УДК 550.36+551

ИЗОТОПНЫЙ СОСТАВ ГЕЛИЯ В ПОЗДНЕКАЙНОЗОЙСКИХ ЮЖНО-БАЙКАЛЬСКОЙ И ЮЖНО-ХАНГАЙСКОЙ ВУЛКАНИЧЕСКИХ ОБЛАСТЯХ

© 2023 г. К. М. Рычкова^{а,} *, О. И. Кальная^{а,} **

^аТувинский институт комплексного освоения природных ресурсов СО РАН, ул. Интернациональная, 117а, Кызыл, 667007, Республика Тыва, Россия *e-mail: klara6@inbox.ru **e-mail: kalnaja@mail.ru Поступила в редакцию 23.09.2022 г. После доработки 27.02.2023 г. Принята к публикации 10.04.2023 г.

В статье рассмотрен изотопный состав гелия (${}^{3}\text{He}/{}^{4}\text{He} = R$) в подземных водах Южно-Байкальской (ЮБВО) и Южно-Хангайской вулканических областях (ЮХВО) в позднекайнозойский период. Установлены различия в поведении и величине этого параметра. Установлено, что различия в содержаниях ${}^{3}\text{He}/{}^{4}\text{He}$ в ЮБВО и ЮХВО отвечают мантийным резервуарам, имеющим разный изотопный состав гелия. Это подтверждает, что позднекайнозойский вулканизм ЮБВО и ЮХВО контролируется мантийными источниками, связанными с мантийными плюмами Центрально-Азиатского горячего поля мантии.

Ключевые слова: изотопный состав гелия, источники, подземные воды, тепловой поток, мантийный гелий, вулканиты, Южно-Байкальская вулканическая область, Южно-Хангайская вулканическая область

DOI: 10.31857/S0203030623700207, EDN: WQQUCG

введение

Вулканические области в Центральной и Восточной Азии объединены во внутриплитную вулканическую провинцию [Коваленко и др., 2010]. В ней выделены Центрально-Азиатская и Дальневосточная вулканические субпровинции. Наиболее крупнейшими в Центрально-Азиатской вулканической субпровинции (ЦАВС) являются Южно-Байкальская и Южно-Хангайская вулканические области.

Позднекайнозойская эпоха Центрально-Азиатской внутриплитной вулканической субпровинции характеризуется рифтогенной и вулканической активностью. На обширной площади возникли рифтовые зоны и вулканические области. Самой крупной является Байкальская рифтовая зона (БРЗ) протяженностью более 2200 км. На западном фланге БРЗ возникает Южно-Байкальская вулканическая область (ЮБВО) (рис. 1). В Центральной Монголии в позднем кайнозое возобновляется деятельность Южно-Хангайской вулканической области (ЮХВО). Формирование вулканических областей вызывает дискуссии. Часть исследователей связывают магматизм с коллизионными процессами Северной Азии с Индийским континентом и влиянием конвектив-

ных ячеек в верхней мантии с утонением литосферы по механизму активного рифтогенеза, обусловившим пространственное распределение вулканизма в рассматриваемом регионе [Рассказов и др., 2000]. Есть взгляды, в которых магматизм ЦАВС связан с субдукцией Тихоокеанской плиты под Азиатский континент [Зорин и др., 2006]. Стагнированный слэб Тихоокеанской плиты является источником флюидов и инициирует конвективные ячейки, которые обуславливают поднятие горячей мантии к поверхности [Зорин и др., 2006]. Деятельность мантийных плюмов в образовании ЮБВО и ЮХВО подтверждена глубинными сейсмотомографическими данными [Кулаков, 2008; Бушенкова и др., 2008; Мордвинова и др., 2015]. Согласно работе [Zhao, 2009] плюм выявлен в основании ЮБВО. По мнению [Мордвинова и др., 2015, с. 337], генерация мантийных плюмов "... обусловлена оттоком тепла из-под ... литосферы Сибирского кратона и Гобийского Алтая ...". Есть представления, что позднекайнозойский вулканизм ЦАВС контролируется мантийными источниками внутриплитного типа, связанными с мантийными плюмами Центрально-Азиатского горячего поля мантии, входящими в ветвь Тихоокеанского суперплюма [Ярмолюк и др.,

Рис. 1. Схема положения Южно-Байкальской и Южно-Хангайской вулканических областей в Центрально-Азиатской вулканической субпровинции (по [Ярмолюк и др., 2011]).

1, 2 – позднекайнозойские лавовые поля: 1 – позднеплиоцен–плейстоцен–голоценовые, 2 – допозднеплиоцен–голоценовые; 3 – территория ЦАВС; 4 – граница Монголии; 5 – граница между Амурской и Монгольскими плитами (по [Зоненшайн и др., 1990]); 6 – грабены; 7 – контуры вулканических областей: ЮБВО и ЮХВО.

1994, 2003, 2011; Грачев, 1998а; Геншафт, Салтыковский, 2000].

Вулканизм в этих областях сопровождался активной гидротермальной деятельностью, что позволяет определить изотопный состава гелия 3 He/ 4 He (*R*), поставляемый циркулирующими водами. Согласно [Поляк и др., 1979; Мамырин, Толстихин. 1981: Поляк. 1988]. изотопный состав гелия является надежным индикатором для плюмов. Отношение *R* в земных объектах варьирует в пределах трех порядков величин от $\approx n \times 10^{-5}$ до $n \times 10^{-8}$. Самое минимальное значение отвечает древней платформенной коре, в которой в результате распада урана и тория увеличивается содержание 4He и изотопный состав гелия ³He/⁴He vменьшается до ≈ $(2 \pm 1) \times 10^{-8}$ [Толстихин, 1986]. Такой гелий называют коровым (*R*_{кор}). В атмосфере R составляет 140 × 10⁻⁸ [Мамырин, Толстихин, 1981]. В первозданном солнечном гелии, захваченном Землей при аккреции, $R_{SOLAR} \approx$ составляло около 4.3×10^{-4} [Мамырин, Толстихин, 1981; Поляк и др., 2020]. За время эволюции Земли содержание его уменьшилось за счет диссипации и разбавления радиогенным гелием ⁴He. Высокое содержание *R* в MORB = $(1.15 \pm 0.1) \times 10^{-5}$ присуще базальтам и гидротермам срединно-океанических хребтов [Marty, Tolstikhin, 1998]. В расплавах более глубинного вещества мантийных плюмов изотопный состав гелия лостигает 4 × 10⁻⁵ [Грачев, 2003, табл. 1]. Гелий мантии поступает в кору вместе с мантийными расплавами и затем диффундирует во вмещающие комплексы. Он смешивается с коровым гелием в разной пропорции и становится, как и тепловой поток, региональной характеристикой структурно-тектонических единиц. Между тепловым потоком (q) и изотопным составом гелия существует прямая корреляционная связь: $qR = 18.23 \lg R + 181.82$, свидетельствующая, что разнородные параметры — геохимический (*R*) и геофизический (а) – обусловлены единым процессом тепломассопереноса и являются его индикаторами [Поляк и др., 1979, 1988]. В настоящее время эта связь широко применяется как для уточнения, детализации, так и для оценки теплового потока во многих регионах земного шара [Хуторской и др., 1991; Du, 1992; Лысак, Писарский, 1999; Italiano F. et al., 2000; Bellani et al., 2015; Newell et al., 2015; Поляк, 2020].

