УДК 551.781.43(479.25)

ГЕОДИНАМИЧЕСКАЯ СПЕЦИФИКА ФОРМИРОВАНИЯ УЛЬТРАКАЛИЕВЫХ ИГНИМБРИТОВ АРМЕНИИ

© 2024 г. А. М. Курчавов

Институт геологии рудных месторождений, петрографии, минералогии и геохимии Российской академии наук (ИГЕМ РАН), Старомонетный пер., 35, Москва, 119017 Россия e-mail: Kurchavov.kam38@yandex.ru

> Поступила в редакцию 24.11.2023 г. После доработки 16.04.2024 г. Принята к публикации 27.06.2024 г.

К северо-западной части Севано-Ширакской структурно-формационной зоны Малого Кавказа приурочены ультракалиевые кремнекислые игнимбриты позднего эоцена — начала раннего олигоцена (?), которые находятся в ассоциации с высоко калиевыми вулканитами известково-щелочной и шошонитовой серий. Севано-Ширакская зона в эоцене-олигоцене представляла собой энсиалическую островную дугу с метаморфическим герцинским фундаментом. Формирование высококалиевых и, особенно, ультракалиевых пород, обусловлено воздействием на континентальную кору мантийных флюидов.

Ключевые слова: Армения, ультракалиевые игнимбриты, островодужная структура

DOI: 10.31857/S0203030624050054, EDN: HNHFZP

ВВЕДЕНИЕ

Отличительная особенность позднекайнозойских вулканитов Армении является их повышенная калиевость. Сравнительный анализ плейстоценовых игнимбритов Малого Кавказа (Армения) и Северного Кавказа показал более высокую основность и калиевость армянских игнимбритов по сравнению с северокавказскими, что обусловлено геодинамической спецификой развития этих регионов [Курчавов, 2022]. Более древним, в данном случае палеоценовым, образованиям Армении также свойственна высокая калиевость магматических пород. Это отмечалось многими исследователями [Джрбашян и др., 2012; Котляр, 1958; Петрологическое изучение..., 1995; Связь..., 1968 и др.]. Среди верхнеэоценовых вулканитов обнаружены ультракалиевые разности [Геворкян и др., 2009; Гущин и др., 1994; Демирчян, 2009, 2011]. Однако геодинамические условия их появления не рассматривались.

ФОРМУЛИРОВКА НАУЧНОЙ ЗАДАЧИ

Цель данной работы — раскрыть геодинамические условия появления ультракалиевых пород в данном регионе Армении.

ИСХОДНЫЕ ДАННЫЕ

В статье, кроме опубликованных ранее материалов по строению эоцен-олигоценовых образований Армении, их химическому составу и содержанию в них микроэлементов, использован новый авторский геологический материал и новые аналитические данные, полученные в Лаборатории анализа минерального вещества ИГЕМ РАН (Москва).

Определения содержаний петрогенных элементов в породах выполнены А.И. Якушевым рентгено-флюоресцентным методом на спектрометре волновой дисперсии (модель Axios mAX – PANalytical, Нидерланды, 2012 г.) и на спектрометре PW-2400 производства компании Philips Analytical B.V. При калибровке спектрометра использованы отраслевые и государственные стандартные образцы химического состава горных пород. Подготовка препаратов к измерениям в спектрометре выполнена путем высокоскоростного плавления материала проб в индукционной печи с боратами лития при температуре 1200°С. Потери при прокаливании (ппп) определялись гравиметрическим методом при температуре 1000°С. Суммарное содержание железа в пробах определено в форме Fe_2O_{306m} , вне зависимости от действительного валентного состояния. Погрешности анализа составляли 1–5 отн. % для элементов с содержаниями выше 0.5 мас. % и до 12 отн. % ниже 0.5 мас. %.

