Система компьютерного зрения для анализа обзорных рентгенограмм органов грудной клетки: возможности искусственного интеллекта в обнаружении патологических изменений и инородных тел
- Авторы: Жуков Е.А1, Блинов Д.С1, Леонтьев В.С2, Гаврилов П.В1, Смольникова У.А3, Блинова Е.В4, Камышанская И.Г5
-
Учреждения:
- ООО «КэреМенторЭйАй»
- Городская клиническая больница им. Ф.И. Иноземцева Департамента здравоохранения Москвы
- Санкт-Петербургский НИИ фтизиопульмонологии Минздрава России
- Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет)
- Санкт-Петербургский государственный университет
- Выпуск: Том 31, № 5 (2020)
- Страницы: 34-41
- Раздел: Статьи
- URL: https://journals.eco-vector.com/0236-3054/article/view/114238
- DOI: https://doi.org/10.29296/25877305-2020-05-07
- ID: 114238
Цитировать
Полный текст



Аннотация
Ключевые слова
Полный текст

Об авторах
Е. А Жуков
ООО «КэреМенторЭйАй»Москва
Д. С Блинов
ООО «КэреМенторЭйАй»
Email: d.blinov@cmai.team
доктор медицинских наук Москва
В. С Леонтьев
Городская клиническая больница им. Ф.И. Иноземцева Департамента здравоохранения МосквыМосква
П. В Гаврилов
ООО «КэреМенторЭйАй»кандидат медицинских наук Москва
У. А Смольникова
Санкт-Петербургский НИИ фтизиопульмонологии Минздрава РоссииМосква
Е. В Блинова
Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет)доктор медицинских наук, профессор Москва
И. Г Камышанская
Санкт-Петербургский государственный университеткандидат медицинских наук Москва
Список литературы
- Yao L., Poblenz E., Dagunts D. et al. Learning to diagnose from scratch by exploiting dependencies among labels. arXiv:1710.10501v2 [cs.CV]. 2018; 1: 1-18.
- Sabih D.E., Sabih A., Sabih Q. et al. Image perception and interpretation of abnormalities; can we believe our eyes? Can we do something about it? Insights Imaging. 2011; 2: 47-55. https://doi.org/10.1007/s13244-010-0048-1
- Makary M.A., Daniel M. Medical error: the third leading cause of death in the US. BMJ. 2016; 353: i2139. https://doi.org/10.1136/bmj.i2139
- Kohn L.T., Corrigan J.M., Donaldson M.S. et al. To err is human: building a safer health system. Washington, DC: National Academies Press, 2000. pp. 287. https://doi.org/10.17226/9728
- Busby L.P., Courtier J.L., Glastonbury C.M. Bias in radiology: the How and Why of misses and misinterpretation. Radiographics. 2018; 38: 236-47. https:// doi.org/10.1148/rg.2018170107
- Waite S., Scott J., Gale J. et al. Interpretative error in radiology. AJR. 2017; 208: 739-49. https://doi.org/10.2214/ajr.16.16963
- Ropp A., Waite S., Reede D. et al. Did I miss that: subtle and commonly missed findings on chest radiographs. Curr Probl Diagn Radiol. 2015; 44: 277-89. https://doi.org/10.1067/j.cpradiol.2014.09.003
- Del Ciello A., Franchi D., Contegiacomo A. et al. Missed lung cancer: when, where, and why? Diagn Interv Radiol. 2017; 23 (2): 118-26. https://doi.org/10.5152/ dir.2016.16187
- Garland L.H. On the scientific evaluation of diagnostic procedures. Radiology. 1949; 52: 309-28. https://doi.org/10.1148/52.3.30910
- Er O., Yumusak N., Temurtas F. Chest diseases diagnosis using artificial neural networks. Expert Sys Appl. 2010; 37 (12): 7648-55. https://doi.org/10.1016/j. eswa.2010.04.078
- Er O., Sertkaya C., Temurtas F. et al. A comparative study on chronic obstructive pulmonary and pneumonia diseases diagnosis using neural networks and artificial immune system. J. Med. Sys. 2009; 33 (6): 485-92. https://doi. org/10.1007/s10916-008-9209-x
- Khobragade S., Tiwari A., Pati C.Y. et al. Automatic detection of major lung diseases using chest radiographs and classification by feed-forward artificial neural network. Proceedings of 1st IEEE International Conference on Power Electronics. Intelligent Control and Energy Systems (ICPEICES-2016) 2016 IEEE, p. 1-5. https:// doi.org/10.1109/icpeices.2016.7853683
- Litjens G., Kooi T., Bejnordi E.B. et al. A survey on deep learning in medical image analysis. Medical Image Analysis. 2017; 42: 60-88. https://doi.org/10.1016/j. media.2017.07.005
- Albarqouni S., Baur C., Achilles F. et al. Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Transactions on Medical Imaging. 2016; 35 (5): 1313-21. https://doi.org/10.1109/tmi.2016.2528120
- Avendi M.R., Kheradvar A., Jafarkhani H.A. combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Medical Image Analysis. 2016; 30: 108-19. https://doi.org/10.1016/j. media.2016.01.005
- Shin H.-C., Roberts K., Lu L. et al. Learning to read chest X-rays: recurrent neural cascade model for automated image annotation. Cornel University library. 2016. https://arxiv.org/abs/1603.08486.
- Wang X.S., Peng Y.F., Lu L. et al. Chest X-rays: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). Honolulu, HI, USA: IEEE. 2017. p. 3462-71. http://dx.doi. org/10.1109/CVPR.2017.369
- XGBoost Documentation, 2019, accessed 29 September 2019, https:// xgboost.readthedocs.io/en/latest/index.html
Дополнительные файлы