В предлагаемой статье рассмотрено распределение изотопного состава гелия в подземных водах как единственно надежного критерия связи с мантией и объясняется различие этих величин в ЮБВО и ЮХВО.

ГЕОЛОГИЧЕСКАЯ ОБСТАНОВКА

ЮБВО охватывает хр. Хамар-Дабан на востоке, на северо-востоке – хр. Восточный Саян, включает в южной части Дархатскую котловину и Сангиленское нагорье, в западной части включает Тувинский межгорный прогиб. Заложение ЮБВО произошло на стыке Сибирской платформы и подвижных Монгольской и Амурской плит [Зоненшайн, Савостин, 1979]. Главный Саянский разлом разделяет Сибирскую платформу и Монгольскую плиту. Граница с Амурской плитой ограничена тройной системой грабенов БРЗ (рис. 2). Структура региона образовалась в результате нескольких этапов тектогенеза, протекавших от докембрия до ордовика включительно. Самый древний кристаллический фундамент, образующий структурно-формационную зону байкалид, представлен метаморфическим комплексом рифея и венда, а также венда-кембрия, слагающий центральную часть ЮБВО, Восточный Саян, а на юге -Сангиленское нагорье. Зона ранних каледонил занимает северо-западную часть ЮБВО и слагает Тувинский межгорный прогиб. Он образован вулканогенно-осадочными образованиями докембрия и нижнего кембрия с массивами гранитоидных нижнепалеозойских интрузий. На востоке ЮБВО высокометаморфизованные породы каледонид слагают хр. Хамар-Дабан [Геология

Этапы	Длительность, млн лет	Объем излившихся лав, км ³		Интенсивность вулканизма, км ³ /млн лет	
Oranbi		ЮБВО	ЮХВО	ЮБВО	ЮХВО
Раннемиоценовый	6	10000*	275**	1700	46
Средне-позднемиоценовый	10	3500*	900**	350	90
Плиоценовый	3	50 (?)*	60**	16	20
Эоплейстоцен-голоценовый	<3	800***	300**	267	100
Итого		14300	1285	2333	256
Размер области, км ²		157 500*	112500**	0.01 км ³ /км ²	$0.002 \ {\rm km^3/km^2}$

Таблица 1. Объем и интенсивность позднекайнозойского вулканизма в Южно-Байкальской и Южно-Хангайской вулканических областях (по данным [Ярмолюк и др., 1994, 2003; Сугоракова и др., 2003])

Примечание. * – данные из статьи [Ярмолюк и др., 2003]; ** – данные из статьи [Ярмолюк и др., 1994]; *** – данные из статьи [Сугоракова и др., 2003].

СССР ..., 1966; Кузьмичев, 2004]. Для всего региона характерно общее поднятие, при этом скорость поднятия хребтов значительно выше той, которая отмечается для межгорных прогибов [Зятькова, 1977]. Южно-Хангайская вулканическая область (ЮХВО) охватывает Хангайское нагорье и его северо-восточное обрамление с прилегающими к нему с юга Гоби-Алтайской, а с севера – Северо-Монгольской рифтовыми зонами (рис. 3). Разви-

Рис. 2. Схема распределения изотопного отношения гелия и теплового потока в Южно-Байкальской вулканической области.

1, 2 – вулканические поля: 1 – позднеплиоцен – плейстоцен – голоценовые, 2 – допозднеплиоцен – голоценовые; 3 – грабен, его название; 4 – разломы; 5 – контур ЮБВО; 6–8 – пункт определения изотопного отношения гелия, его номер, величина (3 He/ 4 He) × 10⁻⁸ соответственно: 6 – (6–17) × 10⁻⁸ (*a*), (18–50) × 10⁻⁸ (*b*), 7 – (51–140) × 10⁻⁸ (*a*), (141–420) × 10⁻⁸ (*b*), 8 – >420 × 10⁻⁸; 9 – пункты измерений теплового потока в скважинах (мВт/м²); 10 – изолинии теплового потока, его величина (мВт/м²). Схема строения области – по [Ярмолюк и др., 2003].

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 4 2023

Рис. 3. Схема распределения отношения изотопов гелия Южно-Хангайской вулканической области. 1, 2 – вулканические поля: 1 – позднеплиоцен–плейстоцен–голоценовые, 2 – допозднеплиоцен–голоценовые; 3 – грабены, их названия; 4 – пункты определения отношения изотопов гелия: $R < 20 \times 10^{-8}$ (*a*), $R > 20 \times 10^{-8}$ (*b*); 5 – контур ЮХВО; 6 – граница между Амурской и Монгольской плитами. Схема строения области – по [Ярмолюк и др., 2011].

тие ЮХВО прослеживается с поздней юры до настоящего времени [Ярмолюк и др., 1994, 1995]. Строение территории определяет комплекс разновозрастных террейнов, от раннедокембрийских до раннекаледонских. Вулканиты допозднекайнозойского периода связаны с Гоби-Алтайской рифтовой зоной. Позднекайнозойский период вулканизма проявлен севернее Гоби-Алтайской рифтовой зоны и связан с рифтогенными процессами Хангайского нагорья. Хангайское нагорье представляет собой сводовое поднятие, сложенное позднепалеозойской корой с включением позднепротерозойского блока Западного Хангая, и выделяется системой протяженных грабенов преимущественно широтного простирания.

ПОЗДНЕКАЙНОЗОЙСКИЙ ВУЛКАНИЗМ ЮБВО И ЮХВО

ЮБВО объединяет поля позднекайнозойских базальтов юго-запада Байкальской рифтовой зоны в пределах хребтов Хамар-Дабан и Восточный

