The role of digital doubles in the therapeutic support of patients

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The patient’s digital double is a dynamic computer model that includes medical and physiological characteristics of a particular patient, that is, in fact, a digital copy of a person. The patient’s medical data in dynamics are loaded into this model, and the conclusions based on the model can be used to correct therapy. Thus, an electronic medical card from a static storage turns into an interactive tool that is able to predict the development of the disease and a reaction to various medical interventions.

Full Text

Restricted Access

About the authors

P. Seliverstov

S.M. Kirov Military Medical Academy, Ministry of Defense of Russia

Author for correspondence.
Email: seliverstov-pv@yandex.ru
ORCID iD: 0000-0001-5623-4226
SPIN-code: 6166-7005

Candidate of Medical Sciences, Professor

Russian Federation, Saint Petersburg

V. Grinevich

S.M. Kirov Military Medical Academy, Ministry of Defense of Russia

Email: seliverstov-pv@yandex.ru
ORCID iD: 0000-0002-1095-8787
SPIN-code: 1178-0242

MD, Professor

Russian Federation, Saint Petersburg

Е. Kryukov

S.M. Kirov Military Medical Academy, Ministry of Defense of Russia

Email: seliverstov-pv@yandex.ru
ORCID iD: 0000-0002-8396-1936
SPIN-code: 3900-3441