Определения микро- и редкоземельных элементов проводилось Я.В. Бычковой и Д.В. Коваленко методом масс-спектрометрии с индуктивно-связанной плазмой (ICP-MS) на масс-спектрометре серии XII ICP-MS Thermo Scientific. Порошки пород подвергались кислотному разложению. Вскрытие образцов осуществлялось по методике кислотного разложения. Калибровка чувствительности прибора осуществлялась с помощью стандартных растворов (ICP-MS-68A, HPS, растворы А и В), включающих все анализируемые в пробах элементы. Правильность получаемых результатов контролировалась систематическими анализами стандартных аттестованных образцов ВНVО-2 и COQ-1, разложенных одновременно с серией исследуемых проб. Пределы обнаружения (ПО) для РЗЭ составляли 0.02-0.03 мкг/г; погрешности анализа составляли 1-3%.

СТРОЕНИЕ И СОСТАВ ЭОЦЕН-ОЛИГОЦЕНОВЫХ ВУЛКАНИТОВ СЕВЕРНОЙ АРМЕНИИ

Ультракалиевые вулканиты распространены на севере Армении в пределах Севано- Ширакской структурно-формационной зоны (рис. 1). Она сложена палеогеновыми вулканогенными образованиями [Агамалян и др., 2012; Связь..., 1968].

Наиболее древние образования севера Армении представлены блоками глубоко метаморфизованных протерозойских пород, распространенных западнее города Еревана и у восточного подножья горы Арагац. Стратиграфически выше залегают палеозойские и мезозойские (среднедевонского-триасового возраста) морские осадочные образования. Фрагментами распространены

Рис. 1. Положение ультракалиевых игнимбритов Армении. Геологическая основа по [Агамалян и др., 2012] с упрощениями.

неоген-четвертичные вулканиты, 2 – палеогеновые вулканиты Севано-Ширакской зоны, 3 – ареал распространения ультракалиевых игнимбритов верхов эоцена–низов олигоцена (?) в пределах Севано-Ширакской зоны, 4 – меловые отложения, 5 – юрские отложения, 6 – отложения карбона-триаса, 7 – протерозойские отложения, 8, 9 – положение коллизионного шва в меловое время: 8 – достоверное, 9 – предполагаемое.

среднеюрские терригенные породы и раннемеловые известняки. Более широко распространены верхнемеловые известняки, мергели и песчаники сеноманского-маастрихтского ярусов. В Памбакском хребте они несогласно налегают на метаморфические породы. В позднем мелу началась коллизия Армянского блока и Евразийской плиты. При этом произошло смятие остатков океанической коры и аккреционной призмы с обдукцией реликтов смятой океанической коры на прилегающие континентальные окраины с формированием офиолитового орогена. После быстрого размыва этого орогена релиты океанической коры сохранились лишь в остатках линейных осадочных бассейнов в виде офиолитовых поясов по обе стороны от коллизионного шва (см. рис. 1).

Севано-Ширакская структурно-формационная зона перекрывает этот позднемеловой

Рис. 2. Положение точек ультракалиевых игнимбритов (звезда в круге) на TAS диаграмме [Петрографический кодекс, 2009], развернутой вниз по оксиду калия [Курчавов, 2022]. Использованы анализы табл. 1 данной статьи, а также табл. 1 из работы [Гущин и др., 1994].

Петрохимические серии по К₂О: I – толеитовая, II, III – известково-щелочная (II – низкокалиевая ветвь, III – высококалиевая ветвь), IV – шошонитовая. Прямыми крестами обозначены породы нижне-среднего эоцена, точ-ками – верхнего эоцена (памбакской свиты) Севано-Ширакской структурно-формационной зоны. Анализы взяты из работы [Связь..., 1968, табл. 27].

коллизионный шов (см. рис. 1). Выделяется две толщи в слагающих ее палеоценовых образованиях. Нижняя представлена нижне-среднеэоценовыми базальтоидами, андезитами и кремнекислыми породами с пачками туфогенно-осадочных пород. Вулканическая деятельность происходила в это время преимущественно в подводных условиях.

Верхняя толща (верхний эоцен-нижний олигоцен), выделенная в памбакскую свиту, представлена щелочными вулканитами широкого

Рис. 3. Ультракалиевые риодацитовые игнимбриты в обнажении юго-восточнее села Петровка. Фото А.М. Курчавова.