Саян на площади 350 × 450 км². Выделено несколько этапов формирования ЮБВО [Ярмолюк и др., 2003]. Самый ранний – позднеолигоценовый (34-24 млн лет) этап: его продукты рассредоточены на значительной площади и отнесены к ареальному типу излияний. Представлен реликтами глубоко эродированных щитовых вулканов. Раннемиоценовый (23-17 млн лет) этап характеризуется наиболее мощными излияниями около 10000 км³, что составляет около 70% всего объема вулканитов в ЮБВО (табл. 1) [Ярмолюк и др., 2003]. Наиболее масштабное вулканические плато выделено в пределах западной части современного хр. Хамар-Дабан на площади 18000 км² и значительно меньшее плато – примерно в 200 км к северо-западу от первого, на правом борту современного Окинского грабена (см. рис. 2). Хотя оба плато находятся в пределах Тункинского, Хубсугульского и более позднего Окинского грабенов, установлено, что процессы грабенообразования имеют после раннемиоценовый возраст [Ярмолюк и др., 2003]. Предполагается трещинная природа излияний. Подводящие каналы могут представлять субширотные рои даек. В средне-позднемиоценовом этапе (16-6 млн лет) отмечено снижение интенсивности вулканизма. Вулканизм представлен небольшими, пространственно разобщенными лавовыми полями преимущественно в пределах формирующейся структуры тройного сочленения грабенов: Тункинского, Хубсугульского и Окинского, объединенных вершиной г. Мунку-Сардык (3546 м). Такая трехлучевая система грабенов характерна для областей, сформированных над мантийными плюмами, и является их структурной особенностью [Ярмолюк и др., 2003]. Активность вулканизма постепенно снижалась и плиоценовый (6-3 млн лет) этап отвечает вулканическому затишью. Вспышка вулканизма проявилась в позднеплиоцен-плейстоцен-голоценовый (<3 млн лет) этап со смещением на периферию ЮБВО. В северо-западной части Окинского грабена возникло крупное Восточно-Тувинское лавовое нагорье (ВТЛН) и ряд уникальных по протяженности лавовых рек, как по долинам реки Енисей, так и по рекам южного склона хребта Хамар-Дабан [Ярмолюк и др., 2003]. К этому времени относится возникновение Билин-Бусийнгольского грабена, являющегося крайней западной ветвью системы меридиональных Хубсугульских впадин. В верховьях р. Бусийнгол выделены маломощные поля плейстоцен-голоценовых вулканитов.

Южно-Хангайская вулканическая область (ЮХВО) объединяет вулканические проявления Южной и Центральной Монголии, от Гобийского Алтая до Хангайского нагорья (см. рис. 3) [Ярмолюк и др., 1994, 2011; Саватенков и др., 2010]. Позднекайнозойский период вулканизма в ЮХВО отмечен излияниями в позднеолигоценовом этапе (30-22 млн лет). Они связаны с образованием сквозьлитосферного Долиноозерского (ДО) грабена, разделяющего Хангайское нагорье и хребты Гобийского Алтая. Протяженность грабена около 450 км, ширина достигает 40 км. Вулканические проявления образуют крупные поля небольшой мощности на значительной площади более 9000 км², преимущественно в пределах ДО грабена. В раннемиоценовом этапе (22-16 млн лет) интенсивность вулканизма значительно снизилась. Распределение лавовых полей выделено в основном в пределах небольшого раннемиоценового грабена шириной до 5 км и протяженностью около 10 км, примыкающего к северному борту ДО грабена.

Среднемиоценовый этап (15–11 млн лет) характеризуется вспышкой вулканизма в центральной и частично северной части Хангайского нагорья [Ярмолюк и др., 1994]. В центральной части Хангайского нагорья возникает крупное лавовое плато. Позднее возникает Водораздельный грабен (ВГ) в осевой части хр. Хангай. О мощности излияний (более 500 м) свидетельствуют сохранившиеся фрагменты лавовых потоков на вершинах гор. На протяжении позднемиоцен—плиоценового этапа (10–3 млн лет) активность вулканизма снижалась. Излияния отмечены в пределах среднемиоценового ВГ грабена, а позднее (<7.5 млн лет) проявились и севернее, в Орхон-Селенгинском и Тарятском грабенах, где возникли обширные лавовые плато, мощность которых достигала 70 м.

В плейстоцен голоценовый этап (<3 млн лет) возрастает вулканическая активность. Возникают лавовые потоки в верховьях рек северных склонов Хангайского нагорья. Мощные излияния лавовых потоков в западной части Тарятского грабена сформировали лавовую реку протяженностью не менее 70 км [Ярмолюк и др., 1994].

ЮБВО и ЮХВО имеют как общие закономерности в развитии вулканизма, так и свои особенности. Общие закономерности: приуроченность вулканических областей к границе Монгольской и Амурской плит (см. рис. 1), пульсационный характер (вспышка активности вулканизма и его снижение наблюдается практически одновременно в областях), миграция вулканизма [Ярмолюк и др., 2011]. Миграция вулканизма происходила с юга на север в ЮХВО и с востока на запад в ЮБВО. В петрохимическом отношении породы областей представляют собой основные высококалиевые породы. Отличия в развитии вулканизма состоят в разновременности начала вулканической деятельности. ЮХВО имеет допозднекайнозойскую историю вулканизма с конца поздней юры-начала раннего мела (150-138 млн лет), тогда как в ЮБВО начало вулканической деятельности отнесено к позднеолигоценовому этапу в 34-24 млн лет. Вулканическая деятельность в ЮБВО предваряла грабенообразование и дальнейшее развитие вулканизма происходило при формирующейся системе грабенов [Ярмолюк и др., 2003].

Развитию грабенообразовательных процессов в ЮХВО предшествовало либо оно происходило одновременно с вулканической деятельностью [Ярмолюк и др., 1994]. Монолитное Хангайское сводовое поднятие, по-видимому, ограничивало прорыв вулканических масс на поверхность, и прорыв осуществлялся при начавшемся грабенообразовании. Объем извержений в ЮБВО составил >14350 км³, в ЮХВО – >1285 км³ [Ярмолюк и др., 1994, 2003] (см. табл. 1). Интенсивность вулканизма на единицу площади в ЮБВО почти на порядок выше, чем в ЮХВО (см. табл. 1).

МЕТОДИКА ИССЛЕДОВАНИЙ

Изучение изотопного состава гелия в подземных водах Байкальского рифта начато в 1976 г., когда в водах Тункинской впадины БРЗ были обнаружены величины R, практически совпадающие с типичными для резервуара MORB. Это послужило дальнейшему изучению R в БРЗ и прилегающих районах Монголии. В работе [Поляк, 2000] обобщены результаты изучения изотопного состава гелия в 104 пунктах наблюдений Байкало-Монгольского региона за последнюю четверть XX века. Определения R в подземных водах Тувы, включающей юго-западный фланг БРЗ, было на-2003 г. сотрудниками института чато в ТувИКОПР СОРАН с целью определения и уточнения теплового потока Тувы. Опробовано более 44 источников. Результаты работ изложены в работах [Рычкова и др., 2007; Дучков и др., 2010; Рычкова, Монгуш, 2018; Рычкова, Аюнова, 2019]. Для ЮБВО изучены 36 пунктов наблюдений (табл. 2). Из них использованы данные по 10 пунктам из публикации [Поляк, 2000, табл. 1] и данные по 26 пунктам из статьи [Рычкова, Монгуш, 2018, табл. 1]. Для ЮХВО использованы данные по 14 пунктам – (табл. 3) по данным [Поляк, 2000, табл. 1].

Пробы на изотопный состав газов отбирались согласно апробированной методике [Каменский и др., 1976; Справочник ..., 1998]. Анализ проб производился в лаборатории геохронологии и геохимии изотопов ГИ КНЦ РАН (г. Апатиты) на масс-спектрометре МИ–1201. Дегазация (вакуумная) воды и газовый анализ осуществлялись на стеклянной ртутной установке типа Хлопина-Герлинга. В пробах определялись концентрации He, Ne, иногда Ar, а также отношения изотопов $R = {}^{3}\text{He}/{}^{4}\text{He}, {}^{4}\text{He}/{}^{20}\text{Ne},$ и ${}^{40}\text{Ar}/{}^{36}\text{Ar}$. Повторное опробование в течение 2–10 лет нескольких групп источников показало постоянство уровня изотопного состава гелия во времени, что позволяет обосновать возможность выявления их латеральных различий.

