Absorption of Sulfur During Filtration Combustion of Sulfur-Containing Solid Fuels and Waste by Calcium-Containing Sorbents
- Autores: Kislov V.M.1, Tsvetkova Y.Y.1, Pilipenko E.N.1, Salganskaya M.V.1, Zaychenko A.Y.1, Podlesny D.N.1, Salgansky E.A.1, Tsvetkov M.V.1
-
Afiliações:
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
- Edição: Volume 44, Nº 7 (2025)
- Páginas: 26-33
- Seção: Combustion, explosion and shock waves
- URL: https://journals.eco-vector.com/0207-401X/article/view/687582
- DOI: https://doi.org/10.31857/S0207401X25070036
- ID: 687582
Citar
Resumo
The analysis of the results of studies on the absorption of sulfur using marble additives in the charge during filtration combustion of various types of sulfur fuels and waste was carried out. It has been shown that when fuels containing metal sulfides and organic sulfur compounds are burned, the addition of marble can significantly (2–3 times) increase the proportion of sulfur passing into solid combustion products, whereas for fuels containing metal sulfates, a similar addition of marble increases the sulfur content in the solid residue by only 25–30%.
Palavras-chave
Texto integral

Sobre autores
V. Kislov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: vmkislov@icp.ac.ru
Rússia, Chernogolovka
Yu. Tsvetkova
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: vmkislov@icp.ac.ru
Rússia, Chernogolovka
E. Pilipenko
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: vmkislov@icp.ac.ru
Rússia, Chernogolovka
M. Salganskaya
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: vmkislov@icp.ac.ru
Rússia, Chernogolovka
A. Zaychenko
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: vmkislov@icp.ac.ru
Rússia, Chernogolovka
D. Podlesny
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: vmkislov@icp.ac.ru
Rússia, Chernogolovka
E. Salgansky
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: vmkislov@icp.ac.ru
Rússia, Chernogolovka
M. Tsvetkov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: vmkislov@icp.ac.ru
Rússia, Chernogolovka
Bibliografia
- Toledo M., Arriagada A., Ripoll N., Salgansky E.A., Mujeebu M.A. Renew. Sustain. Energy Rev. 2023. V. 177. 113213. https://doi.org/10.1016/j.rser.2023.113213
- Salgansky E.A., Zaichenko A.Y., Podlesniy D.N., Salganskaya M.V., Tsvetkov M.V. // Fuel. 2017. V. 210. P. 491. https://doi.org/10.1016/j.fuel.2017.08.103
- Banerjee A., Paul D. // Energy. 2021. V. 221. 119868. https://doi.org/10.1016/j.energy.2021.119868
- Manelis G.B., Glazov S.V., Salgansky E.A., Lempert D.B. // Russ. Chem. Rev. 2012. V. 81. № 9. P. 855. https://doi.org/10.1070/RC2012v081n09ABEH004279
- Kolesnikova Y.Y., Kislov V.M., Salgansky E.A. // Russ. J. Phys. Chem. B. 2016. V. 10. № 5. P. 791. https://doi.org/10.1134/S1990793116050043
- Rashwan T.L., Torero J.L., Gerhard J. I. / /Int. J. Heat Mass Transf. 2021. V. 177. 121548. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121548
- Dorofeenko S., Podlesniy D., Polianczyk E. et al. // Energies. 2024. V. 17. № 23. P. 6093. https://doi.org/10.3390/en17236093
- Kislov V.M., Tsvetkov M.V., Zaichenko A.Y. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 947. https://doi.org/10.1134/S1990793123040255
- Salgansky E.A., Tsvetkov M.V., Zaichenko A., Podlesniy D.N., Sedov I.V. // Russ. J. Phys. Chem. B. 2021. V. 15. № 6. P. 969. https://doi.org/10.1134/S1990793121060087
