Earth’s surface deformation on mount Etna: GPS measurements, interpretation, relationship to the mode of volcanism

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

We present results from a study of lateral Earth’s surface deformation and vertical movements in the area of the Mount Etna active volcano (Sicily, Italy) based on observations by global satellite navigation systems in 2011–2017 at time intervals of 24 hours at sparse stations of the regional geodetic network. The study of Mount Etna is especially important because (1) the volcano stands in a densely populated area, (2) the eruptions are nearly continuous, and (3) the location of the volcano is inconsistent with plate tectonic concepts. Subregional trends have been identified in the deformation of the area of study. Extension was recorded, not only around the summit crater, but also far from it, in the Ionian Sea. This circumstance suggests the existence of an extensive plumbing system at depth whose sources are far from the active summit crater. We discuss geological and geophysical survey results of the coastal area and the sea area in the region. It is shown that Earth’s surface deformation should be studied from observations of the existing networks that are sparse, but cover a large area.

Full Text

Restricted Access

About the authors

V. I. Kafta

Geophysical Center, Russian Academy of Sciences; Institute of Agrarian Technology, Russia’s University of Peoples’ Friendship; Federal Science Center of Geodesy, Cartography, and 3D Data Infrastructure

Author for correspondence.
Email: v.kaftan@gcras.ru
Russian Federation, 3, Molodezhnaya str., Moscow, 119269; 6, Miklukho-Maklaya str., Moscow, 117198; 26, Onezhskaya str., Moscow, 125413 

M. V. Rodkin

Federal Science Center of Geodesy, Cartography, and 3D Data Infrastructure; Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences

Email: rodkin@mitp.ru
Russian Federation, 84/32, Profsoyuznaya str., Moscow, 117997; 1B, Nauki str., Yuzhno-Sakhalinsk, 693022 

