2011; Савва, 2018], Бургали [Волков и др., 2021], Елочка [Савва, 2018]. Общими для них являются следующие особенности. Рудные тела представлены адуляр-карбонат-кварцевыми жилами и жильно-прожилковыми зонами. Руды мало- и убогосульфидные (0.1-3%); среди рудных минералов доминирует пирит; присутствуют минералы Те. Главным минералом продуктивного парагенезиса является низкопробное самородное золото; роль сульфосолей серебра незначительна. В геохимическом спектре руд существенную роль играют As и Mo; характерно высокое золото-серебряное отношение (2:1-1:4). Специфической чертой рудопроявления Нижний Биркачан, является его локализация среди интрузивных пород гранодиорит-порфиров булунского интрузивного комплекса – внедрение которых завершало развитие Кедонского вулкано-плутонического пояса [Горячев и др., 2017]. Полученный нами U-Pb возраст циркона из этих пород, составляющий 335 ± 2 млн лет, позволяет существенно уточнить как верхнюю возрастную границу Кедонского пояса, так и нижнюю – Au-Ag оруденения. С учетом этих данных, а также полученных нами ранее ⁴⁰Ar/³⁹Ar датировок рудных жил и секущих их даек [Акинин и др., 2020; Глухов и др.,

Рис. 8. Морфология кристаллов циркона из рудовмещающих кварцевых гранодиорит-порфиров месторождения Нижний Биркачан.

Рис. 9. U-Pb диаграмма с конкордией рудовмещающих кварцевых гранодиорит-порфиров месторождения Нижний Биркачан.

	Возраст, млн лет	³⁵ U ²⁰⁶ Pb/ ²³⁸ U ²⁰⁷ Pb/ ²³⁵ U ²⁰⁶ Pb/ ²³⁸ U ²⁰⁷ Pb/ ²⁰⁶ Pb	20 0.0534 ± 1 0.51 335 ± 2 335 ± 1 329 ± 10	16 0.0549 ± 1 0.46 349 ± 1 344 ± 1 382 ± 8	8 0.0553±1 0.69 350±1 347±1 367±3	$40 0.0554 \pm 2 0.20 349 \pm 3 347 \pm 2 360 \pm 25$		
	ношения	a ²⁰⁷ Pb/ ²³	0.3903±	0.4105 ±	0.4113±8	0.4106±		
	Изотопные отн	²⁰⁸ Pb/ ²⁰⁶ Pb	0.2994 ± 1	0.2455 ± 1	0.2683 ± 1	0.2460 ± 2		
		²⁰⁷ Pb/ ²⁰⁶ Pb ^a	0.0530 ± 2	0.0543 ± 2	0.0539 ± 1	0.0537 ± 5		
widn't minne		²⁰⁶ Pb/ ²⁰⁴ Pb	439	95	757	838		
	Ú,	MKT/T	= 15.6	120	139	= 16.1		
	Pb,	Pb, MKT/F		Pb, MKT/T		12.7	9.31	U/Pb
	Навеска,	MF	*	0.08	0.1	*		
	Размерная фракция (мкм) и	характеристика циркона	50—80, 8 зерен, длпр.	50—80, 20 зерен, призм.	50—80, 20 зерен, длпр.	50—80, 2 зерна, корпр.		
n n n n n n n n n n n n n n n n n n n			7	n	4			

Таблица 6. Результаты U-Pb изотопных исследований циркона

Сокращения: призм. – призматические, дл.-пр. – длиннопризматические, кор.-пр. – короткопризматические.

36

Рис. 10. Результаты Ar-Ar датирования адуляра из рудных жил месторождения Нижний Биркачан.

2021, 2022], возраста перекрывающих вулканиты осадочных пород [Терехов, 1979] и присутствия их обломков в рудных жилах [Волков и др., 2021], возраст золото-серебряного оруденения Кедонского вулкано-плутонического пояса можно принять в интервале 290—335 млн лет.

Что касается значительного (более 35 млн лет) разрыва между U-Pb возрастом рудовмещающих и вулканитов (на месторождении Кубака) и интрузий (на Нижнем Биркачане), и Ar-Ar возрастом адуляра из рудных тел месторождений Кубака, Биркачан, Нижний Биркачан, то, как мы уже неоднократно упоминали ранее [Акинин и др., 2020; Глухов и др., 2021, 2022], следует иметь ввиду, что Ar-Ar датирование показывает верхний возрастной предел минерализации, т.е., что она не моложе данного значения. Оно также прямо подтверждается датировками секущих рудные тела даек на Кубаке [Акинин и др., 2020], и косвенно – полученными нами Ar-Ar датировкой по Нижнему Биркачану, отражающей, по нашему мнению, также возраст внедрения данных даек.

выводы

1. Месторождение Нижний Биркачан по своему геологическому строению и составу руд весьма близко другим Au-Ag месторождениям Кедонского вулкано-плутонического пояса позднепалеозойского возраста.

2. Как и другие объекты Кедонского пояса, месторождение было сформировано в возрастном интервале 290–335 млн лет.