диапазона по кремнезему: от андезибазальтов до риодацитов. Здесь же выявлены ультракалиевые риодацитовые игнимбриты. Эта толща вулканитов залегает на нижележащих отложениях с угловым несогласием и сформирована преимущественно в континентальных условиях [Связь..., 1968].

Указанные толщи, кроме палеогеографических условий формирования, резко различаются петрохимической сериальной принадлежностью пород. Нижне-среднеэоценовые вулканиты принадлежат преимущественно к нормально-щелочным и частично умеренно-щелочным разностям, а по содержанию калия — к известково-щелочной петрохимической серии в полном ее объеме. Верхнеэоценовые нижнеолигоценовые вулканиты отличаются общей повышенной щелочностью и калиевостью: они принадлежат уже преимущественно к щелочным и умеренно-щелочным разностям, а по калию – к шошонитовой серии и частично

КУРЧАВОВ

70

Образец	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	S	ппп	Сумма
513	69.51	0.61	13.57	2.96	0.37	0.13	0.36	0.32	10.72	0.15	0.02	1.23	99.72
513/1	67.81	0.60	14.47	2.96	0.03	0.19	0.15	0.25	12.08	0.11	0.02	1.10	99.80
AM- 33/15	68.78	0.62	13.81	3.51	0.04	0.17	0.13	0.25	11.02	0.05		1.32	99.70
AM- 34/15	67.89	0.62	13.69	2.64	0.19	0.07	0.08	0.26	11.53	0.13	0.59	2.14	99.66
Образец	V	Cu	Zn	Rb	Sr	Zr	Ba	U	Th	Y	Nb	Pb	
513	42	9	92	260	68	252	1087	4	8	25	15	58	
513/1	41	9	173	292	50	262	844	4	11	27	14	29	
AM- 33/15	48	9	111	305	59	283	725	4	7	27	16	38	
AM- 34/15	62	18	31	265	91	282	1320	5	8	24	15	56	

Таблица 1. Содержания петрогенных (мас. %) и микроэлементов (ppm) в ультракалиевых игнимбритах Армении

Примечание. Образцы 513 и 513/1 из коллекции А.М. Курчавова. Образцы АМ-33/15 и АМ-34/5 – из коллекции С.Н. Бубнова. Все образцы взяты в 2 км юго-восточнее села Петровка.

Таблица 2. Содержание (ppm) микроэлементов в ультракалиевых игнимбритах Армении

Элементы	513	513-1	AM-33/15	AM-34/15
Li	5.4	5.8	5.4	3.8
Be	1.6	1.7	1.3	1.2
Sc	5.2	5.1	11.0	2.5
V	24	19	32	51
Cr	1.9	0	18.0	0.3
Со	1.20	1.60	1.90	0.17
Cu	9.0	9.0	6.9	7.8
Zn	89.4	231.9	105.0	31.0
Pb	58	29	38	56
Bi	0.05	0.08	0.10	0.05
Zr	226	239	249	238
Sr	33	18	48	52
Ba	951	641	747	756
Rb	235	248	308	257
Y	19.0	14.0	28.0	6.7
Nb	13.3	13.5	13.0	12.0
Та	1.45	1.48	0.77	0.65
Th	4.99	3.75	9.80	2.20
U	1.9	1.7	2.1	1.4
Мо	0.8	0.5	1.1	0
Cd	0.26	0.28	0.23	0.01
Cs	0.85	1.23	1.40	0.79
Hf	6.04	6.46	6.40	6.80
Th/Yb	2.2	1.9	3.0	1.7
Ta/Yb	0.6	0.7	0.2	0.5
Th/Nb	0.4	0.3	0.8	0.2
La/Yb	7.3	5.6	9.4	5.1

Рис. 4. Характер распределения РЗЭ в ультракалиевых игнимбритах Армении, нормализованных по хондриту, по [Boynton, 1984].

высококалиевой ветви известково-щелочной петрохимической серии (рис. 2).