References

  1. Апродов В.А. Вулканы. М.: Мысль, 1982. 367 с.
  2. Большое трещинное Толбачинское извержение, Камчатка 1975–1976 гг. / Под ред. С.А. Федотова. М.: Наука, 1984. 637 с.
  3. Кафтан В.И. Анализ тригонометрического нивелирования в районе вулкана Толбачик // Геодезия и картография. 1991. № 1. С. 32–36.
  4. Магуськин М.А., Левин В.Е. Геодезический мониторинг деформаций земной коры в Карымском вулканическом центре // Проблемы эксплозивного вулканизма (к 50-летию катастрофического извержения вулкана Безымянный). Петропавловск-Камчатский, 2006. С. 157–165.
  5. Магуськин М.А., Шароглазова Г.А. Деформации земной поверхности Карымского вулканического центра // Вулканология и сейсмология. 1992. № 4. С. 90—110.
  6. Мирлин Е.Г., Миронов Ю.В., Родкин М.В., Чесалова Е.И. Внутриплитные подводные горы северо-западного сектора Тихого океана // Океанология. 2018. Т. 58. № 2. С. 1–9.
  7. Муравьев Я.Д., Федотов С.А., Будников В.А. и др. Вулканическая деятельность в Карымском центре в 1996 г.: вершинное извержение Карымского вулкана и фреатомагматическое извержение в кальдере Академии Наук // Вулканология и сейсмология. 1997. № 5. С. 38–71.
  8. Энман С.В. Приповерхностные напряжения и деформации в районе Большого Толбачинского трещинного извержения 1975–1976 гг. на Камчатке // Комплексные геодинамические полигоны. М., 1984. С. 123–127.
  9. Argnani A., Bonazzi C. Malta Escarpement fault zone offshore eastern Sicily: Pliocene–Quaternary tectonic evolution based on new multichannel seismic data // Tectonics. 2005. V. 24. http://dx.doi.org/10.1029/2004TC001656 (TC4009).
  10. Avallone A., Selvaggi G., D’Anastasio E. The RING network: improvements to a GPS velocity field in the central Mediterranean, Annales of Geophysics 2010. V. 53. № 2. Р. 39–54. doi: 10.4401/ag-4549
  11. Azzaro R., Branca S., Gwinner K., Coltelli M. The volcano-tectonic map of Etna volcano, 1:100000 scale: an integrated approach based on a morphotectonic analysis from high-resolution DEM constrained by geologic, active faulting and seismotectonic data // Ital. J. Geosci. (Boll. Soc. Geol. It.), 2012. V. 131. № 1. Р. 153–170. doi: 10.3301/IJG.2011.29
  12. Baldi P., Devoti R., Riguzzi F., Pietrantonio G. Satellite positioning and geophysics studies in Italy // Rendiconti Lincei. Scienze Fisiche e Naturali. 2015. doi: 10.1007/s12210-015-0385-6
  13. Bianca M., Monaco C., Tortorici L., Cernobori L. Quaternary normal faulting in southeastern Sicily (Italy): a seismic source for the 1693 large earthquake // Geophys. J. Int. 1999. V. 139. Р. 70–394.
  14. Bonforte A., Fagone S., Giardina C. et al. Global positioning system survey data for active seismic and volcanic areas of eastern Sicily, 1994 to 2013. Scientific data, 3:160062 / 2016. doi: 10.1038/sdata.2016.62 https://www.nature.com/articles/sdata201662
  15. Bousquet J.C., Lanzafame G. The tectonics and geodynamics of the Mt. Etna: synthesis and interpretation of geological and geophysical data / Eds A. Bonaccorso et al. // Geophysical Monograph Series, AGU, 143. Mt. Etna: Volcano Laboratory, 2004. P. 29–47.
  16. Casula G., Bianchi M.G. Comparison of the historic seismicity and strain-rate pattern from a dense GPS-GNSS network solution in the Italian Peninsula // Geodesy and Geodynamics. 2016. V. 7. № 5. Р. 303–316.
  17. Chiocci F.L., Coltelli M., Bosman A., Cavallaro D. Continental margin large-scale instability controlling the flank sliding of Etna volcano // Earth and Planet. Science Lett. 2011. V. 305. Р. 57–64. doi: 10.1016/j.epsl.2011.02.040
  18. D’Agostino N., Selvaggi G. Crustal motion along the Eurasia-Nubia plate boundary in the Calabrian Arc and Sicily and active extension in the Messina Straits from GPS measurements // Journal of Geophys. Res. 2004. V. 109. B11402. doi: 10.1029/2004JB002998
  19. D’Ajello Caracciolo F., Nicolosi I., Carluccio R et al. High resolution aeromagnetic anomaly map of Mount Etna volcano, Southern Italy // Journal of Volcanology and Geothermal Res. 2014. V. 277. P. 36–40. http://dx.doi.org/10.1016/j.jvolgeores.2014.03.008
  20. Doglioni C., Innocenti F., Mariotti G. Why Mt Etna? // Terra Nova. 2001. V. 13. Issue 1. P. 2–31.
  21. Doglioni C., Ligi M., Scrocca D. et al. The tectonic puzzle of the Messina area (Southern Italy): Insights from new seismic reflection data // SCIENTIFIC REPORTS. 2012. V. 2. P. 970. doi: 10.1038/srep00970
  22. Gvirtzman Z., Nur A. The formation of Mount Etna as the consequence of slab rollback // Nature. 1999. V. 401, P. 782–785.
  23. INGV RING WORKING GROUP // RETE INTEGRATA NAZIONALE GPS/ 2016. doi: 10.13127/RING
  24. Nicolich R., Laigle M., Hirn A. Crustal structure of the Ionian margin of Sicily: Etna volcano in the frame of regional evolution // Tectonophysics. 2000. V. 329. P. 121–139.
  25. Palano M., Ferranti L., Monaco C. GPS velocity and strain fields in Sicily and southern Calabria, Italy: Updated geodetic constraints on tectonic block interaction in the central Mediterranean // Journal of Geophys. Res. 2012. V. 117. B07401. doi: 10.1029/2012JB009254,
  26. Palano M., Rossi M., Cannavo F. Etn@ref: a geodetic reference frame for Mt. Etna GPS networks // Annals of Geophysics. 2010. V. 53. № 4. Р. 49–57. doi: 10.4401/ag-4879
  27. Puglisi G., Bonforte A. Dynamics of Mount Etna Volcano inferred from static and kinematic GPS measurements // J. Geophys. Res. 2004. V. 109. B11404. doi: 10.1029/2003JB002878.
  28. Ventura B. M., Serpelloni E., Argnani A. Fast geodetic strain-rates in eastern Sicily (southern Italy): New insights into block tectonics and seismic potential in the area of the great 1693 earthquake // Earth and Planet. Sci. Lett. 2014. V. 404. Р. 77–88. http://dx.doi.org/10.1016/j.epsl.2014.07.025

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The main tectonic lineaments of Sicily and the volcano Etna. Straight lines are major fault systems; dashed lines with triangles are the main regional thrusts [D’Ajello Caracciolo et al., 2014].

Download (169KB)
3. Fig. 2. Delaunay Triangulation Network. The coastline is indicated by a dotted line; fat lines - main faults (see fig. 1); circle with internal strokes - the summit crater of Etna volcano.

Download (76KB)
4. Fig. 3. The course of spatio-temporal dilatation changes throughout the study interval. The cross section of the dilatation isolines is 0.05 * 10-5. Other designations see fig. 1 and 2.

Download (108KB)
5. Fig. 4. The course of space-time changes in vertical displacements over the study interval. The cross-section of isolines of vertical displacements is equal to 0.025 m. For the remaining notation, see fig. 3

Download (96KB)
6. Fig. 5. Dilatation of the earth's surface (below) in the vicinity of the summit of Mount Etna. Vertical dashed lines mark the beginning, and vertical solid lines mark the end of extrusive eruptions. Smooth segments of the curve correspond to the omission of observations filled with interpolation.

Download (142KB)
7. Fig. 6. Changes in the vertical displacements of the coastal area (above) and the summit of the volcano.

Download (116KB)

Copyright (c) 2019 Российская академия наук