Чтобы исключить влияние контаминации проб атмосферным гелием ($R_{aтм} = 1.4 \times 10^{-6}$), возможной при смешивании восходящих потоков с инфильтрационными водами, была введена поправка (см. табл. 1), исключающая долю атмосферного гелия в балансе гелия пробы согласно формуле [Поляк, 2000]:

$$R_{\mu c \pi p} = \left[R_{\mu_{3M}} \left({}^{4} \text{He} / {}^{20} \text{Ne} \right)_{\mu_{3M}} - \right. \\ \left. - R_{a_{TM}} \left({}^{4} \text{He} / {}^{20} \text{Ne} \right)_{a} \right] \left[\left({}^{4} \text{He} / {}^{20} \text{Ne} \right)_{\mu_{3M}} - \right. \\ \left. - \left({}^{4} \text{He} / {}^{20} \text{Ne} \right)_{a_{TM}} \right].$$
(1)

В большинстве исследованных образцов величина $R_{\rm испр}$ практически близка к $R_{\rm изм}$, что указывает на отсутствие либо на незначительную контаминацию атмосферным гелием. Полученные значения $R_{\rm изм}$ и (⁴He/²⁰Ne)_{изм} сравнивались с атмосферными значениями $R_{\rm аттм}$ и (⁴He/²⁰Ne)_{аттм} = 0.3 (рис. 4). Практически все пробы ЮБВО находят-

ся в зоне смешения между коровой и мантийной компонентами. Они в разной степени содержат глубинные коровый и мантийный гелий, за исключением источников 31, 33, находящихся вблизи точки, характеризующей атмосферу (AIR). Источники ЮХВО также расположены в зоне смешения между коровой и мантийной компонентами, но тяготеют к коровой составляющей. Оценка доли гелия мантии (He_м) в общем количестве гелия в пробе (He_{изм}) (см. табл. 1) была произведена по формуле [Поляк, 2000]:

$$\mathrm{He}_{_{\mathrm{M}}}/\mathrm{He}_{_{\mathrm{HSM}}} = (R_{_{\mathrm{HCNP}}} - R_{_{\mathrm{K}}})/(R_{_{\mathrm{M}}} - R_{_{\mathrm{K}}}), \qquad (2)$$

где $R_{\rm k} = 2 \times 10^{-8}$ и $R_{\rm M} = 1200 \times 10^{-8}$ и варьирует в пробах от 3 до 38%. Значения $R_{\rm испр}$ были использованы для оценки теплового потока по формуле [Поляк, 1988]:

$$qR = 18.23 \lg R + 181.82. \tag{3}$$

РЕЗУЛЬТАТЫ ИЗОТОПНОГО СОСТАВА ГЕЛИЯ И ТЕПЛОВОГО ПОТОКА

Самые высокие, практически равные мантийным MORB, $R = 11 \times 10^{-6}$ [Грач, 2003, табл. 6, с. 628], значения *R* от (620 до 1120) × 10⁻⁸ выявлены в центральной части Тункинской впадины в водах источников курорта "Аршан" и скважинах курорта "Жемчуг" (см. табл. 2, рис. 2). Как было сказано выше, вулканическая деятельность в районе Тункинской впадины неоднократно проявлялась в позднем кайнозое с наиболее мощными излияниями в раннем миоцене и плейстоцене. Максимальная мощность вулканического плато в миоцене достигала 500-600 м и оно граничило с современным положением Тункинской впадины [Ярмолюк, 2003]. Вспышка в плейстоцен-голоценовый период привела к образованию лавовых рек значительной протяженности на южных склонах хр. Хамар-Дабан и к распространению небольших вулканических полей непосредственно как в самой Тункинской впадине, так и по ее бортам.

Повторные инъекции магматизма и его объемы обусловили аномальные значения изотопного состава гелия, достигающие значений MORB. Мантийный гелий составляет 96–98%. На западном фланге Тункинской впадины в источниках и скважинах Ниловой пустыни значения R уменьшаются до 280 × 10⁻⁸, а мантийный гелий до 19–27%. Уменьшение R от 214 × 10⁻⁸ до 62 × 10⁻⁸ показали источники Окинской впадины, расположенной к северо-западу по простиранию Восточно-Саянской разломной зоны. Мантийный гелий в среднем составляет 12% с максимальным значением 18%. Этот район характеризуется маломощными проявлениями лавовых полей средне–позднемиоценового возраста.