- Podlesniy D., Polianczyk E., Tsvetkov M., Yanovsky L., Zaichenko A. // Processes. 2024. V. 12. № 12. 2690. https://doi.org/10.3390/en17236093
- Salgansky E.A., Salganskaya M.V., Sedov I.V. // Russ. J. Phys. Chem. B. 2024. V. 18. № 4. P. 1042. https://doi.org/10.1134/S1990793124700593
- Salgansky E.A., Kislov V.M., Glazov S.V., Salganskaya M.V. // J. Combustion. 2016. V. 1. 9637082. https://doi.org/10.1155/2016/9637082
- Tsvetkov M.V., Podlesniy D.N., Freyman V.M. et al. // Russ. J. Appl. Chem. 2020. V. 93. P. 881. https://doi.org/10.1134/S1070427220060154
- Salgansky E.A., Kislov V.M., Tsvetkov M.V. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 268. https://doi.org/10.1134/S1990793122020105
- Kislov V.M., Tsvetkov M. V., Zaichenko A. Y. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 819. https://doi.org/10.1134/S1990793121050055
- Polianczyk E., Tarasov G., Zaichenko A. // E3S Web of Conf. 2024. V. 474. 01013. https://doi.org/10.1051/e3sconf/202447401013
- Cheng J., Zhou J., Liu J. et al. // Prog. Energy Combust. Sci. 2003. V. 29. № 5. P. 381. https://doi.org/10.1016/S0360-1285(03)00030-3
- Cheah S., Carpenter D.L., Magrini-Bair K.A. // Energy & Fuels. 2009. V. 23. № 11. P. 5291. https://doi.org/10.1021/ef900714q
- Yu H., Shan C., Li J., Hou X., Yang L. // J. Environ. Manage. 2024. V. 366. 121532. https://doi.org/10.1016/j.jenvman.2024.121532
- Go E.S., Ling J.L. J., Solanki B.S. et al. // Environ. Res. 2024. 119982. https://doi.org/10.1016/j.envres.2024.119982
- Tsvetkova Y., Kislov V., Salganskaya M., Podlesniy D., Salgansky E. // E3S Web of Conf. 2024. V. 474. 01010. https://doi.org/10.1051/e3sconf/202447401010
- Tsvetkova Y., Kislov V., Zaichenko A. et al. // E3S Web of Conf. 2024. V. 498. 03001. https://doi.org/10.1051/e3sconf/202449803001
- Tsvetkov M.V., Zaichenko A.Y., Zhirnov A.A. // Theor. Found. Chem. Eng. 2013. V. 47. P. 608. https://doi.org/10.1134/S0040579513040349
- Tsvetkov M.V., Polianczyk E.V., Zaichenko A.Y. // Theor. Found. Chem. Eng. 2018. V. 52. P. 837. https://doi.org/10.S0040579518030168
- Tsvetkova Y.Y., Kislov V.M., Pilipenko E.N. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 980. https://doi.org/10.1134/S199079312470043X
- Kislov V.M., Tsvetkova Yu.Yu., Tsvetkov M.V., Pilipenko E.N., Salganskaya M.V. // Russ. J. Phys. Chem. B. 2021. V. 15. № 4. P. 645. https://doi.org/10.31857/S0207401X21080057
- Kislov V.M., Tsvetkova Yu.Yu., Tsvetkov M.V. et al. // Combust. Explos. Shock Waves. 2023. V. 59. № 2. P. 83. https://doi.org/10.15372/FGV20230210
- Kislov V.M., Tsvetkova Y.Y., Glazov S.V. et al. // Russ. J. Phys. Chem. B. 2020. V. 14. P. 660. https://doi.org/10.1134/S1990793120040156
- Borovik K.G., Lutsenko N.A. // Combust. Explos. Shock Waves. 2022. V. 58. № 3. P. 290. https://doi.org/10.1134/S0010508222030042
- Aldushin A.P., Matkowsky B.J., Schult D.A. // J. Eng. Math. 1997. V. 31. P. 205. https://doi.org/10.1023/A:1004245013529
- Zheng Z., You Y., Guo J. et al. // ACS Omega. 2022. V. 7. № 33. P. 29116. https://doi.org/10.1021/acsomega.2c02991
- Hu G., Dam-Johansen K., Wedel S., Hansen J.P. // Prog. Energy Combust. Sci. 2006. V. 32. № 3. P. 295. https://doi.org/10.1016/j.pecs.2005.11.004
Arquivos suplementares