Ультракалиевые риодацитовые вулканиты распространены в северо- западной части Севано-Ширакской структурно-формационной зоны. Здесь, в районе горы Бертах – села Овнанадзор обнажена толща пород (суммарной мощностью порядка 1500 м), в низах которой преобладают кремнекислые лавы и игнимбриты, включая ультракалиевые разности, при подчиненном значении потоков трахитов и шошонитов. В верхах толщи развиты шошониты и абсарокиты. А.В. Гущиным [Гущин и др., 1994] подчеркивалось, что ультракалиевые разности слагают средние части потоков игнимбритов. Данная толща пород сопоставляется с памбакской свитой, возраст которой датирован К/Ar методом по санидину и по массе породы в пределах $(31 \pm 3) - (40.5 \pm 1.5)$ млн лет [Связь..., 1968, табл. 17]. Эта толща пород прослеживается на северо-запад в район сел Петровка и Норошен, но здесь уже в ее составе резко возрастает доля ультракалиевых риодацитовых игнимбритов. Они залегают субгоризонтально и имеют видимую мощность более 60 м. По данным

А.Р. Демирчяна [Демирчян, 2009, 2011], возраст этих образований определен K/Ar методом в пределах от 29.7 \pm 1.5 до 42.3 \pm 0.4 млн лет.

Ультракалиевые игнимбриты представляют из себя светлые буровато-сиреневатые плотные породы с многочисленными параллельно расположенными уплощенными обособлениями более темных оттенков (фьямме) (рис. 3). Среди вкрапленников в них преобладают кристаллы калиевого полевого шпата размером 1–2 мм, а также встречаются редкие кристаллы плагиоклаза и кварца. По нашим наблюдениям, а также по данным А.В. Гущина [Гущин и др., 1994], калиевый полевой шпат первичен. Базисом породы являются тонкие, волнистые, с закругленными, но не острыми окончаниями, частицы вулканического стекла.

Уникальность данных пород заключается в ультравысоком содержании K_2O . По данным [Геворкян и др., 2009; Демирчян, 2009] при содержании SiO₂ в пределах 67–69 мас. % концентрация K_2O варьирует в пределах 9.20–12.22 мас. %. Это подтверждено нашими данными (SiO₂ = 67.8–69.8 мас. %; $K_2O = 10.7-12.0$ мас. %) (табл. 1, см. рис. 3). Указанным игнимбритам

КУРЧАВОВ

Образцы	La	Ce	Pr	Nd	Sm	Eu	Tb	Gd	Dy	Но	Er	Tm	Yb	Lu	La/ Yb	Ce/ Yb
513	16.5	15	4.2	16.7	3.6	0.95	0.56	3.5	3.45	0.72	2.17	0.32	2.25	0.35	7.3	6.7
513-1	11.1	19	3.2	13.2	2.8	0.72	0.45	2.8	2.73	0.62	1.86	0.29	2.00	0.33	5.6	9.5
AM- 33/15	31.0	59	7.0	26.0	5.5	1.40	0.86	5.7	5.20	1.05	3.20	0.47	3.30	0.52	9.4	17.9
AM- 34/15	6.6	17	2.2	9.3	2.1	0.50	0.27	1.5	1.60	0.34	1.10	0.19	1.30	0.22	5.1	13.1

Таблица 3. Содержание (ppm) редкоземельных элементов в ультракалиевых игнимбритах Армении

свойственны повышенные концентрации (ppm) Rb (235–308), Zr (226–249), Ba (641–951) при пониженных значениях V (19–51), Cu (6.9–9.0), Pb (29–58), Y (6.7–28), Nb (12–13.5) и при весьма низких значениях Be (1.2–1.7), U (1.4–2.1) и Th (2.2–9.8) (табл. 2).

Суммарные содержания (ppm) редкоземельных элементов в данных породах невысокие (44.2–147.5) с преобладанием легких разностей РЗЭ над тяжелыми: La/Yb = 5.1–9.4; Ce/Yb = = 6.7–17.9. Им свойственен также слабо проявленный Eu – минимум (рис. 4, табл. 3).

