The concept of using digital twins to predict the values of leading indicators of patients' condition

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The use of digital twins to predict the values of leading indicators of patients' health status, as well as the consequences of events and their outcomes, is one of the most promising areas of modern healthcare. The widespread use of such digital technologies contributes to the modernization of medicine at all stages, which makes it possible to optimize algorithms for diagnosis, treatment, rehabilitation and prevention. This opens a new path to personalized medicine, where the risks of developing diseases and complications are identified long before their clinical manifestation.

Full Text

Restricted Access

About the authors

V. B. Grinevich

S.M. Kirov Military Medical Academy, Ministry of Defense of Russia

Email: seliverstov-pv@yandex.ru
ORCID iD: 0000-0002-1095-8787
SPIN-code: 1178-0242

Professor, MD

Russian Federation, Saint Petersburg

Е. V. Kryukov

S.M. Kirov Military Medical Academy, Ministry of Defense of Russia

Email: seliverstov-pv@yandex.ru
ORCID iD: 0000-0002-8396-1936
SPIN-code: 3900-3441

Professor, Academician of the Russian Academy of Sciences, MD

Russian Federation, Saint Petersburg

E. P. Minakov

A.F. Mozhaisky Military Aerospace Academy, Ministry of Defense of Russia

Email: seliverstov-pv@yandex.ru
SPIN-code: 4819-0765

Professor, Doctor of Engineering Sciences

Russian Federation, Saint Petersburg

P. V. Seliverstov

S.M. Kirov Military Medical Academy, Ministry of Defense of Russia

Author for correspondence.
Email: seliverstov-pv@yandex.ru
ORCID iD: 0000-0001-5623-4226
SPIN-code: 6166-7005

Associate Professor, Candidate of Medical Sciences

Russian Federation, Saint Petersburg

References

  1. Garanin A.A., Aydumova O.Y., Kiselev A.R. Digital twins in healthcare administration: A systematic review on novel approaches to management and planning. Russian Open Medical Journal. 2025; 14: e0104. doi: 10.15275/rusomj.2025.0104
  2. Bagaria N., Laamarti F., Badawi H.F. et al. Health 4.0: Digital twins for health and well-being’. In Connected Health in Smart Cities, ed. A. El Saddik, M. Hossain, and B. Kantarci. Cham: Springer Nature, 2020. doi: 10.1007/978-3-030-27844-1_7
  3. Sun T., He X., Li Z. Digital twin in healthcare: Recent updates and challenges. Digit Health. 2023; 9: 20552076221149651. doi: 10.1177/20552076221149651
  4. Селиверстов П.В., Гриневич В.Б., Крюков В.Б. и др. Роль цифровых двойников в терапевтическом сопровождении пациентов. Врач. 2025; 36 (6): 13–9 [Seliverstov P., Grinevich V., Kryukov V. et al. The role of digital doubles in the therapeutic support of patients. Vrach. 2025; 36 (6): 13–9 (in Russ.)]. doi: 10.29296/25877305-2025-06-03
  5. Прохорова Н.Д., Лебедев Г.С., Прасолов М.С. и др. Применение цифровых двойников в здравоохранении. Менеджер здравоохранения. 2024; 11: 88–96 [Prokhorova N.D., Lebedev G.S., Prasolov M.S. et al. The use of digital twins in healthcare. The health care manager. 2024; 11: 88–96 (in Russ.)]. doi: 10.21045/1811-0185-2024-11-88-96
  6. Hernandez-Boussard T., Macklin P., Greenspan E.J. et al. Digital twins for predictive oncology will be a paradigm shift for precision cancer care. Nat Med. 2021; 27 (12): 2065–6. doi: 10.1038/s41591-021-01558-5
  7. Drummond D., Gonsard A. Patient digital twins: an introduction based on a scoping review. medRxiv 2024; 02.20.24303096. doi: 10.1101/2024.02.20.24303096
  8. Куракова Н.Г., Цветкова Л.А., Полякова Ю.В. Цифровые двойники в хирургии: достижения и ограничения. Хирургия. Журнал им. Н.И. Пирогова. 2022; 5: 97–110 [Kurakova N.G., Tsvetkova L.A., Polyakova Yu.V. Digital twins in surgery: achievements and limitations. Pirogov Russian Journal of Surgery. 2022; 5: 97–110 (in Russ.)]. doi: 10.17116/hirurgia202205197
  9. Селиверстов П.В., Крюков Е.В., Гриневич В.Б. Практическая реализация технологий искусственного интеллекта при проведении профилактического медицинского осмотра. Медицинский совет. 2025; 13: 266–72 [Seliverstov P.V., Kryukov E.V., Grinevich V.B. Practical implementation of artificial intelligence technologies during preventive medical examination. Medical Council. 2025; 13: 266–72 (in Russ.)]. doi: 10.21518/ms2025-322
  10. Кобякова О.С., Стародубов В.И., Куракова Н.Г. и др. Цифровые двойники в здравоохранении: оценка технологических и практических перспектив. Вестник РАМН. 2021; 76 (5): 476–87 [Kobyakova O.S., Starodubov V.I., Kurakova N.G. et al. Digital Twins in Healthcare: an Assessment of Technological and Practical Prospects. Annals of the Russian Academy of Medical Sciences. 2021; 76 (5): 476–87 (in Russ)]. doi: 10.15690/vramn1717
  11. Machado T.M., Berssaneti F.T. Literature review of digital twin in healthcare. Heliyon. 2023; 9 (9): e19390. doi: 10.1016/j.heliyon.2023.e19390
  12. Khan S., Kandukuri D.K., Subramaniyan E.U. et al. Harnessing the untapped potential of digital twin technology in digital public health interventions. Explor Digit Health Technol. 2023; 1: 11–6. doi: 10.37349/edht.2023.00003
  13. Aithal P.S. Advances and new research opportunities in quantum computing technology by integrating it with other ICCT underlying technologies. Int J Case Stud Bus IT Educ. 2023; 7: 314–58. doi: 10.47992/IJCSBE.2581.6942.0304
  14. Björnsson B., Borrebaeck C., Elander N. et al. Digital twins to personalize medicine. Genome Med. 2020; 12: 4. doi: 10.1186/s13073-019-0701-3
  15. Saratkar S.Y., Langote M., Kumar P. et al Digital twin for personalized medicine development. Front Digit Health. 2025; 7: 1583466. doi: 10.3389/fdgth.2025.1583466
  16. Селиверстов П.В. Перспективы использования телемедицинских технологий на основе искусственного интеллекта при проведении медицинского осмотра. Медицинский Совет. 2024; 5: 312–9 [Seliverstov P.V. Prospects for the use of telemedicine technologies based on artificial intelligence during medical examination. Medical Council. 2024; 5: 312–9 (in Russ.)]. doi: 10.21518/ms2024-072

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Using digital twins to predict key patient condition indicators

Download (125KB)

Copyright (c) 2025 Russkiy Vrach Publishing House