raomina 2	• Изотопы телил и оценки тен.			IKUIDEKON	by sikalin ic	ekon oondern				
№ ис-	Назрание истопника	$P \times 10^{-8}$	$P \times 10^{-8}$	He,	qR/qT,					
точника	Пазвание источника	$\Lambda_{\rm H3M} \wedge 10$	$\Lambda_{\Gamma \pi y \delta} \wedge 10$	мант %	мВт/м ²	литературный источник				
Тункинская впадина										
41	Курорт Жемчуг, скважины		620-1120	62-94	84/95	Поляк, 2000				
42	Курорт Аршан, источник,		860-1100	82-92	84/76	Поляк, 2000				
12	скважины		214 220	10 25	75/61	Полян 2000				
43	нилова пустынь, скважины	Источники	214-280 Окинского гр	19—23 абона	/3/01	Поляк, 2000				
1	Yothu Venu 1020	155	156	13	767	Ришкова и пр. 2007				
1	Xonyh-Si'yn, 1020	140	150	12 5	76/	Гычкова и др., 2007				
1	ЛОЛУН-УГУН Шалтана № 100	210	214	12.3	75/	Вадминов, 2013				
2	Шутхулай, 100	210	214	18	/8/	Рычкова и др., 2007				
2	Шутхулаи Хажаа Баа 2905	180	(\mathbf{c})	10	()/	Бадминов, 2013				
2	Хойто-10Л, 3805	62	62	5 7	69/	Рычкова и др., 2007				
3	ХОИТО-ТОЛ	08	1(2	12	69 76 /	Бадминов, 2013				
4	Красные камни, 7700	162	162	13	/6/	Рычкова и др., 2007				
4	красные камни	140		12.5	/5/	Бадминов, 2013				
37	Даргал	64		5.7	69/	Бадминов, 2013				
38	Дунду-Гол	140		12.5	75/	Бадминов, 2013				
39	Родник, вулкан	190		17	/8/	Бадминов, 2013				
ИТОГО	77	140 P	<i>T</i>	12	74					
5	Источни Пойтон 159	<i>іки восточно</i> 1 — 420	- <i>1увинского л</i> 422	авового на 20	ігорья 	Buukapa u ap 2007				
5		420	422	20 20	04/	Гычкова и др., 2007 Голициов, 2012				
5		510	107	20	81/ 77 (Бадминов, 2013 Валинов, 2007				
6 25	Биче-Соруг	1/9	196	10	///	Рычкова и др., 2007				
35	Соруг	280		25	81/	Бадминов, 2013				
30 ИТОГО	Торпа	3/0		33	83/	Бадминов, 2013				
итого				28	82	l				
40	Исвен (Йи-Спен)	1 руппа Кано 217	итских источ 250	чников 21	79/	Рынкова Монгуш 2018				
30	Шандал Ой (Соруг)	253	250	21	79/	Ришкова, монтуш, 2010				
31	Арыскан (Лаштыг)	144	255	21	1)	Рынкова и др., 2013				
32	Арыскан (даштыг) Нижний Калью-Ос	144	140	12	757	Рынкова и др., 2013				
20	Пижний Кадыр-ОС	103	07	12 8	73/	Ринкова и др., 2013				
29	Ак-Суг, скважина о	103	21	0	12/	Ришкова и др., 2013 Ришкова и др. 2013				
33 I	Кижи-лемские (чямджак)	122			175	Пинкова и др., 2013 Пинков и др. 1087				
I II		_		_	ברן דרו	Дучков и др., 1987				
	Арыскан	_	185	16	76	Соколова, 2008				
moro		Билин-Буси	105 Ійнгольский гі	10 пабен	70					
7	Тарыс	41	41	3	65/	Рычкова и др., 2007				
9	Уш-Бельдир	54	54	5	68/	Рычкова и др. 2007				
34	Шишхил-Гол	80	55	5	68/	Рычкова 2013				
10	Маймалыш	129	129	11	74/	Рычкова и др 2007				
10	Саллам	44	43	4	667	Рыцкова и др., 2007				
13	Нарын	45	44	4	/66	Рычкова и др., 2007				
	Ипрын Улуг-Танзек	15			/60	Лучков и др., 2007				
итого	Shyl Tallsek		61	5 34	67	ду іков и др., 1967				
moro		Χνδενεν	01 1ьская впадин	ла 10.54	07					
44	Булнай		46	4	64/	Поляк. 2000				
45	Чжилгэ		30	3	67/	Поляк, 2000				
46	Дэлгер-Булак		56	5	68 /	Поляк, 2000				
47	Нарани-Булаг		50	4	67/	Поляк. 2000				
48	Обони		142	12	75/	Поляк. 2000				
49	Билютыйн		74	6	71/	Поляк. 2000				
50	Ульхен		296	25	77/	Поляк, 2000				

Таблица 2. Изотопы гелия и оценки теплового потока Южно-Байкальской вулканической области

Примечание. Номера источников и скважин в таблице соответствуют номерам на рис. 2, 4.

Название источника	Название источника He (He + Ne), ppm		Литературный источник
Сайхан-Хульджи		30	Поляк, 2000
Хульджи	3800	34	Поляк, 2000
Зартын-Холун	1040	5.2	Поляк и др., 1994
Худжулин	2400	11.0	Поляк и др., 1994
Шиберту	3740	9.7	Поляк и др., 1994
Халун-Ус	5490	26	Поляк, 2000
Цаган-Сумеит		14.0	Поляк, 2000
Гъялгар		21	Поляк, 2000
Чулуту	9700	12	Поляк, 2000
Цохот	3170	12.4	Поляк, 2000
Богдо-Ула	1200	6.0	Поляк, 2000
Худжирте	7227	13.0	Поляк, 2000
Шаргалжут	1740	36	Поляк, 2000
Бор-Тал		18	Поляк, 2000

Таблица 3. Изотопный состав гелия в подземных водах Южно-Хангайской вулканической области

На периферии ЮБВО в источниках Восточно-Тувинского лавового нагорья (ВТЛН), в зоне сопряжения северо-западной части Окинского и Азасского грабенов изотопный состав гелия уве-личивается от 196 \times 10⁻⁸ до 422 \times 10⁻⁸ при $R_{\rm cp}$ = $= 316 \times 10^{-8}$. Доля мантийного гелия в среднем составляет 31%. Максимальное $R = 422 \times 10^{-8}$ превышает установленное на западном фланге Тункинской впадины $R = 280 \times 10^{-8}$, но уступает субмантийным значениям в ее центральной части. Высокие значения ($R = 422 \times 10^{-8}$) отвечают мощным излияниям позднеплиоцен-плейстоцен-голоценового этапа, где объем вулканизма составил более 700 км³ (см. табл. 1). Восточно-Тувинский лавовый ареал является одним из крупнейших лавовых полей новейшего времени в Центральной Азии [Сугоракова и др., 2003]. О неоднократной магматической активизации этого района свидетельствуют продукты среднемиоценового вулканизма как под новейшими вулканитами ВТЛН, так и за его пределами. Далее на северо-запад по простиранию Восточно-Саянского разлома за пределы БРЗ в 250 км от ВТЛН (Кандатская группа), изотопный состав гелия уменьшается от 255×10^{-8} до 97×10^{-8} , мантийный гелий — от 8 до 21%, в среднем составляя 16%.

Таким образом, наличие мантийного гелия в подземных флюидах прослеживается по простиранию разломных зон до 600 км от Тункинского максимума на северо-запад за пределы БРЗ. Изотопно-гелиевая аномалия западного фланга БРЗ имеет два разновеликих максимума, отвечающих проявлениям новейшего вулканизма и понижается на флангах.

Хубсугульская и Билин-Бусийнгольская меридиональные впадины представляет собой единый структурный ансамбль. Формирование Хубсугульской впадины началось в среднем миоцене, тогда как Билин-Бусийнгольский грабен (ББГ) является новейшей структурой и вулканизм отмечен маломощными проявлениями плейстоцен-голоценовых вулканитов в верховье р. Бусийнгол [Геологическая карта 1967]. Обшее развитие впадин подтверждается согласованным поведением изотопного состава гелия. К югу по простиранию и вкрест простирания впадин с востока на запад *R* уменьшается в Хубсугульской от 1022×10^{-8} до нормальных для древней коры со средним $R = 86 \times 10^{-8}$ [Поляк, 2004], в ББГ R снижается от 422×10^{-8} до 36×10^{-8} со средним $61 \times$ × 10⁻⁸ [Рычкова и др., 2007]. Убывание мантийного сигнала согласуется с уменьшением размера рифтовых впадин. Хубсугульская впадина является наиболее развитой в системе параллельных рифтов и отвечает прямой проекции горячей точки мантии. ББГ расположен в 180-200 км на крайней периферии ЮБВО и по размерам значительно уступает Хубсугульской. О продолжении мантийного сигнала на запад свидетельствует значение *R*. равное 66 × 10^{-8} (ист. Нарын. № 13). указывающее на скрытую разгрузку тепломассопотока на значительной территории.