Academician of the Russian Academy of Sciences, MD, Professor

Russian Federation, Saint Petersburg

E. Minakov

A.F. Mozhaisky Military Aerospace Academy, Ministry of Defense of Russia

Email: seliverstov-pv@yandex.ru
SPIN-code: 4819-0765

Doctor of Engineering Sciences, Associate Professor

Russian Federation, Saint Petersburg

References

  1. Nadeem M., Ahmad I., Ahmed Q. et al. A comprehensive review of digital twin in healthcare in the scope of simulative health-monitoring. Digit Health. 2025; 11. doi: 10.1177/20552076241304078
  2. Kagadis G.C., Kloukinas C., Moore K. et al. Digital Twins' Advancements and Applications in Healthcare, Towards Precision Medicine. J Pers Med. 2024; 14 (11): 1234. doi: 10.3390/jpm14111234
  3. Coorey G., Figtree G.A., Fletcher D.F. et al. The health digital twin to tackle cardiovascular disease – a review of an emerging interdisciplinary field. NPJ Digit Med. 2022; 5: 126. doi: 10.1038/s41746-022-00640-7
  4. Katsoulakis E., Wang Q., Wu H. et al. Digital twins for health: a scoping review. NPJ Digit Med. 2024; 7: 77. doi: 10.1038/s41746-024-01073-0
  5. Малов Д. Как цифровые двойники меняют диагностику в медицине. РБК Компании от 14.04.25 [Электронный ресурс]. [Malov, D. How digital twins are changing diagnostics in medicine. RBC Companies, April 14, 2025 [Electronic resource]. (in Russ.)]. URL: https://companies.rbc.ru/news/MCGKSBhzxH/kak-tsifrovyie-dvojniki-menyayut-diagnostiku-v-meditsine/
  6. Rodriguez-Gonzalez A.B., Chitimalli S., Mohan S. et al. Medical Digital Twin: A Review on Technical Principles and Clinical Applications. J Clin Med. 2025; 14 (2): 324. doi: 10.3390/jcm14020324
  7. Тайц Б.М. «10П медицина» в решении вопросов снижения смертности, увеличения продолжительности и повышения качества жизни пожилого населения. Клиническая геронтология. 2021; 27 (11-12): 76–9 [Tayts B.M. «P10 Medicine» for lower mortality, longer life expectancy and better quality of life in elderly people. Clin Gerontol. 2021; 27 (11-12): 76–9 (in Russ.)]. doi: 10.26347/1607-2499202111-12076-079
  8. Digital twin of heart patient can correctly predict outcomes of medical treatment. Maastricht University News, January 30, 2024 [Electronic resource]. URL: https://www.maastrichtuniversity.nl/news/digital-twin-heart-patient-can-correctly-predict-outcomes-medical-treatment
  9. Wu H., Wang J., Liu M. et al. From virtual to reality: innovative practices of digital twins in tumor therapy. J Transl Med. 2025; 23: 100. doi: 10.1186/s12967-025-06371-z
  10. Scientists create cancer patients' 'digital twins' to predict how well treatments may work. eCancer. 2024 [Electronic resource]. URL: https://ecancer.org/en/news/25568-scientists-create-cancer-patients-digital-twins-to-predict-how-well-treatments-may-work
  11. Mikołajewska E., Prokopowicz P., Mikołajewski D. et al. Applications of Artificial Intelligence-Based Patient Digital Twins in Decision Support in Rehabilitation and Physical Therapy. Electronics. 2024; 13 (24): 4994. doi: 10.3390/electronics13244994
  12. Marshall M.S., Boukouvalas A., Wheeler B. et al. Challenges and opportunities for digital twins in precision medicine from a complex systems perspective. NPJ Digit Med. 2024; 7: 402. doi: 10.1038/s41746-024-01402-3
  13. Селиверстов П.В., Бакаева С.Р., Шаповалов В.В. Оценка рисков социально значимых хронических неинфекционных заболеваний c использованием телемедицинской системы. Врач. 2020; 31 (10): 68–73 [Seliverstov P., Bakaeva S., Shapovalov V. A telemedicine system in the assessment of risks for socially significant chronic non-communicable diseases. Vrach. 2020; 31 (10): 68–73 (in Russ.)]. doi: 10.29296/25877305-2020-10-13
  14. В России создадут стандарт для цифровых медицинских двойников. Медвестник от 24.10.24 [Электронный ресурс] [Russia to create standard for digital medical twins. Medvestnik, 24 October 2024 [Electronic resource] (in Russ.)]. URL: https://medvestnik.ru/content/news/V-Rossii-sozdadut-standart-dlya-cifrovyh-medicinskih-dvoinikov.html
  15. Цифровые двойники в здравоохранении. Zdrav.Expert от 24.07.23 [Электронный ресурс] [Digital twins in healthcare. Zdrav.Expert, 24 July 2023 [Electronic resource]. (in Russ.)]. URL: https://zdrav.expert/index.php/Статья:Цифровые_двойники_в_здравоохранении
  16. Almalaika M., Jenkins H., Ray P. Digital twin for healthcare systems. Healthcare (Basel). 2023; 11 (20): 2738. doi: 10.3390/healthcare11202738
  17. Селиверстов П.В. Психология адаптации пациентов к использованию искусственного интеллекта при проведении скрининга хронических неинфекционных заболеваний. Медицинский Совет. 2024; 23: 266–72 [Seliverstov P.V. Psychology of patient adaptation to the use of artificial intelligence in screening for chronic noncommunicable diseases. Medical Council. 2024; 23: 266–72 (in Russ.)]. doi: 10.21518/ms2024-551
  18. Селиверстов П.В. Будущее сестринской профессии в эпоху искусственного интеллекта и роботизации здравоохранения. Медицинская сестра. 2025; 27 (3): 12–7 [Seliverstov P.V. The Future of Nursing in the Era of AI and Healthcare Robotization. Meditsinskaya sestra. 2025; 27 (3): 12–7 (in Russ.)]. doi: 10.29296/25879979-2025-03-03
  19. Seliverstov P.V., Shapovalov V., Vasin A. et al. Secure telemedicine platforms: implementation challenges and privacy protection mechanisms in distributed healthcare systems. J Wireless Mobile Networks, Ubiquitous Computing, Dependable Applications. 2025; 16 (1): 217–29. doi: 10.58346/JOWUA.2025.I1.013
  20. Через 10 лет в России может появиться цифровой двойник человека. Newprospect.ru от 22.11.24 [Электронный ресурс] [In 10 years, Russia may see the emergence of digital human doubles. Newprospect.ru, 22 November 2024 (in Russ.)]. URL: https://newprospect.ru/news/cherez-10-let-v-rossii-mozhet-poyavitsya-czifrovoj-dvojnik-cheloveka
  21. Селиверстов П.В., Шаповалов В.В., Алешко О.В. Внедрение телемедицинских технологий на основе искусственного интеллекта в практику оказания амбулаторно-поликлинической помощи для проведения медицинского осмотра. Медицинский алфавит. 2023; 28: 44–9 [Seliverstov P.V., Shapovalov V.V., Aleshko O.V. Introduction of telemedicine technologies based on artificial intelligence into practice of providing outpatient care for medical examination. Medical alphabet. 2023; 28: 44–9 (in Russ.)]. doi: 10.33667/2078-5631-2023-28-44-49

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russkiy Vrach Publishing House