3. Специфическими особенностями месторождения, характерной для всей Аu-Аg минерализации Кедонского пояса, является низкие сульфидность и серебристость руд.

БЛАГОДАРНОСТИ

Авторы выражают благодарность за помощь в работе В.В. Акинину и О.Т. Соцкой (СВКНИИ ДВО РАН), С.Ф. Петрову и С.В. Трофимову (АО "Полиметалл УК").

СПИСОК ЛИТЕРАТУРЫ

Акинин В.В., Глухов А.Н., Ползуненков Г.О., Альшевский А.В., Алексеев Д.И. Возраст эпитермального золото-серебряного оруденения на месторождении Кубака (Омолонский кратонный террейн, Северо-Восток России): геологические и изотопно-геохронологические (U-Pb, ⁴⁰Ar/³⁹Ar) ограничения // Тихоокеанская геология. 2020. Т. 39. № 1. С. 37–47.

Волков А.В., Прокофьев В.Ю., Савва Н.Е., Колова Е.Е. Геохимические особенности рудообразующего флюида палеозойского Аu-Аg эпитермального месторождения Ольча (Северо-Восток России) // Доклады Академии Наук. 2013. Т. 450. № 1. С. 71–75.

Волков А.В., Сидоров А.А., Савва Н.Е., Прокофьев В.Ю., Колова Е.Е., Мурашов К.Ю., Земскова М.И. Особенности эпитермального рудообразования в Кедонском палеозойском вулканоплутоническом поясе Северо-Востока России, по данным геохимических исследований Аи-Ад оруденения // Вулканология и сейсмология. 2016. № 6. С. 3–21.

Волков А.В., Савва Н.Е., Ишков Б.И., Сидоров А.А., Колова Е.Е., Мурашов К.Ю. Эпитермальное Аи-Ад месторождение Бургали в палеозойском Кедонском вулканическом поясе (Северо-Восток России) // Геология рудных месторождений. 2021. Т. 63. № 1. С. 40-61.

Глухов А.Н., Прийменко В.В., Самсонов А.А. К вопросу о возрасте и тектонической позиции эпитермального золотого оруденения Омолонского массива (Северо-Восток Азии) // Вестник МГУ. 2021. № 6. С. 61–69.

Глухов А.Н., Акинин В.В., Ползуненков Г.О., Альшевский А.В. Возраст эпитермального золото-серебряного оруденения на месторождении Кубака (Омолонский кратонный террейн, Северо-Восток России): геологические и геохронологические (U-Pb, ⁴⁰Ar/³⁹Ar) ограничения / Дискуссии // Тихоокеанская геология. 2022. Т. 41. № 6. С. 111–116.

Горячев Н.А., Егоров В.Н., Савва Н.Е., Кузнецов В.М., Фомина М.И., Рожков П.Ю. Геология и металлогения фанерозойских комплексов юга Омолонского массива. Владивосток: Дальнаука, 2017. 312 с.

Калинин А.И., Константинов М.М., Стружков С.Ф. Геологическое строение месторождения Ольча, Омолонский массив // Руды и металлы. 2002. № 4. С. 41–47.

Котляр И.Н. Возраст золотых руд месторождения Кубака // Магматизм и метаморфизм Северо-Востока Азии. Материалы IV регионального петрографического совещания пол Северо-Востоку России. Магадан: СВКНИИ ДВО РАН, 2000. С. 156–159.

Котляр И.Н. Петрологическое моделирование при прогнозе и оценке золото-серебряного оруденения в слабо освоенных горнорудных районах // Магматизм и оруденение Северо-Востока России. Магадан: СВКНИИ ДВО РАН, 1997. С. 34–56.

Лейер П.У., Иванов В.В., Раткин В.В., Бандтцен Т.К. Эпитермальные золото-серебряные месторождения Северо-Востока России: первые ⁴⁰Ar-³⁹Ar-определения возраста руд // Доклады АН СССР. 1997. Т. 356. № 5. С. 665–658. *Леонов В.Л., Гриб Е.Н.* Структурные позиции и вулканизм четвертичных кальдер Камчатки. Владивосток: Дальнаука, 2004. 189 с.

Наталенко М.В., Стружков С.Ф., Рыжов О.Б., Вакин М.Е., Ишков Б.И., Гиллес Б., Карчавец В.П., Устинов В.И., Шергина Ю.П. Геологическое строение и минералогия месторождения Биркачан // Руды и металлы. 2002. № 6. С. 37–52.

Прийменко В.В., Глухов А.Н., Акинин В.В., Фомина М.И., Михалицина Т.И., Пономарчук А.В., Ползуненков Г.О. Золото-серебряное вулканогенно-плутоногенное месторождение Невенрекан (Магаданская область, Россия): вмещающие породы, околорудные метасоматиты, возраст и вещественный состав руд // Вулканология и сейсмология. 2022. № 1. С. 54–72.

Савва Н.Е. Минералогия серебра Северо-Востока России. М.: Триумф, 2018. 518 с.