Таким образом, изотопно-гелиевая аномалия в подземных водах Тункинско-Окинско-Саянской разломной зоны имеет черту, характерную для современных континентальных рифтов: упорядоченная изменчивость изотопного состава гелия по простиранию. Наибольшие значения с мантийным гелием 38% и 98% отвечают проявле-

Рис. 4. Соотношение измеренных значений ³He/⁴He и ⁴He/²⁰Ne в источниках Южно-Байкальской и Южно-Хангайской вулканических областях.

Кривые PLUMES и MANTLE (MORB) отвечают значениям ${}^{3}\text{He}/{}^{4}\text{He}$ и ${}^{4}\text{He}/{}^{20}\text{Ne}$ в резервуарах нижней мантии и мантии типа MORB; кривая CRUST отвечает коровым значениям; AIR соответствует атмосферным значениям. 1 – местоположение пробы и ее номер, ЮБВО; 2 – местоположение пробы и ее номер, ЮХВО.

ниям вулканизма с максимальным объемом извержений в наиболее ослабленных участках.

В ЮХВО изотопный состав гелия изучен в подземных водах 15 источников. Из них только четыре источника (№№ 1, 2, 6, 13) имеют повышенные значения *R* от (26 до 36) $\times 10^{-8}$, превышающие нормальный фоновый уровень для палеозойской коры и содержат небольшую примесь мантийного гелия около 2.5% (см. табл. 3), что указывает на поступление гелия из мантии. Согласно [Поляк, 2000], аномальные значения трассируют морфологически не выраженную на этом участке субмеридиональную зону растяжения. У остальных источников *R* варьирует от (4.9 до 18) \times $\times 10^{-8}$ со средней оценкой (12.3 ± 2.9) $\times 10^{-8}$, что вполне соответствует фоновым значениям позднепалеозойской коры, слагающей это сооружение. Высокие значения общего гелия до 9700 ррт указывают на его коровую природу [Поляк, 1994] и, согласно [Пиннекер, 1994], газовый состав источников формируется в земной коре.

ТЕПЛОВОЙ ПОТОК

Корреляция прямых (qT) и рассчитанных (qR) по изотопному составу гелия была установлена в Тункинской и Хубсугульской впадинах и для всей БРЗ в работах [Поляк, 1994, 2000; Лысак, Писарский, 1999]. Продолжающаяся корреляция qT и *qR* на юго-западном фланге БРЗ, начиная с Окинской впадины и далее на северо-запад по простиранию Окинско-Саянско-Билин-Бусийнгольской разломной зоны показана в работах Рычкова и др., 2007; Рычкова, Монгуш, 2018; Рычкова, Аюнова, 2019]. В зоне Восточно-Саянского шва в районе Ак-Сугского месторождения расчет косвенных оценок теплового потока qR на уровне 76 мВт/м² подтверждает измеренные ранее в скважинах высокие величины теплового потока до 75-77 мВт/м² пункты I-II (см. рис. 2, табл. 2). На территории Сангилена, прилегающей к ББГ и находящейся в одной структурно-формационной зоне, в пунктах 13 и III (см. рис. 2, табл. 2) получено совпадение для измеренных и расчетных

Рис. 5. Положение составов пород Южно-Байкальской и Южно-Хангайской вулканических областей на диаграмме $\mathcal{E}_{Nd} - \mathcal{E}_{Sr}$ (по [Ярмолюк и др., 2011, рис. 6, с. 351]).

1,2 – составы вулканических пород областей: 1 – Южно-Байкальской вулканической области, 2 – Южно-Хангайской вулканической области; 3, 4 – поле составов пород областей: 3 – Южно-Байкальской вулканической области, 4 – Южно-Хангайской вулканической области.

величин теплового потока на уровне $60-66 \text{ MBt/m}^2$. Рассчитанные qR в ББГ и измеренные qT на прилегающей территории Сангилена говорят об обширной геотермической аномалии в этом районе, о восходящем тепломассопотоке, доказываемом по изотопно-гелиевым данным [Рычкова и др., 2007]. Таким образом, согласованная вариативность теплового потока и изотопного состава гелия, установленная в Тункинской и Хубсугульской впадинах [Поляк, 2000], продолжается по Окинско-Саянско-Билин-Бусийнгольской зоне на северозапад и юго-запад ЮБВО и однозначно указывает на разгрузку тепломассопотока из мантии.

В ЮХВО тепловой поток, рассчитанный по значениям R, имеет величину 54—60 мВт/м², что несколько выше континентального фона. Наличие мантийного гелия около 2.5% в подземных флюидах показали 4 источника из 15-ти опробованных. Согласно [Хуторской, 1996, с. 280], тепловой поток в Центральной Монголии отнесен к области мозаичного распределения теплового потока, и он "... генетически связан с обширным внедрением разогретого вещества мантии в протоконтинентальную литосферу и постепенным его остыванием от периферии к ее центру".

ОБСУЖДЕНИЕ

Изотопный состав гелия в подземных водах ЮБВО и ЮХВО имеет значительные различия. В ЮБВО изотопно-гелиевая специфика однозначно свидетельствует о доли мантийного гелия, варьирующего от 2.5–5 до 98–99%. Значительная протяженность и сопряженная изменчивость ³He/⁴He и теплового потока на всем протяжении Окинско-Восточно-Саянской разломной зоны указывает на продолжение рифтогенных и магматических процессов за пределы западного фланга БРЗ и подтверждает транспортировку мантийного гелия в кору глубинным тепломассопотоком [Рычкова, Монгуш, 2018].

Максимальное содержание R в подземных водах Тункинской впадины составляют 1.12×10^{-5} , что практически равно данным по верхнемантийному резервуару MORB. В оливинах базальтов Хамар-Дабана (вулкан Думбусун-Дулга) изотопный состав гелия показал максимальные содержания, равные (36 и 48) × 10^{-6} [Грачев, 1998]. Такие содержания R отвечают нижнемантийным резервуарам PREMA и LM с R соответственно равными 30×10^{-6} и 40×10^{-6} [Грачев, 2003, табл. 6, с. 628].

В ЮХВО изотопный состав гелия в подземных водах немного превышает фоновое для палеозойских пород. Но в фенокристах оливинов в базальтах Хангайского нагорья *R* варьирует от (0.56 до 8.7) × 10⁻⁶ [Грачев и др., 2003, табл. 1]. Такие величины соответствуют мантийным источникам ЕМІ и ЕМІІ с *R*, равным соответственно (1–6 и <10) × 10⁻⁶ [Грачев, 2003, табл. 6].

Это указывает на мантийные источники с разным содержанием *R* в ЮБВО и ЮХВО. Изотопному составу гелия в подземных водах и в вулканических породах ЮБВО соответствует нижнемантийный источник PREMA. В ЮХВО значения R как в подземных водах, так и в оливинах базальтов. отвечают мантийным источникам (EMI и EMII) с *R* на порядок ниже, чем в ЮБВО. О наибольшей степени влияния нижнемантийного источника РREMA в вулканических образованиях ЮБВО свидетельствуют изотопные характеристики ENd и ES (составы пород смещены к модельному источнику PREMA) [Ярмолюк и др., 2011] (рис. 5). Вулканиты ЮХВО в основном сосредоточены в пределах источника EMI с небольшим трендом в сторону PREMA.