ГЕОДИНАМИЧЕСКИЕ УСЛОВИЯ ФОРМИРОВАНИЯ УЛЬТРАКАЛИЕВЫХ ПОРОД АРМЕНИИ

Причины высокого насыщения калием магматических горных пород до сих пор вызывают дискуссии. Появление в данном районе Армении кремнекислых ультракалиевых вулканитов разные исследователи объясняют различно. Одни считают, что они возникли в результате ликвационных процессов, правда не объясняя значительный объем этих пород [Гущин и др., 1994]. Другие считают их появление в результате подтока флюидов, обогащенного калием [Геворкян и др., 2009]. Следует отметить, что точки ультракалиевых пород Армении на диаграмме отношений Th/Yb-Ta/Yb расположены близ области океанических производных и среднего состава верхней континентальной коры (рис. 5).

Геотектоническая позиция Севано-Ширакской зоны также понимается различно. Некоторые исследователи считают, что формирование палеогеновых вулканитов произошло в островодужной обстановке [Садоян, 1988]. Другие исследователи относят данную зону

Рис. 5. Положение точек ультракалиевых игнимбритов Армении (круги с точкой) на диаграмме Th/Yb–Ta/Yb, по [Pearce, 1984].

GLOSS – океанические осадки [Plank, Langmuir, 1998], E-MORB и N-MORB – обогащенные и деплетированные базальты срединно-океанических хребтов, OIB – базальты океанических островов, РМ – примитивная мантия, UCC – верхняя континентальная кора (средний состав) [Rudnick, Gao, 2003].

к рифтогенным [Агамалян, 2004; Агамелян и др., 2012].

Рис. 6. Положение ультракалиевых игнимбритов Армении (круги с точкой) на дискриминационных диаграммах. a – Th/Nb–La/Yb, по [Hollocher et al., 2012]; б – Nb–Y, по [Pearce and Norry, 1979], поля volcanic arc and syn-collision granites – вулканические дуги и син-коллизионные граниты, whisin – plate granites – внутриплитные граниты, ocean ridge granites – граниты океанических хребтов; в – Hf–Rb–Ta, по [Harris et al., 1986], поля гранитов на диаграмме (в): WPG – внутриплитных, VAG – вулканических дуг, syn-COLG – син-коллизионных, POST-COLG – постколлизионных.

Резкое различие палеогеографических условий формирования этих толщ, позволяет согласиться с трактовкой рифтогенной, а, на наш взгляд, скорее всего с морской троговой природой ее формирования. В то время как верхняя толща, залегая с несогласием на нижней, формируется в континентальной обстановке. Выше следует комплекс олигоцен-миоценовых молассоидных образований, свидетельствующих о горном расчлененном рельефе Севано-Ширакской зоны к этому времени [Асратян и др., 1988].

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 5 2024

Стало быть, Севано-Ширакская зона в позднем эоцене—начале олигоцена являлась наземной вулканической грядой типа энсиалической островодужной структуры. Принадлежность ее к островодужным структурам подтверждается приуроченностью точек ультракалиевых игнимбритов к полям развития пород островных дуг, что фиксируется на главных дискриминационных диаграммах (рис. 6).

Ультракалиевые кремнекислые вулканиты выявлены в островодужных структурах других

регионов. В частности, они широко представлены в верхнедевонских островных дугах Казахстана, в фундаменте которых присутствуют блоки континентальной коры [Курчавов и др., 2008; Курчавов, Хераскова, 2022; Мальченко и др., 1998]. Насыщенные калием вулканиты известны также в пределах Средиземного моря (Липарская и Эоловая островные дуги).

Северо-западная часть Севано-Ширакской островодужной структуры расположена севернее Севано-Акеринского коллизионного шва. Здесь имеется метаморфизованный герцинский фундамент и, возможно, присутствуют погруженные блоки докембрийской континентальной коры [Агамалян и др., 2012]. Следует особо отметить, что точки ультракалиевых пород Армении на диаграмме отношений Th/Yb-Ta/ Yb расположены близ области океанических производных и среднего состава верхней континентальной коры (см. рис. 5). Повидимому, повышенная калиевость всех пород, включая кремнекислые игнимбриты, здесь обусловлена вовлечением в расплав континентальной коровой составляющей.