Савва Н.Е., Шахтыров В.Г. Золото-серебряное месторождение Ольча: тектоническая позиция, структура и минералогическая характеристика // Геология рудных месторождений. 2011. Т.53. № 5. С. 462–486.

Сидоров А.А., Савва Н.Е., Ишков Б.И., Волков А.В., Степанов В.А., Шишакова Л.Н. Возраст эпитермального золото-серебряного оруденения на месторождении Кубака (Омолонский кратонный террейн), Северо-Восток России: геологические и изотопно-геохронологические (U-Pb, ³⁹Ar/⁴⁰Ar) ограничения / Дискуссии // Тихоокеанская геология. 2021. Т. 40. № 2. С. 90–97.

Степанов В.А., Шергина Ю.П., Шкоробогатова Г.С., Шишакова Л.Н., Рублев А.Г. Возраст руд Кубакинского месторождения золота (Омолонский массив) // Тихоокеанская геология. 1998. Т. 17. № 5. С. 89–97.

Степанов В.А., Шишакова Л.Н. Кубакинское золотосеребряное месторождение. Владивосток: Дальнаука, 1994. 195 с.

Степанов В.И., Шишакова Л.Н., Лайпанов Х.Х. Месторождение золото-серебряной формации в вулканитах кедонской серии // Материалы по геологии и полезным ископаемым Северо-Востока СССР. 1991. Вып. 27. С. 150–158.

Травин А.В., Юдин Д.С., Владимиров А.Г., Хромых С.В., Волкова Н.И., Мехоношин А.С., Колотилина Т.Б. Термохронология Чернорудской гранулитовой зоны (Ольхонский регион, Западное Прибайкалье) // Геология и геофизика. 2009. Т. 50. № 5. С. 438–452.

Терехов М.И. Стратиграфия и тектоника южной части Омолонского массива. М.: Наука, 1979. 116 с.

Черняев Е.В., Черняева Е.И. Структура и условия локализации золотого оруденения Кубакинского рудного поля // Известия Томского политехнического университета. 2001. Т. 304. Вып. 23. Геология, поиски и разведка полезных ископаемых Сибири. С. 225–243.

Hedenquist J.W. Mineralization associated with volcanic-related hydrothermal systems in the Circum-Pacific Basin / Ed. M.K. Horn // Transactions of the Fourth Circum Pacific Conference on Energy and Mineral Resources, Singapore, 18–22 August 1987 // American Association of Petroleum Geologists. 1987. P. 517–524.

Krogh T.E. A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination // Geochim. Cosmochim. Acta. 1973. V. 37. P. 485–494.

Ludwig K.R. Isoplot 3.70. A Geochronological Toolkit for Microsoft Excel // Berkeley Geochronology Center Spec. 2003. V. 4.

Sillitoe R.H., Hedenquist J.W. Linkages between volcanotectonic setting, ore-fluid composition an epitermal precious-metals deposits // SEG Special Publication. 2003. N° 10. P. 315–343.

Stacey J.S., Kramers I.D. Approximation of terrestrial lead isotope evolution by a two-stage model // Earth Planet. Sci. Lett. 1975. V. 26. № 2. P. 207–221.

Gold-Silver Epithermal Deposit the Lower Birkachan (Omolonsky Massif, North-East of Russia): Geological Structure, Ore Mineralogy, Age

A. N. Glukhov^{1, *}, V. V. Priymenko^{1, **}, A. B. Kotov^{2, ***}, M. I. Fomina^{1, ****}, E. B. Salnikova², T. I. Mikhalitsyna¹, and G. O. Polzunenkov¹

¹North-East Interdisciplinary Scientific Research Institute of Far East Branch, of the Russian Academy of Science, Portovaya str., 16, Magadan, 685000 Russia

> ²Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences, Makarova emb., 2, St.-Petersburg, 199034 Russia

> > *e-mail: gluhov76@list.ru

**e-mail: priymenkovladimir@gmail.com

***e-mail: abkotov-spb@mail.ru

****e-mail: mif-74@yandex.ru

Described of structure, mineralogy and age of ore and hosted rocks of the recently explored Nizhniy Birkachan Au-Ag epithermal deposit. The orebodies is a quartz-carbonate-adularia veins and veining zones, that hosted porphyry granodiorites with U-Pb age (ID-TIMS) 335 ± 2 Ma. The ore contain low sulfides, low Ag grades. Main ore minerals – pyrite. Silver minerals represented by tennantite-tetraedrite, Ag sulfide, native Au and Ag, gessite, The 40Ar/39Ar age of adularia from vein 169 ± 4 Ma. This young age we explain by rejuvenation of isotope system after intrusion of non-mineralizied Jurassic mafic dykes. The main features of Nizhniy Birkachan Au-Ag epithermal deposit similar with other Au-Ag deposits of Kedon magmatic belt of the Omolon massif. All that was formed in 290–335 Ma age interval.

Keywords: veins, low sulfidization, Late Paleozoic, isotope system, dikes