Таким образом, полученные результаты свидетельствуют, что вулканизм областей имеет мантийные источники с разной величиной изотопного состава гелия. Возможно, что позднекайнозойский вулканизм ЮХВО обусловлен "истощенным" по изотопному составу гелия мантийным источником ввиду его долгой вулканической истории, начиная с ранней перми.

Разломные зоны, сочленяющие Сибирскую платформу и подвижные плиты Монгольскую и Амурскую, являются сквозь литосферными, что делает их проницаемыми для мантийных масс. В ЮХВО меридиональная граница между Монгольской и Амурской плитами на поверхности не выражена. Хангайское поднятие выглядит как монолитное образование, ограниченное с юга и севера двумя широтными глубинными разломами. Сквозь литосферным является Долиннозерский грабен, расположенный на южном склоне Хангайского нагорья, отделяющий Гобийский Алтай, но и он по мощности и протяженности уступает разломным зонам ЮБВО. Мощность земной коры под Хангаем достигает 50-60 км, а в ЮБВО не превышает 45 км [Зорин и др., 1999]. Слабая проницаемость, обусловленная процессами предшествовавшего тектонического скучивания, повышенная мощность земной коры, по-видимому, затрудняли прохождение мантийных масс. Масштаб привноса в кору мантийного вещества и его интенсивность на единицу площади в ЮХВО были на порядок меньше, чем в ЮБВО (см. табл. 1).

ЗАКЛЮЧЕНИЕ

Различия в изотопном составе гелия в подземных водах ЮБВО и ЮХВО объясняются мантийными резервуарами, содержащими разную величину этого параметра: для ЮБВО — резервуар PREMA с подчиненной долей источника EM1, для ЮХВО — резервуар EM1.

Таким образом, связь с мантийными плюмами Центрально-Азиатского горячего поля мантии, установленная по результатам геохронологических, геохимических и изотопных исследований, палеовулканических и структурных условий проявления вулканизма ЮБВО и ЮХВО [Ярмолюк, 1994, 2003, 2011], подтверждается изотопным составом гелия в подземных водах и в оливинах базальтов. Исследования изотопного состава гелия подтвердили, что позднекайнозойский вулканизм ЮБВО и ЮХВО контролируется мантийными источниками, связанными с мантийными плюмами Центрально-Азиатского горячего поля мантии.

БЛАГОДАРНОСТИ

Авторы статьи выражают искреннюю благодарность академику РАН Владимиру Викторовичу Ярмолюку за консультацию и ценные замечания, которые позволили улучшить качество статьи.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнена в рамках работ по Государственному заданию ТувИКОПР СО РАН, научная тема 222020400035-4.

СПИСОК ЛИТЕРАТУРЫ

Бадминов П.С., Иванов А.И., Писарский Б.И., Оргильянов А.И. Окинская гидротермальная система (Восточный Саян) // Вулканология и сейсмология. 2013. № 4. С. 27–39.

Бушенкова Е.В., Деев Е.В., Дягилев Е.С., Гибшер А.А. Структура верхней мантии и кайнозойский вулканизм Центральной Монголии // ДАН. 2008. Т. 418. № 3. С. 378–382.

Геншафт Ю.С., Салтыковский А.Я. Кайнозойский вулканизм Монголии // Российский журнал наук о Земле. 2000. Т. 2. № 32. С. 153–183.

Грачев А.Ф. Хамар-Дабан – горячая точка Байкальского рифта: данные химической геодинамики // Физика Земли. 1998. № 3. С. 3–28.

Грачев А.Ф. Идентификация мантийных плюмов на основе изучения вещественного состава вулканитов и их изотопно-геохимических характеристик // Петрология. 2003. Т. 11. № 6. С. 618–654.

Грачев А.Ф., Геншафт Ю.С., Каменский И.Л., Салтыковский А.Я. Первые данные об изотопии гелия в кайнозойских базальтах Монголии // ДАН. 2003. Т. 393. № 5. С. 669–672. Геология СССР. Т. XXIX. Тувинская АССР. М.: Недра, 1966. 460 с.

Геологическая карта СССР масштаба 1 : 200000. Серия Западно-Саянская. Лист М-46-VII. Объяснительная записка. М.: Недра, 1967.

Дучков А.Д., Лысак С.В., Балобаев С.Т. и др. Тепловое поле недр Сибири. Новосибирск: Наука, 1987. 287 с.

Дучков А.Д., Рычкова К.М., Лебедев В.И., Каменский И.Л., Соколова Л.С. Оценки теплового потока Тувы по данным об изотопах гелия в термоминеральных источниках // Геология и геофизика. 2010. Т. 51(2). С. 264–276.

Зоненшайн Л.П., Савостин Л.А. Введение в геодинамику. М.: Недра, 1979. 310 с.

Зорин Ю.А., Турутанов Е.Х., Кожевников В.М. и др. О природе кайнозойских верхнемантийных плюмов в Восточной Сибири (Россия) и Центральной Монголии // Геология и геофизика. 2006. Т. 47. № 10. С. 1060–1074.

Зятькова Л.К. Структурная геоморфология Алтае-Саянской горной области. Новосибирск: Наука, 1977. 215 с.

Каменский И.Л., Лобков В.А., Каменский И.Л. и др. Компоненты верхней мантии Земли в газах Камчатки (по изотопам He, Ne, C) // Геохимия. 1976. № 5. С. 482–695.

Коваленко В.И., Ярмолюк В.В., Богатиков О.А. Новейший вулканизм и его связь с процессами межплитного литосферного взаимодействия и глубинной геодинамикой // Геология и геофизика. 2010. Т. 51. № 9. С. 1204–1221.

Кузьмичев А.Б. Тектоническая история Тувино-Монгольского массива: раннебайкальский, позднебайкальский и раннекаледонский этапы. М.: ПРОБЕЛ-2000, 2004. С. 5–191.

Кулаков И.Ю. Структура верхней мантии под Южной Сибирью и Монголией по данным региональной сейсмотомографии // Геология и геофизика. 2008. Т. 49(3). С. 248–261.

Ломоносов И.С., Мамырин Б.А., Прасолов Э.М., Толстихин И.Н. Изотопный состав гелия и аргона в некоторых гидротермах Байкальской рифтовой зоны // Геохимия. 1976. № 11. С. 1743–1746.

Лысак С.В., Писарский Б.И. Оценка теплового потока по изотопам гелия в газовом составе подземных вод Байкальской рифтовой зоны и окружающих районов // Вулканология и сейсмология. 1999. № 3. С. 45–53.

Мамырин Б.А., Толстихин И.Н. Изотопы гелия в природе. М.: Энергоиздат, 1981. 222 с.

Мордвинова В.В., Треусов А.В., Турутанов Е.Х. О природе мантийного плюма под Хангаем (Монголия) по сейсмогравиметрическим данным // ДАН. 2015. Т. 460(3). С. 334–338.