ЗАКЛЮЧЕНИЕ

Позднеэоценовые—раннеолигоценовые (?) ультракалиевые кремнекислые игнимбриты Севано-Ширакской структурно-формационной зоны Армении сформировались в континентальной обстановке в условиях энсиалической островной дуги. Их приуроченность к северо-западной части данной структуры, вероятнее всего, связана с переработкой фрагментов континентальной коры глубинными флюидами, что привело к резкому обогащению магматического расплава калием.

Проявление такого типа вулканизма на фронте коллизии Кавказского региона с Аравийской плитой требует дальнейшего переосмысливания ряда аспектов связи состава магматитов с геодинамикой формирования континентальной коры подвижных поясов коллизионного типа.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках исследований по проекту № 14-05-92000 Российского фонда фундаментальных исследований, базовой темы НИР ИГЕМ РАН – ЕГИСУ НИОКТР регистрационный № 121041500222-4, а также частично за счет госзадания 124022400143-9 (код темы FMMN-2024-0014).

КОНФЛИКТ ИНТЕРЕСОВ

Автор данной работы заявляет, что у него нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

Агамалян В.А. Формирование и эволюция земной коры Малого Кавказа в зоне коллизии пассивной и активной окраин Палеотетиса // Сборник трудов, посвященный 100-летию со дня рождения П.Д. Гамкрелидзе // Труды. Новая серия. Вып. 119. Тбилиси: Геологический институт им. А.Н. Джанелидзе, 2004. С. 14–22.

Агамалян В.А., Саркисян О.А., Лорсабян Т.К., Исраэлян А.Г. Основные тектонические единицы Армении // Ученые записки Ереванского государственного университета. Геология и география. 2012. № 1. С. 3–12.

Асратян В.П., Саркисян О.А., Садоян А.А. Молассовые формации олигоцена — нижнего миоцена Армянской ССР и условия их образования // Сборник научных трудов к 50-летию Геологического факультета. Ереван: Изд-во Ереванского университета, 1988. С. 59–77.

Геворкян Р.Г., Демирчян А.Р., Лорсабян Т.К. Петрогенезис высококалийных игнимбритовых риолит-дацитов Ташира (Армения) // Электронный научно-информационный журнал "Вестник Отделения наук о Земле РАН". 2009. № 1(27). ISSN 1819–6586

Гущин А.В., Бурштейн Л.Е., Гаврилова С.П., Успенская Е.А. Позднеэоценовые высококалиевые вулканиты Северной Армении // Геология и разведка. 1994. № 1. С. 17–23.

Демирчян А.Р. Высококалийные риолит-дацитовые туфы Ташира (Лори, Армения) и их применение в качестве эффективного агроудобрения / Препринт. Ереван: ЕГУ, 2011. 6 с.

Демирчян А.Р. Высококалийные риолит-дацитовые туфы Ташира (Лори, Армения) и их применение в качестве эффективного агроудобрения / Автореф. дисс. ... канд. техн. наук. Ереван: ЕГУ, 2009. 22 с.

Джрбашян Р.Т., Гукасян Ю.Г., Карапетян С.Г. и др. Типы вулканических извержений и формы проявления позднеколлизионного наземного вулканизма Армении // Известия НАН РА. Науки о Земле. 2012. Т. 65. № 3. С. 3–20.

Котляр В.Н. Памбак. Ереван: Изд-во АН АрмССР, 1958. 228 с.

Курчавов А.М. Петро-геохимические различия позднекайнозойских игнимбритов Малого и Большого Кавказа как следствие геодинамических особенностей формирования этих структур // Вулканология и сейсмология. 2022. № 1. С. 18–38.

DOI: 10.31857/S0203030622010047

Курчавов А.М., Гранкин М.С., Мальченко Е.Г., Хамзин Б.С. Девонский островодужный вулканизм Центрального Казахстана // Науки о земле в Казахстане. Алматы: КазГЕО, 2008. С. 56–59.