Пинеккер Е.В., Писарский Б.И., Павлова С.Е., Лепин В.С. Изотопные исследования минеральных вод Монголии // Геология и геофизика. 1995. Т. 36. № 1. С. 94–102.

Поляк Б.Г., Толстихин И.Н., Якуцени В.И. Изотопный состав гелия и тепловой поток – геохимический и геофизический аспекты тектогенеза // Геотектоника. 1979. № 5. С. 3–23.

Поляк Б.Г. Тепломассопоток из мантии в главных структурах земной коры. М.: Наука, 1988. С. 161–166.

Поляк Б.Г., Хуторской М.Д., Каменский И.Л., Прасолов Э.М. Тепломассопоток из мантии на территории Монголии // Геохимия. 1994. № 12. С. 1693–1705.

Поляк Б.Г. Изотопы гелия в подземных флюидах Байкальского рифта и его обрамления (к геодинамике континентального рифтогенеза) // Российский журн. наук о Земле. 2000. Т. 2. № 2. С. 1–21.

Поляк Б.Г. Спрединг и рифтогенез – изотопно-гелиевая специфика // Геотектоника. 2004. № 6. С. 19–32.

Поляк Б.Г., Толстихин И.Н., Хуторской М.Д. Восходящий тепломассопоток в континентальной коре – к проблеме движущих сил тектогенеза // Физика Земли. 2020. № 4. С. 61–82.

Рассказов С.В., Логачев Н.А., Брант И.С., Брант С.Б. Геохронология и геодинамика позднего кайнозоя (Южная Сибирь, Южная и Восточная Азия). Новосибирск: Наука, 2000. 288 с.

Рычкова К.М., Аюнова О.Д. Изотопы гелия в подземных водах Тункино-Окинско-Саянской рифтовой зоны (Восточный Саян): корреляция с тепловым потоком // Геология и геофизика. 2019. Т. 60. № 9. С. 1269–1280.

Рычкова К.М., Дучков А.Д., Лебедев В.И., Каменский И.Л. Изотопы гелия в подземных источниках Восточной Тувы // ДАН. 2007. Т. 417. № 36. С. 814-817.

Рычкова К.М., Монгуш С.-С.С. Распределение тепломассопотока на крайнем юго-западе Байкальской рифтовой зоны // Вулканология и сейсмология. 2018. № 3. С. 36–45.

Саватенков В.М., Ярмолюк В.В., Кудряшова Е.А., Козловский А.М. Источники и геодинамика позднекайнозойского вулканизма Центральной Монголии по данным изотопно-геохимических исследований // Петрология. 2010. Т. 18. № 3. С. 297–327.

Справочник по геохимии нефти и газа. СПб.: Недра, 1998. С. 25–26.

Сугоракова А.М., Ярмолюк В.В., Лебедев В.И. Кайнозойский вулканизм Тувы. Кызыл: ТувИКОПР СО РАН, 2003. 92 с.

Толстихин И.Н. Изотопная геохимия гелия, аргона и редких газов. Л.: Наука, 1986. 200 с.

Хуторской М.Д. Геотермия Центрально-Азиатского складчатого пояса. М.: Изд-во РУДН, 1996. 289 с.

Хуторской М.Д., Голубев В.А., Козловцева С.В., Митник М.М., Ярмолюк В.В. Тепловой режим недр Монголии. М.: Наука, 1991. 127 с.

Ярмолюк В.В., Коваленко В.И., Кузьмин М.И. Североазиатский суперплюм в фанерозое: магматизм и глубинная геодинамика // Геотектоника. 2000. № 5. С. 3–29.

Ярмолюк В.В., Коваленко В.И., Иванов В.Г. Внутриплитная позднемезозойская вулканическая провинция Азии – проекция горячего поля мантии // Геотектоника. 1995. № 5. С. 3–29.

Ярмолюк В.В., Иванов В.Г., Коваленко В.И., Покровский Б.Г. Магматизм и геодинамика Южно-Байкальской вулканической области (горячей точки мантии) по результатам геохронологических, геохимических и изотопных (Sr, Nd, O) исследований // Петрология. 2003. Т. 11. № 1. С. 3–33.

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 4 2023

Ярмолюк В.В., Иванов В.Г., Коваленко В.И., Самойлов В.С. Динамика формирования и магматизм позднемезозойско-кайнозойской Южно-Хангайской горячей точки мантии (Монголия) // Геотектоника. 1994. № 5. С. 28–45.

Ярмолюк В.В., Кудряшова Е.А., Козловский А.М., Саватенков В.М. Позднекайнозойская вулканическая провинция Центральной и Восточной Азии // Петрология. 2011. Т. 19. С. 341–362.

Du J. ³He/⁴He ratios and heat flow in the continental riftvalley // Works of gas geochemistry / Ed. Y. Xu // Lanzhou, Gansu Science and Technology Press. 1992. P. 165–171.

Italiano F., Martelli M., Martinelli G., Nuccio P.M. Geochemical evidence of melt intrusions along lithospheric faults of the Southern Apennines, Italy: geodynamic and seismogenic implications // J. Geophys. Res. 2000. V. 105. N $_{2}$ B6. P. 13569–13578.

Marty B., Tolstiklin I.N. CO₂ fluxes from mid-ocean ridges, arcs and plumes // Chemical Geology. 1998. V. 145. P. 233–248.

Newell D.L., Jessup M.J., Hilton D.R., Shaw C.A., Hughes C.A. Mantle-derived helium in hot springs of the Cordillera Blanca, Peru: Implications for mantle-to-crust fluid transfer in a flat-slab subduction setting // Chemical Geology. 2015. V. 417. P. 200–209.

Zhao D. Multiscale seismic tomography and mantle dynamic // Gondwana Res. 2009. V. 15. P. 297–323.

Isotopic Composition for Helium in Late Cenozoic South-Baikal and South-Khangai Volcanic Areas

K. M. Rychkova^{1, *} and O. I. Kalnaya^{1, **}

¹Tuvinian Institute for Exploration of Natural Resources SB RAS, Internatsionalnaya str., 117a, Kyzyl, 667007, Tyva Republic, Russia *e-mail: klara6@inbox.ru **e-mail: kalnaja@mail.ru

The paper considers isotopic composition of helium $({}^{3}\text{He}/{}^{4}\text{He} = R)$ in groundwater of South-Baikal (SBVA) and South-Khangai volcanic areas (SKhVA) during the Late Cenozoic period. The differences in the behavior and magnitude of the parameters were established. It is found that the mentioned differences in ${}^{3}\text{He}/{}^{4}\text{He}$ concentrations within South-Baikal and South-Khangai volcanic areas correspond to mantle reservoirs with different helium isotope compositions. This confirms that the Late Cenozoic volcanism of South-Baikal and South-Khangai volcanic area is controlled by mantle sources related to mantle plumes of the Central-Asian hot mantle field.

Keywords: isotopic composition of helium, mineral springs, groundwater, heat flow, mantle helium, volcanites, South-Baikal volcanic area, South-Khangai volcanic area