Курчавов А.М., Хераскова Т.Н. Особенности осадконакопления и вулканизма Тастауской рифтовой структуры Центрального Казахстана // Литосфера. 2019. № 6. С. 889–901. DOI: 10.24930/1681-9004-2019-19-6-889-901

Мальченко Е.Г., Гранкин М.С., Курчавов А.М. О геодинамической обстановке формирования верхнедевонских вулканитов Успенской, Акбастауской и Акжал-Аксоранской зон в Центральном Казахстане // Геология и разведка недр Казахстана. 1998. № 4. С. 28–30.

Петрографический кодекс России. Магматические, метаморфические, метасоматические, импактные образования / Издание третье, исправленное и дополненное / Гл. ред. О.А. Богатиков, О.В. Петров, А.Ф. Морозов. СПб.: Изд-во ВСЕГЕИ, 2009. 200 с.

Петрологическое изучение магматических ассоциаций коллизионных обстановок / Остроумова А.С., Станкевич Е.К., Центер И.Я., Соболев А.О., Путинцев А.В. М.: Роскомнедра, Геокарт, ВСЕГЕИ, 1995. 217 с.

Садоян А.А. Литология палеогеновых отложений Малого Кавказа и сопредельных областей / Автореф. дисс. ... доктора геол.-мин. наук. М.: Геол. факультет МГУ, 1988. 32 с.

Связь мелового и палеогенового вулканизма Армении с типами развития геосинклинальных прогибов / Джрбашян Р.Т., Елисеева О.П., Мнацаканян А.Х., Остроумова А.С., Фаворская М.А. М.: Наука, 1968. 156 с.

400 млн лет геологической истории южной части Восточной Европы. Вып. 1. М.: ГЕОКАРТ, ГЕОС, 2005. 388 с.

Boynton W.V. Cosmochemistry of the rare earth elements; meteorite studies // Rare earth element geochemistry / Ed. P. Henderson. Amsterdam: Elsevier Sci. Publ. Co., 1984. P. 63–114.

Harris N.B.W., Pearce J.A., Tindle A.G. Geochemical characteristics of collision-zone. Magmatism // Geological Society, London, Special Publications. 1986. V. 19(1). P. 67–81.

Hollocher K., Robinson P., Walsh E., Roberts D. Geochemistry of amphibolite-facies volcanics and gabbros of the Storen Nappe in extensions west and southwest of Trondheim, western gneiss region, Norway: A key to correlations and paleotectonic settings // Amer. J. Sci. 2012. V. 312. P. 357–416. https://doi.org/10.2475/04.2012.01

Pearce J.A. Role of the sub-continental lithosphere in magma genesis at active continental margins // Continental Basalts and Mantle Xenoliths. Cambridge University Press. Nantwich, Cheshire: Shiva Publishing Ltd., 1983. P. 230–249.

Pearce J.A., Norry M.J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks // Contrib. Mineral. Petrol. 1979. V. 69. P. 33–47.

Plank T., Langmuir C.H. The chemical composition of subducting sediment and its consequences for the crust and mantle // Chem. Geol. 1998. V. 145. P. 325–394.

Rudnick R.I., Gao S. Composition of the continental crust // Treatise on Geochemistry. 2003. V. 3. P. 1–64.

GEODYNAMIC SPECIFICS OF THE FORMATION OF ULTRA-POTASSIUM IGNIMBRITES IN ARMENIA

A. M. Kurchavov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry Russian Academy of Sciences (IGEM RAS), Staromonetny lane, 35, Moscow, 119017 Russia e-mail: Kurchavov.kam38@yandex.ru

The northwestern part of the Sevan-Shirak structural-formation zone of the Lesser Caucasus is associated with ultrapotassium silicic ignimbrites of the late Eocene – early Oligocene (?), Which are associated with high potassium volcanites of the calcareous-alkaline and shoshonite series. The Sevano-Shirak zone in the Eocene–Oligocene was an ensialic island arc with a metamorphic Hercynian basement. The formation of high-potassium and, especially, ultrapotassium rocks is due to the effect of mantle fluids on the continental crust.

Keywords: Armenia, ultra-potassium ignimbrites, island-arc structure